JP3793668B2 - Foreign object defect inspection method and apparatus - Google Patents

Foreign object defect inspection method and apparatus Download PDF

Info

Publication number
JP3793668B2
JP3793668B2 JP23651099A JP23651099A JP3793668B2 JP 3793668 B2 JP3793668 B2 JP 3793668B2 JP 23651099 A JP23651099 A JP 23651099A JP 23651099 A JP23651099 A JP 23651099A JP 3793668 B2 JP3793668 B2 JP 3793668B2
Authority
JP
Japan
Prior art keywords
foreign matter
defect
size
foreign
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23651099A
Other languages
Japanese (ja)
Other versions
JP2001060607A (en
Inventor
英利 西山
稔 野口
良正 大島
哲也 渡邉
寿人 中村
孝広 神宮
裕子 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Ltd filed Critical Hitachi High Technologies Corp
Priority to JP23651099A priority Critical patent/JP3793668B2/en
Priority to US09/644,069 priority patent/US6597448B1/en
Priority to DE10041354A priority patent/DE10041354A1/en
Priority to KR10-2000-0048846A priority patent/KR100389524B1/en
Publication of JP2001060607A publication Critical patent/JP2001060607A/en
Application granted granted Critical
Publication of JP3793668B2 publication Critical patent/JP3793668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜基板や半導体基板やフォトマスク等に存在する異物・欠陥を高感度に検査し、該異物・欠陥の大きさ情報を実時間で測定し、該大きさ情報を用いた表示機能を有する異物欠陥検査装置に関する。
【0002】
【従来の技術】
従来、半導体基板上の欠陥を検出する技術として、特開昭62-89336号公報に記載されているように、半導体基板上にレーザを照射して半導体基板上に異物が付着している場合に発生する異物からの散乱光を検出し、直前に検査した同一品種半導体基板の検査結果と比較することにより、パターンによる虚報を無くし、高感度かつ高信頼度な異物および欠陥検査を可能にするものがある。
【0003】
また、粒子または欠陥の大きさ情報の測定方法および装置として、特開平5-273110号公報に記載されているように、レーザビームを被検物体に照射し、該被検物体の粒子または欠陥からの散乱光を受光して画像処理することにより粒子または欠陥の大きさを測定する方法が開示されている。
【0004】
【発明が解決しようとする課題】
従来の異物欠陥検査装置では、検査結果として、検出物の被検査物上での位置と、検出個数を出力していた。そのため、該検査装置を用いて製造プロセスの管理をする場合は、検査装置からの検出個数の推移で評価を行っていた。例えば、図1は横軸にある製造装置で処理し、該検査装置で検査した処理数を、縦軸に該検査装置での検出個数を示したものである。従来は、図1のデータに対し、製造プロセス上の管理しきい値101を設定し、管理しきい値101を超えた場合は、被検査物に異常が発生したものとして、該被検査物上の検出物の分析を行っていた。
【0005】
しかしながら、この手法では、該被検査物上の全検出物を分析することは膨大な時間がかかってしまうために、分析する物を検出物の中から適当に選び、該検出物の分析を行うこととなり、検出個数が多いと分析すべき検出物を正しく選択できる可能性が低くなり、分析・対策に多くの時間を要してしまうという問題がある。
【0006】
【課題を解決するための手段】
本発明は、上記のような問題点を解消するために、検出物の大きさ情報を実時間で測定し、該大きさ情報を用いて特定の大きさの検出物のみを管理することにより、異常の原因究明を迅速に行うことを可能とする。また、被検査物のレイアウト情報を用いて、被検査物上の場所に応じて、管理すべき検出物の大きさを変えることにより、分析すべき検出物の選択を容易にすることを可能とする。
【0007】
【発明の実施の形態】
本発明の一実施例を以下に説明する。以下では、半導体ウェハ上の異物検査を例にとって説明する。
【0008】
図2に半導体ウェハ上の異物を検出する装置の一例を示す。図2は照明光源201、被検査物202、集光レンズ203、検出器204、信号処理回路205、データ表示部206、ステージ207から構成されている。次に動作を説明する。まず、照明光源201で被検査物202を照射し、被検査物202からの散乱光を集光レンズ203で集光し、検出器204で被検査物202からの反射光を検出する。検出器204で検出された該反射光は光電変換等を施され、信号処理回路205で信号処理することにより異物を検出する。さらに、これらの動作をステージ207で被検査物202を移動させることによって、被検査物202の全領域での異物の検出が可能となり、検出結果はデータ表示部206に表示される。
【0009】
ここで、照明光源201は例えば、Arレーザや半導体レーザなどのレーザ光源であり、検出器204は例えばTVカメラやCCDリニアセンサやTDIセンサやフォトマルである。また、信号処理回路205は、例えば検出信号を2値化する処理であり、ステージ207は例えば、被検査物を水平・垂直方向に移動や回転が可能なものであれば良い。
【0010】
次に、検出した異物の大きさ情報を得る手段の一例を図3で説明する。図3(a)は、前記信号処理回路205で処理される画像の一例であり、画像の中央部に異物データ301が存在する。異物データ301は検出器204の出力および信号処理回路205に応じた濃淡値を持ったデータである。図3(b)は図3(a)を3次元的に表現したもので、x、y軸は該画像内での位置であり、z軸は該位置での濃淡値をプロットし、線で結んだものである。図3(b)の内、波形302が異物データ301のデータを示している。この波形302は照明201、集光レンズ203の性質からガウシアン近似が可能であり、また、被検査物202上の異物の大きさによって、このガウシアン近似の形状の幅や高さが変化する。そこで、上記異物検出方法で示した構成で各種の標準粒子の形状を事前に測定しておき、該測定結果と波形302とを比較すれば、検出異物の大きさ情報を得ることができる。
【0011】
ただし、異物の大きさを測定する方法は、ここで示した波形302だけでなく、異物データ301部分のデータの総和、つまり、波形302の容積データを用いても良い。また、上記照明201はレーザ光による測定であったが、白色光を用いた測定でも良く、また、繰り返し性を有する回路パターン上の異物については、該繰り返しパターンの異物の存在しない画像と異物の存在する画像との差分をとった後に前記の大きさ測定処理をしてもかまわないし、事前に回路パターンからデータが測定可能な場合は、該データを用いて異物の大きさデータを補正しても良い。
【0012】
次に、上記のような手法で検出された異物の大きさ情報を用いることの有効性を説明する。図4は半導体製造装置、例えば、CVD装置から発生する異物の大きさと発生個数の一例を示す図である。図4において領域401は該CVD装置のプロセス中に定常的に発生する異物の分布を示しており、異物の大きさはa〜bの部分に集中している。また、領域402は突発的に該CVD装置の内側壁面から剥がれ落ちた異物の分布を示しており、異物の大きさはc〜dの部分に集中していることを示している。このように、半導体等の製造装置においては、発生する異物の大きさと異物の発生原因に関連があり、特定の大きさの異物発生状況を管理することにより、製造装置での異物の発生原因を迅速に知ることができる。
【0013】
次に、検出した異物をデータ表示部206で表示する内容を説明する。図5は同一製造装置で処理された同一プロセスのウェハについて、異物検査装置での処理枚数と、該異物検査装置での検出個数の推移を示したものである。図5(a)は検出した異物の総数の推移を、図5(b)は検出異物の内、前記図4の領域401に相当する大きさ(この場合はa〜b)の異物のみの検出個数を、また、同様に図5(c)は検出異物の内、領域402に相当する大きさ(この場合c〜d)の異物のみの検出個数を示している。また、しきい値501、502、503はそれぞれの異物数の管理基準値を示しており、該しきい値よりも多くの異物を検出した場合は、そのウェハが異常であることを示している。
【0014】
図5(a)において、処理枚数Aの部分で異常504が発生している。しかしながら、図5(a)では異常が検知されただけであり、異常の原因は別途調べる必要が生じる。そこで、図5(b),(c)に示した異物の大きさ別の検出個数の推移を同時に表示することにより、図5(b)では異常は検知されていないが、図5(c)では異常505が検知されていることにより、該CVD装置の内側壁面から剥がれ落ちた異物による異常であることがわかるため、迅速に対策を施すことが可能となる。
【0015】
ただし、前記a〜dの値は製造装置・製造プロセス等により変化する値であり、また、他の発生原因の異物では、異なった分布を示す場合があるので、発生原因毎の異物の大きさ分布に合わせたデータを用いる必要がある。従って、本例では2つの領域に分けたが、2つ以上の領域に分割しても良い。
【0016】
次に、異物の大きさ情報を用いた表示の別の利用法、例えば、検出した異物から解析すべき異物を選択する方法を説明する。図6は半導体ウェハ上のチップを領域分けした図である。図6における各領域は、例えば領域601はメモリセル回路部分、領域602はデータの入出力回路部分、領域603は回路パターンの存在しない部分である。通常、これらの領域601、602、603では回路パターンの集積度が異なる。従って、それぞれの領域において不良原因となる異物の大きさも異なる。つまり、チップ内の領域により、管理・解析すべき異物の大きさが異なる訳である。
【0017】
例えば、領域601では大きさα以上の異物があると不良となり、領域602では大きさβ以上の異物、また、領域603では大きさγ以上の異物があると不良となると考えられる場合、これらの領域情報と不良となる異物の大きさ情報をあらかじめ検査装置に保存しておく。そして、該検査装置での検出異物の位置情報により領域を判定し、検出異物の大きさ情報と該α、β、γの値と比較して該検出異物が不良原因となる大きさか否かを判定する。そして、不良原因となると判定した異物と不良原因とならないと判定した異物の表示を変えることにより、不良原因となる異物を実時間で分類することが可能となる。表示を変えた例を図7に示す。
【0018】
図7は検査装置から得られる検査結果の一つであり、検出異物の位置を示した物である。従来は図7(a)に示すような検出結果であったため、不良原因の解析には適当に異物を選択して、該異物の分析を行っており、真に分析すべき異物を選択できる確率が低く、不良解析に時間を要していた。しかし、前記判定を用いて図7(b)に示す様に、前記不良原因となると判定した異物、すなわち分析すべき異物701の表示を変えることによって、不良原因となる異物の中から分析すべき異物701を選択すれば良く、分析すべき異物を選択できる確率が上がり、不良原因の解析を迅速に行うことが可能となる。ただし、図7では表示を変える方法として、表示パターンを変えたが、他にも、表示パターンの色や大きさを変えても良い。また、ここでは、チップ内で領域分けをしたが、これをウェハ面内で領域分けを行っても良い。
【0019】
以上、本実施例では、異物検査装置を用いて説明したが、本手法は異物以外のパターン欠陥を検出する装置でも適用が可能である。また、半導体ウェハに限らず、薄膜基板やフォトマスク、TFT、PDP等にも適用可能である。
【0020】
【発明の効果】
本発明は以上説明したように構成されているので、異物・欠陥の大きさ情報から製造プロセス管理への有用な情報が実時間で得られ、不良解析・対策が迅速に行うことが可能となる。
【図面の簡単な説明】
【図1】従来の問題点を示す特性図。
【図2】本発明を用いた異物検査装置の構成を示した図。
【図3】異物の大きさ測定の方法を示した図。
【図4】製造装置で発生する異物の分布を示した図。
【図5】本発明の一例を示した図。
【図6】半導体ウェハのチップ内の領域分けを示した図。
【図7】本発明の別の例を示した図。
【符号の説明】
101…管理しきい値、201…照明光源、202…被検査物、203…集光レンズ、204…検出器、205…信号処理回路、206…データ表示部、207…ステージ、301…異物データ、302…異物データ301の波形、401,402…異物の分布領域、501,502,503…管理しきい値、504,505…管理しきい値を越えた異常、601,602,603…チップ内の領域、701…検出結果上の分析すべき異物。
[0001]
BACKGROUND OF THE INVENTION
The present invention inspects foreign matter / defects existing in a thin film substrate, semiconductor substrate, photomask, etc. with high sensitivity, measures the size information of the foreign matter / defects in real time, and uses the size information for a display function The present invention relates to a foreign matter defect inspection apparatus having
[0002]
[Prior art]
Conventionally, as a technique for detecting defects on a semiconductor substrate, as described in JP-A-62-89336, when a semiconductor is irradiated with a laser and foreign matter adheres to the semiconductor substrate By detecting the scattered light from the generated foreign matter and comparing it with the inspection result of the same type semiconductor substrate that was inspected immediately before, it eliminates false information due to the pattern and enables highly sensitive and highly reliable foreign matter and defect inspection There is.
[0003]
Further, as a measuring method and apparatus for size information of particles or defects, as described in Japanese Patent Laid-Open No. 5-273110, a laser beam is irradiated on a test object, and the particle or defect of the test object is measured. A method for measuring the size of particles or defects by receiving scattered light and processing the image is disclosed.
[0004]
[Problems to be solved by the invention]
In the conventional foreign matter defect inspection apparatus, the position of the detected object on the inspection object and the detected number are output as the inspection result. For this reason, when the manufacturing process is managed using the inspection apparatus, the evaluation is performed based on the transition of the number of detections from the inspection apparatus. For example, FIG. 1 shows the number of processes processed by the manufacturing apparatus on the horizontal axis and inspected by the inspection apparatus, and the number of detections by the inspection apparatus on the vertical axis. Conventionally, a management threshold value 101 in the manufacturing process is set for the data shown in FIG. 1, and if the management threshold value 101 is exceeded, it is assumed that an abnormality has occurred in the inspection object. The detected substance was analyzed.
[0005]
However, in this method, since it takes a lot of time to analyze all the detection objects on the inspection object, an analysis object is appropriately selected from the detection objects and the detection object is analyzed. In other words, if the number of detections is large, there is a possibility that a detection object to be analyzed can be correctly selected, and a long time is required for analysis and countermeasures.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention measures the size information of the detected object in real time, and manages only the detected object of a specific size using the size information. The cause of the abnormality can be investigated quickly. In addition, it is possible to easily select the detection object to be analyzed by changing the size of the detection object to be managed according to the location on the inspection object using the layout information of the inspection object. To do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the present invention will be described below. Hereinafter, an example of inspection of foreign matter on a semiconductor wafer will be described.
[0008]
FIG. 2 shows an example of an apparatus for detecting foreign matter on a semiconductor wafer. 2 includes an illumination light source 201, an inspection object 202, a condenser lens 203, a detector 204, a signal processing circuit 205, a data display unit 206, and a stage 207. Next, the operation will be described. First, the object 202 is irradiated with the illumination light source 201, the scattered light from the object 202 is collected by the condenser lens 203, and the reflected light from the object 202 is detected by the detector 204. The reflected light detected by the detector 204 is subjected to photoelectric conversion and the like, and a signal processing circuit 205 performs signal processing to detect foreign matter. Further, by moving the inspection object 202 on the stage 207 in these operations, foreign objects can be detected in the entire area of the inspection object 202, and the detection result is displayed on the data display unit 206.
[0009]
Here, the illumination light source 201 is a laser light source such as an Ar laser or a semiconductor laser, and the detector 204 is a TV camera, a CCD linear sensor, a TDI sensor, or a photomultiplier, for example. Further, the signal processing circuit 205 is a process for binarizing the detection signal, for example, and the stage 207 may be anything that can move or rotate the inspection object in the horizontal and vertical directions, for example.
[0010]
Next, an example of means for obtaining size information of the detected foreign matter will be described with reference to FIG. FIG. 3A is an example of an image processed by the signal processing circuit 205, and foreign matter data 301 exists at the center of the image. The foreign matter data 301 is data having a gray value corresponding to the output of the detector 204 and the signal processing circuit 205. Fig. 3 (b) is a three-dimensional representation of Fig. 3 (a), where the x and y axes are the positions in the image, and the z axis is a plot of the gray value at that position. It is a tie. In FIG. 3B, the waveform 302 indicates the foreign object data 301 data. The waveform 302 can be approximated by Gaussian due to the properties of the illumination 201 and the condenser lens 203, and the width and height of the Gaussian approximate shape change depending on the size of the foreign matter on the inspection object 202. Therefore, by measuring the shapes of various standard particles in advance with the configuration shown in the foreign substance detection method and comparing the measurement result with the waveform 302, the size information of the detected foreign substance can be obtained.
[0011]
However, the method of measuring the size of the foreign matter may use not only the waveform 302 shown here but also the total sum of the foreign matter data 301, that is, volume data of the waveform 302. Further, the illumination 201 was measured with laser light, but it may be measured with white light.For the foreign matter on the circuit pattern having repeatability, the image of the repeat pattern and the foreign matter are not present. The size measurement process may be performed after taking a difference from an existing image, and if the data can be measured from the circuit pattern in advance, the foreign matter size data is corrected using the data. Also good.
[0012]
Next, the effectiveness of using the size information of the foreign matter detected by the above method will be described. FIG. 4 is a diagram showing an example of the size and number of foreign matters generated from a semiconductor manufacturing apparatus, for example, a CVD apparatus. In FIG. 4, a region 401 shows a distribution of foreign matters that are constantly generated during the process of the CVD apparatus, and the size of the foreign matters is concentrated in the portions a to b. A region 402 shows the distribution of foreign matter that suddenly peeled off from the inner wall surface of the CVD apparatus, and shows that the size of the foreign matter is concentrated in the portions c to d. As described above, in a manufacturing apparatus such as a semiconductor, there is a relation between the size of a generated foreign matter and the cause of the generation of the foreign matter. You can know quickly.
[0013]
Next, the content of displaying the detected foreign matter on the data display unit 206 will be described. FIG. 5 shows changes in the number of wafers processed by the foreign substance inspection apparatus and the number of detections by the foreign substance inspection apparatus for wafers of the same process processed by the same manufacturing apparatus. FIG. 5 (a) shows the transition of the total number of detected foreign matters, and FIG. 5 (b) shows the detection of only foreign matters having a size corresponding to the region 401 in FIG. 4 (in this case, a to b). Similarly, FIG. 5 (c) shows the number of detected foreign objects having a size corresponding to the region 402 (in this case, c to d). Further, threshold values 501, 502, and 503 indicate management reference values for the number of foreign particles, respectively. If more foreign particles are detected than the threshold value, the wafer is abnormal. .
[0014]
In FIG. 5 (a), an abnormality 504 occurs at the number A of processed sheets. However, in FIG. 5 (a), only an abnormality is detected, and the cause of the abnormality needs to be investigated separately. Therefore, by simultaneously displaying the transition of the number of detected foreign substances according to size shown in FIGS. 5 (b) and 5 (c), no abnormality is detected in FIG. 5 (b), but FIG. 5 (c). Then, since the abnormality 505 is detected, it can be understood that the abnormality is caused by the foreign matter that has been peeled off from the inner wall surface of the CVD apparatus.
[0015]
However, the values of a to d are values that vary depending on the manufacturing apparatus, manufacturing process, and the like. In addition, foreign substances that cause other cases may show different distributions. It is necessary to use data tailored to the distribution. Therefore, although divided into two areas in this example, it may be divided into two or more areas.
[0016]
Next, another method of using the display using the foreign matter size information, for example, a method of selecting a foreign matter to be analyzed from the detected foreign matter will be described. FIG. 6 is a diagram in which chips on a semiconductor wafer are divided into regions. In FIG. 6, for example, a region 601 is a memory cell circuit portion, a region 602 is a data input / output circuit portion, and a region 603 is a portion where no circuit pattern exists. Usually, these areas 601, 602, and 603 have different circuit pattern integration degrees. Therefore, the size of the foreign matter that causes a defect also differs in each region. That is, the size of the foreign matter to be managed and analyzed differs depending on the area in the chip.
[0017]
For example, if there is a foreign object having a size α or larger in the region 601, a foreign material having a size β or larger in the region 602, and a foreign material having a size γ or larger in the region 603 is considered defective. The area information and the size information of the foreign matter that becomes defective are stored in the inspection apparatus in advance. Then, the region is determined based on the position information of the detected foreign matter in the inspection apparatus, and the size of the detected foreign matter is compared with the values of α, β, and γ to determine whether or not the detected foreign matter is a size causing the defect. judge. Then, by changing the display of the foreign matter determined to be the cause of failure and the foreign matter determined not to be the cause of failure, it is possible to classify the foreign matter causing the failure in real time. An example in which the display is changed is shown in FIG.
[0018]
FIG. 7 shows one of the inspection results obtained from the inspection apparatus and shows the position of the detected foreign matter. Conventionally, the detection result is as shown in FIG. 7 (a). Therefore, the probability of being able to select a foreign object to be analyzed is selected by selecting an appropriate foreign object and analyzing the foreign object. Was low, and time was required for failure analysis. However, as shown in FIG. 7 (b) using the above determination, the foreign matter determined to be the cause of the failure, that is, the foreign matter 701 to be analyzed should be analyzed by changing the display of the foreign matter 701 to be analyzed. It is only necessary to select the foreign object 701, and the probability that the foreign object to be analyzed can be selected is increased, and the cause of the defect can be quickly analyzed. However, although the display pattern is changed as a method of changing the display in FIG. 7, the color and size of the display pattern may be changed. Here, the area is divided in the chip, but the area may be divided in the wafer surface.
[0019]
As described above, the present embodiment has been described using the foreign substance inspection apparatus, but the present technique can also be applied to an apparatus that detects pattern defects other than foreign substances. Further, the present invention is not limited to semiconductor wafers, and can be applied to thin film substrates, photomasks, TFTs, PDPs, and the like.
[0020]
【The invention's effect】
Since the present invention is configured as described above, useful information for manufacturing process management can be obtained in real time from foreign matter / defect size information, and defect analysis and countermeasures can be quickly performed. .
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing conventional problems.
FIG. 2 is a diagram showing a configuration of a foreign matter inspection apparatus using the present invention.
FIG. 3 is a diagram illustrating a method for measuring the size of a foreign substance.
FIG. 4 is a diagram showing a distribution of foreign matter generated in a manufacturing apparatus.
FIG. 5 is a diagram showing an example of the present invention.
FIG. 6 is a diagram showing area division in a chip of a semiconductor wafer.
FIG. 7 is a diagram showing another example of the present invention.
[Explanation of symbols]
101 ... Control threshold 201 ... Illumination light source 202 ... Inspection object 203 ... Condensing lens 204 ... Detector 205 ... Signal processing circuit 206 ... Data display part 207 ... Stage 301 ... Foreign matter data 302 ... Waveform of foreign matter data 301, 401, 402 ... Distribution area of foreign matter, 501, 502, 503 ... Management threshold, 504, 505 ... Abnormality exceeding management threshold, 601, 602, 603 ... Within chip Area, 701 ... Foreign matter to be analyzed on the detection result.

Claims (8)

基板上の異物・欠陥を検査する装置において、表面に繰り返し性を有するパターンが形成された被検査物に光を照射する照明手段と、該照明手段によって照明された被検査物からの反射光を集光する集光手段と、該集光手段によって集光された該反射光を検出する光検出手段と、該光検出手段で検出した信号に基づいて前記繰り返し性を有するパターンの画像どうしの差分を取って異物・欠陥を検出する信号処理手段と、該信号処理手段で前記繰り返し性を有するパターンの画像どうしの差分を取って検出した異物・欠陥の大きさを測定する寸法測定手段と、前記表面に形成された繰り返し性を有するパターンの集積度に応じた領域情報と該繰り返し性を有するパターンの集積度に応じた領域ごとに不良となる異物・欠陥の大きさの判定基準情報を記憶しておく記憶手段と、前記信号処理手段で検出した異物・欠陥の位置情報と前記寸法測定手段で測定した前記異物・欠陥の大きさの情報と前記記憶手段に記憶した前記繰り返し性を有するパターンの集積度に応じた領域ごとの判定基準情報とに基いて該異物が不良原因となる大きさか否かを判定する判定手段と、該判定手段で不良原因となる大きさと判定した異物・欠陥の前記被検査物の処理枚数に対する検出個数の推移の情報を表示するデータ表示手段とを備えたことを特徴とする異物欠陥検査装置。In an apparatus for inspecting foreign matter / defects on a substrate, illumination means for irradiating light on an object to be inspected having a repeatable pattern formed on the surface, and reflected light from the object illuminated by the illumination means A condensing means for condensing, a light detecting means for detecting the reflected light collected by the condensing means, and a difference between images of the pattern having the repeatability based on a signal detected by the light detecting means A signal processing means for detecting a foreign object / defect by taking a difference, a dimension measuring means for measuring the size of the foreign object / defect detected by taking a difference between images of the pattern having the repeatability by the signal processing means, the size criteria for foreign matter and defects become defective for each area in accordance with the degree of integration of the pattern having a region information according to the degree of integration of the pattern having a repeatability formed on the surface and the repeatability Storage means for storing the broadcast location information and the size the repeatability stored in the size of the information and the storage means of the foreign matter and defects measured by the measuring means of the foreign matter-defect detected by said signal processing means Determining means for determining whether or not the foreign matter is a size causing a defect based on determination criterion information for each region according to the degree of integration of the pattern having a foreign matter, and the foreign matter determined to be a cause causing the failure by the determining means A foreign matter defect inspection apparatus comprising: data display means for displaying information on the transition of the detected number of defects relative to the number of processed objects to be inspected . 前記照明手段はレーザ光を前記被検査物に照射し、前記寸法測定手段は、レーザ光を前記被検査物に照射した時に得られる情報を用いて異物・欠陥の大きさを測定することを特徴とする請求項1記載の異物欠陥検査装置。  The illumination means irradiates the inspection object with laser light, and the dimension measurement means measures the size of the foreign matter / defect using information obtained when the inspection object is irradiated with laser light. The foreign matter defect inspection apparatus according to claim 1. 前記照明手段は白色光を前記被検査物に照射し、前記寸法測定手段は、白色光を前記被検査物に照射した時に得られる情報を用いて異物・欠陥の大きさを測定することを特徴とする請求項1記載の異物欠陥検査装置。  The illumination means irradiates the inspection object with white light, and the dimension measurement means measures the size of the foreign matter / defect using information obtained when the inspection object is irradiated with white light. The foreign matter defect inspection apparatus according to claim 1. 前記データ表示手段において、前記判定手段で不良原因となる大きさと判定した異物・欠陥を他の欠陥と区別して表示することを特徴とする請求項1記載の異物欠陥検査装置。  2. The foreign matter defect inspection apparatus according to claim 1, wherein the data display means displays the foreign matter / defect determined as the cause of failure by the judging means in distinction from other defects. 基板上の異物・欠陥を検査する方法であって、表面に繰り返し性を有するパターンが形成された被検査物に光を照射して該被検査物を照明し、該照明された被検査物からの反射光を集光して検出し、該検出して得た信号に基づいて前記繰り返し性を有するパターンの画像どうしの差分を取って異物・欠陥を検出し、該繰り返し性を有するパターンの画像どうしの差分を取って検出した異物・欠陥の大きさを測定し、前記検出した異物・欠陥の位置情報と前記測定した異物・欠陥の大きさの情報と予め記憶しておいた前記繰り返し性を有するパターンの集積度に応じた領域ごとの判定基準情報とに基いて前記異物・欠陥が不良原因となる大きさか否かを判定し、不良原因となる大きさと判定した異物・欠陥の前記被検査物の処理枚数に対する検出個数の推移の情報を画面上に表示することを特徴とする異物欠陥検査方法。A method of inspecting foreign matter / defects on a substrate, illuminating the inspection object by irradiating the inspection object with a pattern having a repeatability formed on the surface, and from the illuminated inspection object The reflected light is collected and detected, and based on the signal obtained by the detection, the difference between the images of the pattern having the repeatability is taken to detect the foreign matter / defect, and the image of the pattern having the repeatability is detected. The size of the foreign matter / defect detected by taking the difference between them is measured, the positional information of the detected foreign matter / defect, the information of the size of the measured foreign matter / defect and the repeatability stored in advance based on the determination criterion information in each area in accordance with the degree of integration of the pattern to determine whether the magnitude not to the foreign matter and defect becomes failure cause with, the inspection of the size and the determined foreign matter and defects become defective due test for the number of processed goods Foreign substance defect inspection method and displaying the information of the number of transitions on the screen. 前記被検査物に照射する光がレーザ光であって、前記異物・欠陥の大きさを、レーザ光を前記被検査物に照射した時に得られる情報を用いて測定することを特徴とする請求項5記載の異物欠陥検査方法。  The light irradiated to the inspection object is laser light, and the size of the foreign matter / defect is measured using information obtained when the inspection object is irradiated with laser light. 5. The foreign matter defect inspection method according to 5. 前記被検査物に照射する光が白色光であって、前記異物・欠陥の大きさを、白色光を前記被検査物に照射した時に得られる情報を用いて測定することを特徴とする請求項5記載の異物欠陥検査方法。  The light irradiated to the inspection object is white light, and the size of the foreign matter / defect is measured using information obtained when the inspection object is irradiated with white light. 5. The foreign matter defect inspection method according to 5. 前記不良原因となる大きさと判定した異物・欠陥を他の欠陥と区別して画面上に表示することを特徴とする請求項5記載の異物欠陥検査方法。  6. The foreign substance defect inspection method according to claim 5, wherein the foreign substance / defect determined to be the size causing the defect is displayed on a screen while being distinguished from other defects.
JP23651099A 1999-08-24 1999-08-24 Foreign object defect inspection method and apparatus Expired - Fee Related JP3793668B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23651099A JP3793668B2 (en) 1999-08-24 1999-08-24 Foreign object defect inspection method and apparatus
US09/644,069 US6597448B1 (en) 1999-08-24 2000-08-23 Apparatus and method of inspecting foreign particle or defect on a sample
DE10041354A DE10041354A1 (en) 1999-08-24 2000-08-23 Foreign particle or defect checking system for inspection of substrate or wafer, has size information processing device which processes size of foreign particle or defect on predetermined object
KR10-2000-0048846A KR100389524B1 (en) 1999-08-24 2000-08-23 Defect inspection method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23651099A JP3793668B2 (en) 1999-08-24 1999-08-24 Foreign object defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001060607A JP2001060607A (en) 2001-03-06
JP3793668B2 true JP3793668B2 (en) 2006-07-05

Family

ID=17001789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23651099A Expired - Fee Related JP3793668B2 (en) 1999-08-24 1999-08-24 Foreign object defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3793668B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057193A (en) * 2001-08-17 2003-02-26 Hitachi Electronics Eng Co Ltd Foreign matter checking apparatus
KR100478200B1 (en) * 2001-12-11 2005-03-23 동부아남반도체 주식회사 Peak Type Standard Reference Material
JP4183492B2 (en) 2002-11-27 2008-11-19 株式会社日立製作所 Defect inspection apparatus and defect inspection method
JP2005283190A (en) 2004-03-29 2005-10-13 Hitachi High-Technologies Corp Foreign matter inspection method and device therefor
JP4713185B2 (en) 2005-03-11 2011-06-29 株式会社日立ハイテクノロジーズ Foreign object defect inspection method and apparatus
JP4996856B2 (en) 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method
JP4988224B2 (en) 2006-03-01 2012-08-01 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
JP2007248086A (en) 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Flaw inspection device
US7847927B2 (en) 2007-02-28 2010-12-07 Hitachi High-Technologies Corporation Defect inspection method and defect inspection apparatus
JP5171524B2 (en) 2007-10-04 2013-03-27 株式会社日立ハイテクノロジーズ Device surface defect inspection apparatus and method

Also Published As

Publication number Publication date
JP2001060607A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US7410737B2 (en) System and method for process variation monitor
JP3566589B2 (en) Defect inspection apparatus and method
JP3784603B2 (en) Inspection method and apparatus, and inspection condition setting method in inspection apparatus
US8775101B2 (en) Detecting defects on a wafer
KR100389524B1 (en) Defect inspection method and device thereof
WO2010093733A2 (en) Detecting defects on a wafer
JP4408298B2 (en) Inspection apparatus and inspection method
JP3938227B2 (en) Foreign object inspection method and apparatus
JP3793668B2 (en) Foreign object defect inspection method and apparatus
JP2004177139A (en) Support program for preparation of inspection condition data, inspection device, and method of preparing inspection condition data
JP2001118899A (en) Inspection apparatus for foreign object and pattern defect
JP3904796B2 (en) Foreign object or defect inspection apparatus, and foreign object or defect inspection method
JP2004301847A (en) Defects inspection apparatus and method
JP4594833B2 (en) Defect inspection equipment
JP2647051B2 (en) Appearance inspection device
JP4408902B2 (en) Foreign object inspection method and apparatus
JP4052733B2 (en) Foreign matter inspection method for patterned wafer
JPH07159333A (en) Apparatus and method for inspection of appearance
JP2003057193A (en) Foreign matter checking apparatus
JP3348059B2 (en) Method for manufacturing semiconductor device
US20070296962A1 (en) Surface inspection apparatus and surface inspection method
KR100564871B1 (en) Inspecting method and apparatus for repeated micro-miniature patterns
JP4248319B2 (en) Inspection condition evaluation program and inspection apparatus
JP2004117016A (en) Semiconductor wafer defect inspecting apparatus
JP2006093172A (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees