JP3794611B2 - Control method of injection molding machine - Google Patents

Control method of injection molding machine Download PDF

Info

Publication number
JP3794611B2
JP3794611B2 JP2000103421A JP2000103421A JP3794611B2 JP 3794611 B2 JP3794611 B2 JP 3794611B2 JP 2000103421 A JP2000103421 A JP 2000103421A JP 2000103421 A JP2000103421 A JP 2000103421A JP 3794611 B2 JP3794611 B2 JP 3794611B2
Authority
JP
Japan
Prior art keywords
heater
heating cylinder
injection molding
temperature
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000103421A
Other languages
Japanese (ja)
Other versions
JP2001287255A (en
Inventor
晃 伊藤
嘉彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2000103421A priority Critical patent/JP3794611B2/en
Publication of JP2001287255A publication Critical patent/JP2001287255A/en
Application granted granted Critical
Publication of JP3794611B2 publication Critical patent/JP3794611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は射出成形機の制御方法に関し、特に加熱シリンダの温度制御方法に関する。
【0002】
【従来の技術】
射出成形機においては、加熱シリンダ内で樹脂を溶融させ、この溶融樹脂を金型のキャビティ内に射出して成形を行う。加熱シリンダの温度、溶融樹脂の射出圧力や保圧等の制御の良し悪しは成型品の品質に大きな影響を与える。このうち、特に加熱シリンダの温度について言えば、内部の樹脂の溶融状態に影響を与える。
【0003】
射出成形機において樹脂を溶融する手段として次の2種類がある。
【0004】
A.加熱シリンダの周囲に配設されたヒータに加えられる熱量による溶融。
【0005】
B.加熱シリンダ内に配置されたスクリュによって樹脂がせん断されることにより発生する、いわゆるせん断発熱による溶融。
【0006】
通常の射出成形機では、上記の2つが合わさった状態で樹脂の溶融が行われており、それぞれの比率が変わると樹脂の溶融状態も異なってくる。言い換えれば、加熱シリンダ内の樹脂の溶融の割合は、Aによる溶融と、Bによる溶融の割合が時間によってばらつくことが避けられない。これによって、樹脂の溶融状態がばらつき、計量時のスクリュ背圧・計量時間等がばらついてしまう。これらのばらつきは、成型品の品質がばらつく原因となる。
【0007】
一方、成形に用いる樹脂は、同じ種類であってもロット毎に平均分子量や分子量の分布が微妙に異なるために、同じ温度条件で可塑化しても樹脂の溶融状態に違いが現れる。その結果、計量時のスクリュ背圧をロット毎に変える必要があった。これも成型品の品質がばらつく原因となる。
【0008】
【発明が解決しようとする課題】
これまで、加熱シリンダの周囲に配設されたヒータの制御は以下のようにして行われている。加熱シリンダには、その温度を検出するために熱電対等による温度センサが設置されている。そして、この温度センサからの検出信号に基づいてヒータへの通電を制御するためのコントローラが備えられている。コントローラは、ソリッドステートリレー(以下、SSRと呼ぶ)のような通電制御手段を介してヒータへの通電を制御する。すなわち、加熱シリンダの温度を安定に保つために、温度センサを用いて加熱シリンダの温度を計測し、その結果から、ヒータに流す電流をコントロールしているSSRをコントローラで制御し、温度を制御するようにしている。
【0009】
しかし、温度条件が同じでロットの異なる樹脂を用いた場合、前に述べたように、加熱シリンダ内の樹脂の溶融状態の割合(せん断発熱とヒータ発熱との割合)が異なる。その結果、計量時のスクリュ背圧が樹脂のロットにより異なってしまう。これに対して、従来は熟練技能者が成型品の品質を確認しながら、加熱シリンダの温度設定又はスクリュ背圧を手動で変えて対処しており、熟練を必要としていた。
【0010】
そこで、本発明の課題は、樹脂のせん断発熱による溶融とヒータ発熱による溶融の割合を制御できるようにして、樹脂のロットによらずに計量時の背圧を安定させることのできる射出成形機の制御方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明による射出成形機の制御方法は、加熱シリンダの周囲にヒータが配設されると共に、温度センサが設置され、前記温度センサからの検出信号を受けて前記ヒータへの通電を通電制御手段を介して制御するコントローラを備えた射出成形機において、あらかじめ良品が得られる時の計量時のスクリュ背圧のモデルを求めておき、前記コントローラは、実成形に際しては、前記スクリュ背圧のモデルに近付くように前記通電制御手段を制御し、しかも該通電制御手段はスクリュ背圧のモデルにおけるヒータによる発熱量と樹脂のせん断発熱量との比率を求めておき、その比率モデルに近付くように前記加熱シリンダの温度を制御することを特徴とする。
【0012】
特に、前記加熱シリンダ内に樹脂が充填されしかもスクリュを回転させない状態にて、前記ヒータにより発生される熱量と前記加熱シリンダの温度との対応関係をあらかじめ計測しておき、前記コントローラは、実成形において前記通電制御手段により前記ヒータに与えられた電流及び時間とに基づいて前記ヒータにより発生される熱量を算出し、更に前記対応関係と算出された熱量とに基づいて前記ヒータの発熱による温度上昇分を求め、実成形において検出された加熱シリンダ温度と前記ヒータの発熱による温度上昇分との差又は割合を前記せん断発熱による温度上昇分として算出し、更にロギングデータとして出力することを特徴とする。
【0013】
【発明の実施の形態】
図1を参照して、本発明の実施の形態について説明する。図1において、加熱シリンダ10の周囲にはヒータ11が配設されている。図1ではヒータ11は象徴的に1個のみ示しているが、実際には加熱シリンダ10の軸方向に間隔をおいて複数箇所に設置される。ヒータ11には、その温度を加熱シリンダ10の温度として検出するために熱電対等による温度センサ12が設置されている。そして、温度センサ12からの検出信号及び後述する情報に基づいてヒータ11への通電を制御するためのコントローラ13が備えられている。コントローラ13は、SSRによる通電制御部14を介してヒータ11への通電を制御する。
【0014】
本発明による制御方法は以下のようにして実行される。
【0015】
(1)条件出し作業において良品が得られた時のスクリュ背圧モデルをあらかじめ基準モデルとして求めておく。この基準モデルは、1ショット当たりのスクリュ位置とスクリュ背圧との対応関係を示しており、コントローラ13内のメモリに保存される。また、スクリュ背圧のモデルにおけるヒータによる発熱量と樹脂のせん断発熱量との比率モデルを求めておく。この比率モデルは、1ショット当たりのスクリュ位置に対する前記ヒータによる発熱量と樹脂によるせん断発熱量の比率を示しており、コントローラ13内のメモリに保存される。なお、スクリュ位置は既設のスクリュ位置センサで知ることができ、スクリュ背圧は既設のスクリュ背圧で知ることができる。
【0016】
図2は求められた基準モデルの一例を示す。
【0017】
(2)コントローラ13は、実成形に際しては、上記の基準モデルに近付くように通電制御部14を制御する。図3は、実成形における1ショット当たりのスクリュ位置とスクリュ背圧との対応関係の一例を示している。前に述べた理由で、実際のスクリュ位置とスクリュ背圧との対応関係と、図2に示された基準モデルとの間には差が生じる。コントローラ13は、1ショットの間にスクリュ位置センサから得られるスクリュ位置とスクリュ背圧センサから得られるスクリュ背圧をサンプリングしてこれらの対応関係を基準モデルと比較する。そして、実際の対応関係と基準モデルとの間の差を無くすように通電制御部14を制御する。
【0018】
すなわち、上記の制御に際しては、通電制御部14に対する制御ゲインを、上記比率モデルから加熱シリンダ10内の樹脂のせん断発熱量とヒータ11の発熱量の割合を求めて、その割合に近付くように制御する。
【0019】
せん断発熱による温度上昇分の算出は以下のようにして行われる。
【0020】
(A)あらかじめ、せん断発熱させない場合、すなわち加熱シリンダ10内に樹脂を充填ししかもスクリュを回転させない場合における、ヒータ11により発生される熱量(ヒータに流れる電流値と通電時間とにより算出される)とヒータ11における温度上昇、すなわち加熱シリンダ10の温度上昇(温度センサ12の検出値)との対応関係を求めておく。この対応関係もコントローラ13内のメモリに保存される。図4は、上記の対応関係の一例を示す。
【0021】
(B)実成形に入ると、コントローラ13は温度センサ12による検出温度をサンプリングして記憶すると共に、ヒータ11に流される電流とその時間とによりヒータ11で発生される熱量を上記サンプリング周期で算出して記憶する。
【0022】
(C)コントローラ13は更に、上記(A)、(B)で得られた情報、すなわち前記対応関係と算出された熱量とに基づいて、実成形において検出された加熱シリンダ温度とヒータ11の発熱による温度上昇分との差又は割合をせん断発熱による温度上昇分として算出して出力する。これはプリンタにより記録したり、ディスプレイにて表示することができる。
【0023】
図5には、実際の加熱シリンダ10の温度上昇(せん断発熱よる上昇分を含む)とヒータ11の発熱量との関係の一例を示す。ここで、図5に示されたあるヒータ発熱量での加熱シリンダ温度と、図4に示された上記あるヒータ発熱量での加熱シリンダ温度との差又は割合が、せん断発熱によるものであることは明らかである。
【0024】
このようにして、上記の対応関係からせん断発熱分を知ることができ、その推移を知ることもできる。これは、樹脂の溶融状態を左右しているせん断発熱とヒータ11の発熱との割合の変化の推移が分かることを意味する。せん断発熱分の推移は、コントローラ13から成型品の品質情報の1つとして出力される。
【0025】
(D)上記のようにして、せん断発熱量とヒータによる発熱量とを求め、それらを前記比率モデルに近付くように制御ゲインによってヒータ11への通電が制御されることにより、樹脂のせん断発熱による溶融とヒータ11の発熱による溶融の割合が制御される。その結果、樹脂のロットが変わっても樹脂の溶融状態が安定し、計量時のスクリュ背圧が基準モデルに近付いて安定する。
【0026】
本形態によれば、加熱シリンダ10の温度とヒータ11に流す電流を調整している通電制御部14の出力とにより、加熱シリンダ10の温度上昇におけるせん断発熱の割合がわかる。よって、コントローラ13の出力により、せん断発熱の推移がわかり、樹脂の溶融状態の推移を知ることができると共に、成型品の品質情報として出力することができる。勿論、上記(1)、(3)、(A)〜(C)におけるヒータ11の温度設定条件は同じである。
【0027】
なお、コントローラ13は、射出成形機本体を制御するために備えられている制御装置で実現することのできるし、この制御装置とは別に専用に備えられても良い。また、本発明は、油圧式、電動式のいずれのタイプの射出成形機にも適用できることは言うまでも無い。
【0028】
【発明の効果】
本発明によれば、樹脂のロットが変わっても加熱シリンダにおけるヒータによる樹脂溶融とせん断発熱による樹脂溶融との割合を安定させることができて樹脂の溶融状態を均一にすることができるので、計量時のスクリュ背圧が安定し、もって成型品の品質のばらつきを無くすことができる。また、せん断発熱の推移もロギングデータとして知ることができる。
【図面の簡単な説明】
【図1】本発明による制御方法を実施するための構成を示したブロック図である。
【図2】本発明において求められる計量時のスクリュ背圧とスクリュ位置との関係の基準モデルの一例を示した図である。
【図3】実成形における計量時のスクリュ背圧とスクリュ位置との関係の例を示した図である。
【図4】スクリュを回転させずヒータのみの発熱で樹脂の溶融を行った場合のヒータ発熱量と加熱シリンダ温度との関係を示した図である。
【図5】スクリュを回転させてせん断発熱とヒータの発熱で樹脂の溶融を行った場合のヒータ発熱量と加熱シリンダ温度との関係を示した図である。
【符号の説明】
10 加熱シリンダ
11 ヒータ
12 温度センサ
13 コントローラ
14 通電制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method for an injection molding machine, and more particularly to a temperature control method for a heating cylinder.
[0002]
[Prior art]
In an injection molding machine, resin is melted in a heating cylinder, and this molten resin is injected into a cavity of a mold to perform molding. The control of the temperature of the heating cylinder, the injection pressure and the holding pressure of the molten resin has a great influence on the quality of the molded product. Among these, especially regarding the temperature of the heating cylinder, it affects the molten state of the resin inside.
[0003]
There are the following two types of means for melting the resin in the injection molding machine.
[0004]
A. Melting due to the amount of heat applied to the heater around the heating cylinder.
[0005]
B. Melting due to so-called shearing heat generated when the resin is sheared by a screw arranged in a heating cylinder.
[0006]
In a normal injection molding machine, the resin is melted in a state where the above two are combined, and when the respective ratios change, the molten state of the resin also differs. In other words, the melting rate of the resin in the heating cylinder is unavoidable that the melting rate due to A and the melting rate due to B vary with time. As a result, the molten state of the resin varies, and the screw back pressure and the measurement time during measurement vary. These variations cause variations in the quality of the molded product.
[0007]
On the other hand, even if the resin used for molding is the same type, the average molecular weight and molecular weight distribution are slightly different for each lot, so that even when plasticized under the same temperature condition, a difference in the molten state of the resin appears. As a result, it was necessary to change the screw back pressure during weighing for each lot. This also causes the quality of the molded product to vary.
[0008]
[Problems to be solved by the invention]
Until now, the control of the heater arranged around the heating cylinder has been performed as follows. The heating cylinder is provided with a temperature sensor such as a thermocouple in order to detect its temperature. And the controller for controlling electricity supply to a heater based on the detection signal from this temperature sensor is provided. The controller controls energization of the heater via energization control means such as a solid state relay (hereinafter referred to as SSR). That is, in order to keep the temperature of the heating cylinder stable, the temperature of the heating cylinder is measured using a temperature sensor, and from the result, the SSR that controls the current flowing to the heater is controlled by the controller, and the temperature is controlled. I am doing so.
[0009]
However, when resins having the same temperature conditions and different lots are used, as described above, the ratio of the molten state of the resin in the heating cylinder (the ratio of shear heat generation and heater heat generation) is different. As a result, the screw back pressure during measurement varies depending on the lot of resin. Conventionally, skilled technicians have dealt with manually changing the temperature setting of the heating cylinder or screw back pressure while confirming the quality of the molded product, which requires skill.
[0010]
Therefore, an object of the present invention is to provide an injection molding machine that can control the melting rate of resin due to shear heat generation and the heat generation due to heater heat generation, and can stabilize the back pressure during measurement irrespective of the resin lot. It is to provide a control method.
[0011]
[Means for Solving the Problems]
In the injection molding machine control method according to the present invention, a heater is disposed around the heating cylinder, a temperature sensor is installed, and an energization control means is provided for energizing the heater in response to a detection signal from the temperature sensor. In an injection molding machine equipped with a controller to be controlled via a controller, a screw back pressure model at the time of weighing when a good product is obtained is obtained in advance, and the controller approaches the screw back pressure model during actual molding. The energization control means controls the energization control means, and the energization control means obtains a ratio between the heat generation amount by the heater and the shear heat generation amount of the resin in the screw back pressure model, and the heating cylinder so as to approach the ratio model. The temperature is controlled.
[0012]
In particular, in a state where the heating cylinder is filled with resin and the screw is not rotated, the correspondence between the amount of heat generated by the heater and the temperature of the heating cylinder is measured in advance, and the controller The amount of heat generated by the heater is calculated based on the current and time applied to the heater by the energization control means, and the temperature rise due to the heat generation of the heater based on the correspondence and the calculated amount of heat. seek min, calculating the difference or ratio between the temperature rise and the detected heating cylinder temperature due to heat generation of the heater in a real molded as temperature rise by the shearing heat generation, and outputs as further logging data .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. In FIG. 1, a heater 11 is disposed around the heating cylinder 10. Although only one heater 11 is shown symbolically in FIG. 1, it is actually installed at a plurality of locations at intervals in the axial direction of the heating cylinder 10. The heater 11 is provided with a temperature sensor 12 such as a thermocouple in order to detect the temperature as the temperature of the heating cylinder 10. And the controller 13 for controlling electricity supply to the heater 11 based on the detection signal from the temperature sensor 12 and the information mentioned later is provided. The controller 13 controls energization to the heater 11 via the energization control unit 14 by SSR.
[0014]
The control method according to the present invention is executed as follows.
[0015]
(1) A screw back pressure model when a good product is obtained in the condition setting operation is obtained in advance as a reference model. This reference model shows the correspondence between the screw position per shot and the screw back pressure, and is stored in the memory in the controller 13. Further, a ratio model between the heat generation amount by the heater and the shear heat generation amount of the resin in the screw back pressure model is obtained. This ratio model indicates the ratio of the amount of heat generated by the heater to the amount of shear heat generated by the resin with respect to the screw position per shot, and is stored in a memory in the controller 13. The screw position can be known with an existing screw position sensor, and the screw back pressure can be known with an existing screw back pressure.
[0016]
FIG. 2 shows an example of the obtained reference model.
[0017]
(2) During actual molding, the controller 13 controls the energization control unit 14 so as to approach the reference model. FIG. 3 shows an example of the correspondence between the screw position per shot and the screw back pressure in actual molding. For the reasons described above, there is a difference between the correspondence between the actual screw position and the screw back pressure and the reference model shown in FIG. The controller 13 samples the screw position obtained from the screw position sensor and the screw back pressure obtained from the screw back pressure sensor during one shot, and compares these correspondences with the reference model. And the electricity supply control part 14 is controlled so that the difference between an actual correspondence and a reference | standard model may be eliminated.
[0018]
That is, in the above control, the control gain for the energization control unit 14 is controlled so that the ratio between the heat generation amount of the resin in the heating cylinder 10 and the heat generation amount of the heater 11 is obtained from the ratio model and approaches that ratio. To do.
[0019]
Calculation of the temperature rise due to shearing heat generation is performed as follows.
[0020]
(A) The amount of heat generated by the heater 11 (calculated by the current value flowing through the heater and the energization time) when the heat is not generated in advance, that is, when the heating cylinder 10 is filled with resin and the screw is not rotated. And the temperature rise in the heater 11, that is, the temperature rise of the heating cylinder 10 (detected value of the temperature sensor 12) is obtained. This correspondence is also stored in the memory in the controller 13. FIG. 4 shows an example of the above correspondence.
[0021]
(B) When actual molding is started, the controller 13 samples and stores the temperature detected by the temperature sensor 12, and calculates the amount of heat generated by the heater 11 in accordance with the sampling period based on the current passed through the heater 11 and its time. And remember.
[0022]
(C) The controller 13 further determines the heating cylinder temperature detected in the actual molding and the heat generation of the heater 11 based on the information obtained in the above (A) and (B), that is, the correspondence relationship and the calculated heat quantity. The difference or rate from the temperature rise due to is calculated and output as the temperature rise due to shear heating. This can be recorded by a printer or displayed on a display.
[0023]
FIG. 5 shows an example of the relationship between the actual temperature rise of the heating cylinder 10 (including the rise due to shear heat generation) and the amount of heat generated by the heater 11. Here, the difference or ratio between the heating cylinder temperature at a certain heater heating value shown in FIG. 5 and the heating cylinder temperature at the certain heater heating value shown in FIG. 4 is due to shear heating. Is clear.
[0024]
In this way, it is possible to know the amount of shear heat generation from the above correspondence, and it is also possible to know its transition. This means that the transition of the change in the ratio between the shear heat generation that influences the molten state of the resin and the heat generation of the heater 11 can be known. The transition of the amount of heat generated by shearing is output from the controller 13 as one of quality information of the molded product.
[0025]
(D) As described above, the amount of heat generated by the shear and the amount of heat generated by the heater are obtained, and the energization to the heater 11 is controlled by the control gain so that they approach the ratio model. The rate of melting and melting due to the heat generated by the heater 11 is controlled. As a result, even if the resin lot changes, the molten state of the resin becomes stable, and the screw back pressure during measurement approaches the reference model and becomes stable.
[0026]
According to this embodiment, the ratio of the shear heat generation in the temperature rise of the heating cylinder 10 can be understood from the temperature of the heating cylinder 10 and the output of the energization control unit 14 that adjusts the current flowing through the heater 11. Therefore, the transition of the shear heat generation can be known from the output of the controller 13, the transition of the molten state of the resin can be known, and the quality information of the molded product can be output. Of course, the temperature setting conditions of the heater 11 in the above (1), (3), and (A) to (C) are the same.
[0027]
The controller 13 can be realized by a control device provided for controlling the injection molding machine main body, or may be provided exclusively for this control device. Further, it goes without saying that the present invention can be applied to any type of injection molding machine of hydraulic type or electric type.
[0028]
【The invention's effect】
According to the present invention, even if the resin lot changes, the ratio of the resin melting by the heater in the heating cylinder and the resin melting by the shear heat generation can be stabilized and the molten state of the resin can be made uniform. The screw back pressure at the time is stable, so that variations in the quality of the molded product can be eliminated. In addition, the transition of shear heat generation can be known as logging data.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration for carrying out a control method according to the present invention.
FIG. 2 is a diagram showing an example of a reference model of a relationship between screw back pressure and screw position at the time of measurement required in the present invention.
FIG. 3 is a diagram showing an example of a relationship between a screw back pressure and a screw position at the time of measurement in actual molding.
FIG. 4 is a diagram showing the relationship between the amount of heat generated by the heater and the heating cylinder temperature when the resin is melted by the heat generated only by the heater without rotating the screw.
FIG. 5 is a diagram showing the relationship between the amount of heat generated by a heater and the temperature of a heating cylinder when a resin is melted by rotating the screw and generating heat by shearing and heating from the heater.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Heating cylinder 11 Heater 12 Temperature sensor 13 Controller 14 Current supply control part

Claims (4)

加熱シリンダの周囲にヒータが配設されると共に、温度センサが設置され、前記温度センサからの検出信号を受けて前記ヒータへの通電を通電制御手段を介して制御するコントローラを備えた射出成形機において、
あらかじめ良品が得られる時の計量時のスクリュ背圧のモデルを求めておき、前記コントローラは、実成形に際しては、前記スクリュ背圧のモデルに近付くように前記通電制御手段を制御し、しかも該通電制御手段はスクリュ背圧のモデルにおけるヒータによる発熱量と樹脂のせん断発熱量との比率を求めておき、その比率モデルに近付くように前記加熱シリンダの温度を制御することを特徴とする射出成形機の制御方法。
An injection molding machine comprising a controller in which a heater is disposed around the heating cylinder, a temperature sensor is installed, and energization of the heater is controlled via energization control means in response to a detection signal from the temperature sensor In
A screw back pressure model at the time of weighing when a good product is obtained is obtained in advance, and the controller controls the energization control means so as to approach the screw back pressure model during actual molding, and the energization An injection molding machine characterized in that a control means obtains a ratio between a heat generation amount by a heater and a shear heat generation amount of a resin in a screw back pressure model, and controls the temperature of the heating cylinder so as to approach the ratio model Control method.
請求項1記載の射出成形機の制御方法において、
前記加熱シリンダ内に樹脂が充填されしかもスクリュを回転させない状態にて、前記ヒータにより発生される熱量と前記加熱シリンダの温度との対応関係をあらかじめ計測しておき、
前記コントローラは、実成形において前記通電制御手段により前記ヒータに与えられた電流及び時間とに基づいて前記ヒータにより発生される熱量を算出し、更に前記対応関係と算出された熱量とに基づいて前記ヒータの発熱による温度上昇分を求め、実成形において検出された加熱シリンダ温度と前記ヒータの発熱による温度上昇分との差又は割合を前記せん断発熱による温度上昇分として算出し、更にロギングデータとして出力することを特徴とする射出成形機の制御方法。
In the control method of the injection molding machine according to claim 1,
In a state where the heating cylinder is filled with resin and the screw is not rotated, the correspondence between the amount of heat generated by the heater and the temperature of the heating cylinder is measured in advance,
The controller, based on said energization control the current and time given to the heater by the means in the real molding calculates the amount of heat generated by said heater, said based on the further the calculated and correspondence heat calculated temperature rise due to heat generation of the heater, the difference or ratio between the temperature rise and the detected heating cylinder temperature due to heat generation of the heater in a real molded calculated as a temperature rise by the shearing heat generation, and the output as a logging data A control method for an injection molding machine.
請求項2記載の射出成形機の制御方法において、前記通電制御手段はソリッドステートリレーであることを特徴とする射出成形機の制御方法。3. The method of controlling an injection molding machine according to claim 2, wherein the energization control means is a solid state relay. 請求項1あるいは2記載の射出成形機の制御方法において、前記算出された差又は割合を成型品の品質情報として記録あるいは表示することを特徴とする射出成形機の制御方法。3. The method of controlling an injection molding machine according to claim 1, wherein the calculated difference or ratio is recorded or displayed as quality information of a molded product.
JP2000103421A 2000-04-05 2000-04-05 Control method of injection molding machine Expired - Fee Related JP3794611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000103421A JP3794611B2 (en) 2000-04-05 2000-04-05 Control method of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103421A JP3794611B2 (en) 2000-04-05 2000-04-05 Control method of injection molding machine

Publications (2)

Publication Number Publication Date
JP2001287255A JP2001287255A (en) 2001-10-16
JP3794611B2 true JP3794611B2 (en) 2006-07-05

Family

ID=18617139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103421A Expired - Fee Related JP3794611B2 (en) 2000-04-05 2000-04-05 Control method of injection molding machine

Country Status (1)

Country Link
JP (1) JP3794611B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766390B2 (en) 2003-02-24 2006-04-12 ファナック株式会社 Monitor for injection molding machine
JP5819647B2 (en) * 2011-06-17 2015-11-24 ファナック株式会社 Temperature control device for injection molding machine having feedforward function
JP7260434B2 (en) * 2019-07-29 2023-04-18 ファナック株式会社 Temperature control device for injection molding machine with abnormality detection function

Also Published As

Publication number Publication date
JP2001287255A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP3143122B2 (en) Temperature control system
US7597827B2 (en) Method for automatically balancing the volumetric filling of cavities
US4911629A (en) Control apparatus of injection molding machines
JP3794610B2 (en) Control method of injection molding machine
US7682535B2 (en) Method of filling the cavity of a tool
JP3794609B2 (en) Control method of injection molding machine
US20040131715A1 (en) Method for regulating the contraction of molded parts
JP3794611B2 (en) Control method of injection molding machine
KR100783657B1 (en) Injection molding machine and method
JP5015019B2 (en) Control method and control device for heater of injection molding machine
JPS5851126A (en) Method of controlling mold gate balance and apparatus therefor
US6107610A (en) Power factor correction system for a resistive load device
US20070057394A1 (en) Apparatus and method for temperature control
JPH09193225A (en) Method for controlling temperature of molding machine
JPH09109216A (en) Nozzle temperature controller for injection molding machine
JP3028281B2 (en) Temperature control method for injection molding machine
JP2818604B2 (en) Temperature control method for injection molding machine
JP2006001134A (en) Controller of injection molding machine
JP5882848B2 (en) Heater power measuring device for injection molding machine
JPS6242818A (en) Injection-controlling device
US20030038390A1 (en) Method for controlling motor-driven injection molding machine
JPH0643086B2 (en) Plasticization control device
JPS6347119A (en) Plastication controlling device
JPH09150444A (en) Method for controlling temperature of hot runner nozzle
JPH01176538A (en) Method and apparatus for controlling temperature of mold in plastic injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees