JP3797393B2 - How to align the center height between the cutting tool and the workpiece - Google Patents

How to align the center height between the cutting tool and the workpiece Download PDF

Info

Publication number
JP3797393B2
JP3797393B2 JP10175096A JP10175096A JP3797393B2 JP 3797393 B2 JP3797393 B2 JP 3797393B2 JP 10175096 A JP10175096 A JP 10175096A JP 10175096 A JP10175096 A JP 10175096A JP 3797393 B2 JP3797393 B2 JP 3797393B2
Authority
JP
Japan
Prior art keywords
axis
workpiece
cutting tool
positioning means
axis positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10175096A
Other languages
Japanese (ja)
Other versions
JPH09285933A (en
Inventor
信 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10175096A priority Critical patent/JP3797393B2/en
Publication of JPH09285933A publication Critical patent/JPH09285933A/en
Application granted granted Critical
Publication of JP3797393B2 publication Critical patent/JP3797393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は研削盤や旋盤など多軸制御機械の刃具とワークのセンター合わせ、いわゆる芯高合わせを高精度かつ簡便に行う方法に関する。
【0002】
【従来の技術】
従来、研削盤や旋盤など多軸制御機械の芯高合わせは図5、図6および図7に示すように、ダミーワーク17をワークチャック2に保持し、刃具15を使ってまず刃具15の先端形状をダミーワーク17に転写させ転写跡18を形成する。次にθ回転軸4すなわちワークチャック2を180度回転させ、前記と同様に刃具15の先端形状をダミーワーク17に転写させ転写跡19を形成する。そして、転写跡18と転写跡19との中心線間の距離L3を測長し、この距離L3が0になるように前記の転写作業を繰り返す方法が一般的に行われている。
【0003】
【発明が解決しようとする課題】
芯高合わせの精度が低いとワークの加工精度の中でも特に形状精度に影響を及ぼすばかりでなく、機械本体および刃具の寿命にも悪影響を及ぼすことが一般的に知られている。
【0004】
しかしながら、前記の従来技術に示した芯高合わせ方法では、距離L3の測長に誤差がともなうこと、距離L3の測長の際ダミーワーク17をワークチャック2からはずし、測長後再びダミーワーク17をワークチャック2に把持させた時の取り付け誤差など、高精度な芯高合わせを行うことは熟練が必要で簡便かつ高精度に芯高合わせが行える方法が望まれていた。
【0005】
そこで本発明は、このような問題点を解決し、芯高合わせの中でも特に刃具の先端が回転対称形状をした刃具を用いる場合の芯高合わせを高精度かつ簡便に行う方法を提供することにある。
【0006】
【課題を解決するための手段】
【0007】
本発明は前記目的を達成するもので、水平方向に直線位置決めを行うX軸位置決め手段と、前記X軸位置決め手段と直交する水平方向に直線位置決めを行うY軸位置決め手段と、回転対称形状を有し、先端が円弧形状の刃具と、前記刃具を軸に取り付ける手段を有するスピンドル軸と、前記スピンドル軸を回転させる手段と、前記X軸位置決め手段もしくは前記Y軸位置決め手段に接合され前記スピンドル軸部を鉛直方向に位置決めするZ軸位置決め手段と、前記X軸位置決め手段もしくは前記Y軸位置決め手段に接合され前記スピンドル軸と直交する方向に回転軸を有しワークを保持回転させる角度割り出し機能を有するワーク回転手段と、前記ワーク回転手段基準で作られたチャック部とを有する多軸制御機械を用いて刃具とワークの芯高合わせを行う方法において、前記ワーク回転手段のチャック部に把持され、任意の基準点から前記刃具までの距離を非接触で測長する計測手段を備えた刃具とワークの芯高を合わせる装置を用い、該装置を前記ワーク回転手段で任意の回転位置から180度正逆転させ、正転時および逆転時の前記任意の基準点と刃具との距離を測長し、それぞれに測長された距離の差を求めることを特徴とする。
【0008】
【作用】
本発明の刃具とワークの芯高合わせ方法は、水平方向に直線位置決めを行うX軸位置決め手段と、前記X軸位置決め手段と直交する水平方向に直線位置決めを行うY軸位置決め手段と、回転対称形状を有し、先端が円弧形状の刃具と、前記刃具を軸に取り付ける手段を有するスピンドル軸と、前記スピンドル軸を回転させる手段と、前記X軸位置決め手段もしくは前記Y軸位置決め手段に接合され前記スピンドル軸部を鉛直方向に位置決めするZ軸位置決め手段と、前記X軸位置決め手段もしくは前記Y軸位置決め手段に接合され前記スピンドル軸と直交する方向に回転軸を有しワークを保持回転させる角度割り出し機能を有するワーク回転手段と、前記ワーク回転手段基準で作られたチャック部とを有する多軸制御機械の前記ワーク回転手段のチャック部に把持され、任意の基準点から前記刃具までの距離を非接触で測長する計測手段を備えた刃具とワークの芯高を合わせる装置を用い、該装置を前記ワーク回転手段で任意の回転位置から180度正逆転させ、正転時および逆転時の前記任意の基準点と刃具との距離を測長し、それぞれに測長された距離の差を求め、ワークのセンターと刃具のセンターすなわち芯高を合わせることにより、従来方法に比べ大幅に高精度かつ簡便に芯高を合わせることができる。
【0009】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて説明するが、これらに限定されるものではない。
【0010】
図1は該実施例の多軸制御機械とワークチャックに把持された芯高合わせ装置の側面図、図2は該実施例の芯高合わせ装置と刃具部分の拡大図である。
【0011】
図1および図2において、1は本発明の芯高合わせ装置、16は測長用センサーである。5はほぼ水平方向に直線位置決めを行うX軸位置決め手段、6はX軸駆動用のモータおよびエンコーダである。8はX軸位置決め手段5と直交するほぼ水平方向に直線位置決めを行うY軸位置決め手段、9はY軸駆動用のモータおよびエンコーダである。13は図示していないモータを内蔵し刃具を回転させるためのスピンドルユニットであり、14はスピンドル軸、15は形状誤差が+0.005〜−0.005[mm]で2[mm]の曲率半径をもつ切削用の刃具である。スピンドル軸14の軸端にはスピンドル軸14の回転軸と刃具15の回転軸が一致するように刃具15が取り付けられている。12はほぼ鉛直方向に位置決め可能なZ軸位置決め手段である。スピンドルユニット13および刃具15はZ軸位置決め手段12によって移動できるため、図示しないワークあるいは芯高合わせ装置の高さに応じた鉛直方向の位置決めが可能である。また、11はZ軸駆動用のモータおよびエンコーダである。
【0012】
なお、図示していないがX軸位置決め手段5とY軸位置決め手段8、およびZ軸位置決め手段12には位置検出手段としてリニアスケールが内蔵されている。
【0013】
次に4はX軸位置決め手段5上でスピンドル軸14の回転軸と直交するほぼ水平方向に回転軸を有し図示しないワークあるいは芯高合わせ装置1を保持回転させる角度位置の制御が可能なθ回転軸である。2はθ回転軸4上でθ回転軸4の回転軸にワーク回転軸を一致させワークあるいは芯高合わせ装置1を保持するワークチャックである。
【0014】
続いてこれらの構成で芯高を合わせる方法について説明する。
【0015】
まずスピンドル軸14を適当な回転数で回転させ、図3に示す刃具15と芯高合わせ装置1の位置で芯高合わせ装置1の基準面すなわち非接触式測長用センサー16の端面から刃具15の表面までの距離L1を計測する。次に図3に示す位置からθ回転軸4を180度回転する。この状態を図4に示す。図4に示す状態で前記と同様に芯高合わせ装置1の基準面と刃具15との距離L2を計測する。
【0016】
次に、このL1とL2との差が0に近づくようにZ軸位置決め手段12によってスピンドルユニット13および刃具15を芯高合わせ装置に対して鉛直方向に上下移動させる。前記L1、L2の計測とZ軸位置決め手段12を使った鉛直方向の位置決めによってL1とL2との差が0になれば刃具15のセンターとワークチャック2すなわちワーク回転軸のセンターが一致し芯高合わせが完了となる。
【0017】
一方、従来方法を図5、図6および図7に示す。まず、Y軸位置決め手段8により適量切り込みを入れ、図5に示すようにダミーワーク17に刃具15の先端形状を切削転写し転写跡18をつける。次に図5に示す位置からθ回転軸4を180度回転し同様にダミーワーク17に刃具15の先端形状を切削転写し転写跡19をつける。この状態を図6に示す。
【0018】
するとダミーワーク17には図7に示すように転写跡18および19が切削転写されている。図7に示すL3を測長しL3の半分の長さ分を相対的に移動することにより芯高合わせを行っていた。
【0019】
該実施例に示す芯高合わせ方法と従来方法との芯高の精度を比較したところ従来比約20倍の高精度な芯高合わせを行うことが確認された。またワークの加工精度も従来比5倍となり、加工精度の向上も確認された。
【0020】
該実施例では2[mm]の曲率半径をもった刃具を用いたが回転対称形状をしていれば、特定の曲率半径に限定されることは言うまでもない。
【0021】
また、該実施例では測長用のセンサーは非接触のものを用いたが、接触式のものを用いても同様に高精度な芯高合わせを行うことができることは言うまでもない。
【0022】
【発明の効果】
以上述べたように本発明の刃具とワークの芯高合わせ方法によれば、X軸位置決め手段、Y軸位置決め手段、回転対称形状を有し、先端が円弧形状の刃具と、前記刃具を軸に取り付け回転させるスピンドル軸、前記スピンドル軸部を鉛直方向に位置決めするZ軸位置決め手段、前記スピンドル軸と直交する方向に回転軸を有しワークを保持回転させる角度割り出し機能を有するワーク回転手段と、前記ワーク回転手段基準で作られたチャック部とを有する多軸制御機械の前記ワーク回転手段のチャック部に把持され、任意の基準点から前記刃具までの距離を非接触で測長する計測手段を備えた刃具とワークの芯高を合わせる装置を用い、該装置を前記ワーク回転手段で任意の回転位置から180度正逆転させ、正転時および逆転時の前記任意の基準点と刃具との距離を測長し、それぞれに測長された距離の差を求め、ワークのセンターと刃具のセンターすなわち芯高を合わせることにより、従来方法に比べ大幅に高精度かつ簡便に芯高を合わせることができるという効果を有する。
【図面の簡単な説明】
【図1】本発明の一実施例の多軸制御機械とワークチャックに把持された芯高合わせ装置の側面図
【図2】本発明の一実施例の芯高合わせ装置と刃具部分の拡大図。
【図3】芯高合わせ装置の基準面と刃具表面との距離の測長を示す側面図。
【図4】図3に示す位置からθ回転軸を180度回転した位置で芯高合わせ装置の基準面と刃具表面との距離の測長を示す側面図。
【図5】従来行われている芯高合わせ方法で、刃具先端形状のダミーワークへの転写を示す側面図。
【図6】図5に示す位置からθ回転軸を180度回転した位置で刃具先端形状のダミーワークへの転写を示す側面図。
【図7】図5、図6に示す刃具先端形状のダミーワークへの転写で、刃具先端形状をワークに転写したときの転写跡を示す図。
【符号の説明】
1 芯高合わせ装置
2 ワークチャック
3 θ回転軸駆動用モータ
4 θ回転軸
5 X軸位置決め手段
6 X軸駆動用モータおよびエンコーダ
7 ベッド
8 Y軸位置決め手段
9 Y軸駆動用モータおよびエンコーダ
10 Z軸コラム
11 Z軸駆動用モータおよびエンコーダ
12 Z軸位置決め手段
13 スピンドルユニット
14 スピンドル軸
15 刃具
16 非接触式測長用センサー
17 ダミーワーク
18 転写跡
19 転写跡
20 θ回転軸ヘッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for performing center alignment between a cutting tool and a workpiece of a multi-axis control machine such as a grinding machine or a lathe, that is, so-called center height alignment with high accuracy and simplicity.
[0002]
[Prior art]
Conventionally, as shown in FIGS. 5, 6, and 7, the center height alignment of a multi-axis control machine such as a grinding machine or a lathe is performed by holding the dummy workpiece 17 on the work chuck 2 and using the cutting tool 15 first. The shape is transferred to the dummy workpiece 17 to form a transfer mark 18. Next, the θ rotation shaft 4, that is, the work chuck 2 is rotated 180 degrees, and the tip shape of the blade 15 is transferred to the dummy work 17 in the same manner as described above to form a transfer mark 19. A method is generally employed in which the distance L3 between the center lines of the transfer trace 18 and the transfer trace 19 is measured, and the above transfer operation is repeated so that the distance L3 becomes zero.
[0003]
[Problems to be solved by the invention]
It is generally known that a low centering accuracy not only affects the shape accuracy among the workpiece processing accuracy, but also adversely affects the life of the machine body and the cutting tool.
[0004]
However, in the center height alignment method shown in the above prior art, there is an error in the measurement of the distance L3. When measuring the distance L3, the dummy workpiece 17 is removed from the work chuck 2, and after the measurement, the dummy workpiece 17 is mounted again. Highly accurate center height alignment, such as attachment errors when gripped by the work chuck 2, requires skill, and a method that can easily and accurately align the center height has been desired.
[0005]
Accordingly, the present invention provides a method for solving such problems and performing high-precision and simple core height alignment when using a blade tool in which the tip of the blade tool has a rotationally symmetric shape, particularly among the core height alignment. is there.
[0006]
[Means for Solving the Problems]
[0007]
The present invention achieves the above-mentioned object, and has an X-axis positioning unit that performs linear positioning in a horizontal direction, a Y-axis positioning unit that performs linear positioning in a horizontal direction orthogonal to the X-axis positioning unit, and a rotationally symmetric shape. And a spindle shaft having a tip having an arcuate shape, means for attaching the blade to the shaft, means for rotating the spindle shaft, and the spindle shaft portion joined to the X-axis positioning means or the Y-axis positioning means. A Z-axis positioning means for positioning the workpiece in the vertical direction, and a workpiece having an angle indexing function for holding and rotating the workpiece having a rotation axis in a direction orthogonal to the spindle axis, joined to the X-axis positioning means or the Y-axis positioning means. Using a multi-axis control machine having a rotating means and a chuck portion made on the basis of the workpiece rotating means, the cutting tool and the core of the work In the method of aligning, using a device for aligning the center height of the workpiece with the cutting tool, which is gripped by the chuck portion of the work rotating means and has a measuring means for measuring the distance from an arbitrary reference point to the cutting tool in a non-contact manner. The workpiece rotating means is rotated 180 degrees forward and backward from an arbitrary rotational position by the work rotating means, and the distance between the arbitrary reference point and the cutting tool at the time of forward rotation and reverse rotation is measured. The difference is obtained.
[0008]
[Action]
The cutting tool and workpiece centering method according to the present invention includes an X-axis positioning unit that performs linear positioning in a horizontal direction, a Y-axis positioning unit that performs linear positioning in a horizontal direction orthogonal to the X-axis positioning unit, and a rotationally symmetric shape. And a spindle shaft having a tip having an arc shape, a spindle shaft having means for attaching the blade to the shaft, a means for rotating the spindle shaft, and the spindle joined to the X-axis positioning means or the Y-axis positioning means Z-axis positioning means for positioning the shaft portion in the vertical direction; and an angle indexing function for holding and rotating the workpiece having a rotation axis in a direction orthogonal to the spindle axis, joined to the X-axis positioning means or the Y-axis positioning means. The workpiece rotating hand of a multi-axis control machine having a workpiece rotating means and a chuck portion made based on the workpiece rotating means A tool having a measuring means for measuring the distance from an arbitrary reference point to the cutting tool in a non-contact manner is used to align the core height of the workpiece with the tool rotating means. Rotate 180 degrees forward and backward from the rotation position, measure the distance between the arbitrary reference point and the cutting tool at the time of forward rotation and reverse rotation, determine the difference between the measured distances, By adjusting the center, that is, the core height, the core height can be adjusted with much higher accuracy and convenience than the conventional method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although one Example of this invention is described based on drawing, it is not limited to these.
[0010]
FIG. 1 is a side view of a multi-axis control machine according to this embodiment and a center height adjusting device held by a work chuck, and FIG. 2 is an enlarged view of the center height adjusting device and the cutting tool portion according to this embodiment.
[0011]
1 and 2, reference numeral 1 denotes a center height adjusting device of the present invention, and 16 denotes a length measuring sensor. Reference numeral 5 denotes an X-axis positioning means for linearly positioning in a substantially horizontal direction, and 6 denotes an X-axis drive motor and encoder. Reference numeral 8 denotes Y-axis positioning means for linearly positioning in a substantially horizontal direction orthogonal to the X-axis positioning means 5, and 9 denotes a motor and encoder for driving the Y-axis. 13 is a spindle unit for incorporating a motor (not shown) to rotate the cutting tool, 14 is a spindle shaft, 15 is a radius of curvature of 2 [mm] with a shape error of +0.005 to -0.005 [mm]. It is a cutting tool for cutting. A blade 15 is attached to the shaft end of the spindle shaft 14 so that the rotation axis of the spindle shaft 14 and the rotation axis of the blade 15 coincide. Reference numeral 12 denotes a Z-axis positioning means which can be positioned substantially in the vertical direction. Since the spindle unit 13 and the cutting tool 15 can be moved by the Z-axis positioning means 12, positioning in the vertical direction according to the height of the workpiece or the center height adjusting device (not shown) is possible. Reference numeral 11 denotes a Z-axis drive motor and encoder.
[0012]
Although not shown, the X-axis positioning unit 5, the Y-axis positioning unit 8, and the Z-axis positioning unit 12 incorporate a linear scale as a position detection unit.
[0013]
Next, reference numeral 4 denotes an X axis positioning means 5 having a rotation axis in a substantially horizontal direction orthogonal to the rotation axis of the spindle shaft 14 and capable of controlling the angular position for holding and rotating the workpiece or the centering device 1 not shown. It is a rotation axis. Reference numeral 2 denotes a work chuck that holds the work or center height aligning device 1 by aligning the work rotation axis with the rotation axis of the θ rotation axis 4 on the θ rotation axis 4.
[0014]
Next, a method for adjusting the core height with these configurations will be described.
[0015]
First, the spindle shaft 14 is rotated at an appropriate number of revolutions, and the cutting tool 15 is moved from the reference plane of the core height adjusting device 1 at the position of the blade height adjusting device 1 shown in FIG. The distance L1 to the surface of is measured. Next, the θ rotation shaft 4 is rotated 180 degrees from the position shown in FIG. This state is shown in FIG. In the state shown in FIG. 4, the distance L <b> 2 between the reference surface of the center height adjusting device 1 and the cutting tool 15 is measured in the same manner as described above.
[0016]
Next, the spindle unit 13 and the blade 15 are moved up and down in the vertical direction by the Z-axis positioning means 12 so that the difference between L1 and L2 approaches zero. If the difference between L1 and L2 is zero by the measurement of L1 and L2 and the vertical positioning using the Z-axis positioning means 12, the center of the cutting tool 15 and the center of the work chuck 2, that is, the center of the work rotation axis coincide with each other. Matching is complete.
[0017]
On the other hand, the conventional method is shown in FIGS. First, an appropriate amount of cut is made by the Y-axis positioning means 8, and the tip shape of the cutting tool 15 is cut and transferred to the dummy workpiece 17 as shown in FIG. Next, the θ rotation shaft 4 is rotated 180 degrees from the position shown in FIG. 5, and similarly, the tip shape of the blade 15 is cut and transferred to the dummy work 17 to make a transfer mark 19. This state is shown in FIG.
[0018]
Then, transfer marks 18 and 19 are cut and transferred to the dummy workpiece 17 as shown in FIG. The L3 shown in FIG. 7 is measured, and the center height is adjusted by relatively moving half the length of L3.
[0019]
Comparison of the core height accuracy between the center height alignment method shown in the example and the conventional method confirmed that the center height alignment is performed with a precision of about 20 times that of the conventional method. In addition, the machining accuracy of the workpiece was 5 times that of the conventional one, and it was confirmed that the machining accuracy was improved.
[0020]
In this embodiment, a blade having a curvature radius of 2 [mm] is used, but it goes without saying that it is limited to a specific curvature radius as long as it has a rotationally symmetric shape.
[0021]
In this embodiment, the non-contact sensor is used for measuring the length, but it is needless to say that even if a contact sensor is used, high-precision centering can be performed.
[0022]
【The invention's effect】
As described above, according to the cutting tool and workpiece centering method of the present invention, the X-axis positioning means, the Y-axis positioning means, the rotationally symmetric shape, the tip having an arc shape, and the cutting tool as an axis. A spindle shaft for rotating the attachment, a Z-axis positioning means for positioning the spindle shaft portion in the vertical direction, a work rotation means having an angle indexing function for holding and rotating the work in a direction perpendicular to the spindle axis; Measuring means for measuring the distance from an arbitrary reference point to the blade tool in a non-contact manner, gripped by the chuck portion of the workpiece rotating means of a multi-axis control machine having a chuck portion made on the basis of the workpiece rotating means A tool for aligning the center height of the cutting tool and the workpiece, the device is rotated forward and reverse 180 degrees from an arbitrary rotational position by the workpiece rotating means, and the arbitrary at the time of forward rotation and reverse rotation By measuring the distance between the reference point and the cutting tool, finding the difference between the measured distances, and aligning the center of the workpiece and the center of the cutting tool, that is, the center height, it is significantly more accurate and simple than the conventional method. It has the effect that the core height can be adjusted.
[Brief description of the drawings]
FIG. 1 is a side view of a multi-axis control machine according to an embodiment of the present invention and a centering device held by a work chuck. FIG. 2 is an enlarged view of a centering device and a cutting tool portion according to an embodiment of the present invention. .
FIG. 3 is a side view showing the measurement of the distance between the reference surface of the center height adjusting device and the blade surface.
4 is a side view showing measurement of the distance between the reference plane of the center height aligning device and the blade surface at a position obtained by rotating the θ rotation axis by 180 degrees from the position shown in FIG. 3;
FIG. 5 is a side view showing transfer to a dummy workpiece having a blade tip shape by a conventional centering method.
6 is a side view showing transfer onto a dummy workpiece having a blade tip shape at a position obtained by rotating the θ rotation axis by 180 degrees from the position shown in FIG. 5;
FIG. 7 is a diagram showing a transfer mark when the blade tip shape is transferred to the workpiece in the transfer to the dummy workpiece having the blade tip shape shown in FIGS. 5 and 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Center height aligner 2 Work chuck 3 (theta) rotation axis drive motor 4 (theta) rotation axis 5 X axis positioning means 6 X axis driving motor and encoder 7 Bed 8 Y axis positioning means 9 Y axis driving motor and encoder 10 Z axis Column 11 Z-axis drive motor and encoder 12 Z-axis positioning means 13 Spindle unit 14 Spindle shaft 15 Cutting tool 16 Non-contact type length measuring sensor 17 Dummy work 18 Transfer trace 19 Transfer trace 20 θ rotary shaft head

Claims (1)

水平方向に直線位置決めを行うX軸位置決め手段と、前記X軸位置決め手段と直交する水平方向に直線位置決めを行うY軸位置決め手段と、回転対称形状を有し、先端が円弧形状の刃具と、前記刃具を軸に取り付ける手段を有するスピンドル軸と、前記スピンドル軸を回転させる手段と、前記X軸位置決め手段もしくは前記Y軸位置決め手段に接合され前記スピンドル軸部を鉛直方向に位置決めするZ軸位置決め手段と、前記X軸位置決め手段もしくは前記Y軸位置決め手段に接合され前記スピンドル軸と直交する方向に回転軸を有しワークを保持回転させる角度割り出し機能を有するワーク回転手段と、前記ワーク回転手段基準で作られたチャック部とを有する多軸制御機械を用いて刃具とワークの芯高合わせを行う方法において、前記ワーク回転手段のチャック部に把持され、任意の基準点から前記刃具までの距離を非接触で測長する計測手段を備えた刃具とワークの芯高を合わせる装置を用い、該装置を前記ワーク回転手段で任意の回転位置から180度正逆転させ、正転時および逆転時の前記任意の基準点と刃具との距離を測長し、それぞれに測長された距離の差を求めることで刃具とワークの芯高合わせを行う方法。  X-axis positioning means for linear positioning in the horizontal direction, Y-axis positioning means for linear positioning in the horizontal direction orthogonal to the X-axis positioning means, a rotationally symmetric shape, and a cutting tool having a circular arc tip, A spindle shaft having means for attaching a cutting tool to the shaft, means for rotating the spindle shaft, Z-axis positioning means for joining the X-axis positioning means or the Y-axis positioning means and positioning the spindle shaft portion in the vertical direction; A workpiece rotating means joined to the X-axis positioning means or the Y-axis positioning means and having a rotation axis in a direction perpendicular to the spindle axis and having an angle indexing function for holding and rotating the workpiece; In a method of aligning the center height of a cutting tool and a workpiece using a multi-axis control machine having a chucked portion, Using a device that aligns the center height of a workpiece with a cutting tool that is gripped by the chuck portion of the rotation means and has a measuring means that measures the distance from an arbitrary reference point to the cutting tool in a non-contact manner. The blade tool is rotated 180 degrees forward and backward from an arbitrary rotational position by means, the distance between the arbitrary reference point and the blade tool at the time of forward rotation and reverse rotation is measured, and the difference between the measured distances is calculated for each A method of aligning the workpiece center height.
JP10175096A 1996-04-23 1996-04-23 How to align the center height between the cutting tool and the workpiece Expired - Fee Related JP3797393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10175096A JP3797393B2 (en) 1996-04-23 1996-04-23 How to align the center height between the cutting tool and the workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10175096A JP3797393B2 (en) 1996-04-23 1996-04-23 How to align the center height between the cutting tool and the workpiece

Publications (2)

Publication Number Publication Date
JPH09285933A JPH09285933A (en) 1997-11-04
JP3797393B2 true JP3797393B2 (en) 2006-07-19

Family

ID=14308926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10175096A Expired - Fee Related JP3797393B2 (en) 1996-04-23 1996-04-23 How to align the center height between the cutting tool and the workpiece

Country Status (1)

Country Link
JP (1) JP3797393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008498B2 (en) * 2007-08-14 2012-08-22 株式会社アルプスツール Blade height measuring device

Also Published As

Publication number Publication date
JPH09285933A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US7530878B2 (en) Grinding machine with a concentricity correction system
EP2287688B1 (en) Method of machine tool calibration
JP3797393B2 (en) How to align the center height between the cutting tool and the workpiece
JPH0671691B2 (en) Machining position coordinate system correction device
JP4029602B2 (en) High-precision profile grinding method
JP2015039732A (en) Machine tool and work machining portion measuring method using machine tool
JP2004322255A (en) Machine tool with straight line position measuring instrument
JPS59192457A (en) Positioner
JP2597219B2 (en) NC grinding machine
JPS6250252B2 (en)
JP4088071B2 (en) Work end face position detecting means and work end face position detecting method in machine tool for combined machining
JPH0463665A (en) Inclination angle measuring method for slant hole machining device
JP2002219634A (en) Device and method for inversion working
JP4046490B2 (en) Measuring method of center height of machining tool
WO2017126044A1 (en) Centering jig and centering method
JP4560144B2 (en) Centering correction tool for lever type dial gauge
JPS6398503A (en) Apparatus and method for measuring rotary tool
JP2005313254A (en) Axial aligning method and device, and axial aligning tool
JPS60177848A (en) Correction of original point in nc machine tool
JPS6331877Y2 (en)
JP3898437B2 (en) Grooving method and processing apparatus used directly for the implementation
JP2000061782A (en) Longitudinal standard position measuring method of grooved axial work
JPH0651263B2 (en) Rotation axis center detection method
JPH0612481Y2 (en) Centering measuring device
JPH0647631Y2 (en) High precision processing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees