JP3793561B2 - Connection structure between optical waveguide and semiconductor light receiving element - Google Patents

Connection structure between optical waveguide and semiconductor light receiving element Download PDF

Info

Publication number
JP3793561B2
JP3793561B2 JP2001287709A JP2001287709A JP3793561B2 JP 3793561 B2 JP3793561 B2 JP 3793561B2 JP 2001287709 A JP2001287709 A JP 2001287709A JP 2001287709 A JP2001287709 A JP 2001287709A JP 3793561 B2 JP3793561 B2 JP 3793561B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
semiconductor light
optical waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001287709A
Other languages
Japanese (ja)
Other versions
JP2003101044A (en
Inventor
勝弘 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001287709A priority Critical patent/JP3793561B2/en
Publication of JP2003101044A publication Critical patent/JP2003101044A/en
Application granted granted Critical
Publication of JP3793561B2 publication Critical patent/JP3793561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に形成された光導波路によって伝搬させる伝搬光を同じ基板上に配置された半導体受光素子で受光・検出するための、高い信頼性を有する光導波路と半導体受光素子との接続構造に関するものである。
【0002】
【従来の技術】
光回路基板や光電気回路基板等においては、基板上に形成された光導波路により伝搬される伝搬光を同じ基板上に配置した半導体受光素子に光接続して受光させるために、種々の光導波路と半導体受光素子との接続構造が用いられている。
【0003】
従来の光導波路と半導体受光素子との接続構造の例を図3に断面図で示す。図3に示す接続構造では、基板31上に形成された電極配線38に半導体受光素子32が固定されて配置され、その上に下部クラッド部33・コア部34・上部クラッド部35から構成される光導波路36が形成されている。なお、コア部34はその周囲を下部クラッド部33および上部クラッド部35により取り囲まれてクラッド部中に配設されている。
【0004】
この接続構造においては、コア部34を中心に伝搬する伝搬光は、図3中に示すようにその電磁界フィールド37がコア部34の外側にも広がっているため、これをコア部34の近傍に配置された半導体受光素子32の受光面に光結合させて受光させることができるものである。
【0005】
【発明が解決しようとする課題】
しかしながら、図3に示すような従来の接続構造では、電極配線38上に半導体受光素子32を実装する際、半導体受光素子32の電極はその周辺部に設けられており、半導体受光素子32の中央付近と基板31の上面との間には間隙があるため、図3に示すように、半導体受光素子32の中央部が基板31側へ湾曲することがある。このことは、特に半導体受光素子32の厚さが数μm程度と薄い場合に顕著である。このように半導体受光素子32が湾曲した場合、湾曲部で生じる応力によって半導体受光素子32の暗電流が増加したり、極端な場合には、半導体受光素子32に亀裂が生じたり、半導体受光素子32に形成された金属配線に剥離・しわ・クラックが生じることによって、半導体受光素子32が破壊されたり、受光素子としての特性が劣化して期待する特性が得られなくなったりするなどの信頼性上の問題が生じる。
【0006】
一方、特開平2000−215371号公報において半導体受光素子32の中央付近と基板31との間の間隙を光学接着材で充填する提案がなされている。しかしながら、この場合は、光学接着材が硬化する際の収縮によって半導体受光素子32が湾曲したりして応力を付与することになり問題が生じることとなる。また、数μm程度の厚さの電極の段差で生じる間隙を光学接着剤等の樹脂で充填することも容易ではない。
【0007】
本発明は上記従来の技術における問題点に鑑みてなされたものであり、その目的は、基板上に形成された光導波路を伝搬する伝搬光をこの基板上の光導波路の近傍に配置された半導体受光素子によって受光・検出することができる高い信頼性を有した光導波路と半導体受光素子との接続構造を提供することにある。
【0008】
【課題を解決するための手段】
本発明の光導波路と半導体受光素子との接続構造は、基板上に形成されたクラッド部およびこのクラッド部中のコア部を有する光導波路を伝搬する伝搬光を、前記基板上の前記コア部の近傍に受光面を前記コア部に略平行にして配置された半導体受光素子で検出するための光導波路と半導体受光素子との接続構造であって、前記半導体受光素子は、半導体受光素子設置用の電極配線を前記基板の上面に埋設することによって表面が略平坦に形成された設置部に設置されていることを特徴とするものである。
【0009】
また、本発明の光導波路と半導体受光素子との接続構造は、基板上に形成されたクラッド部およびこのクラッド部中のコア部を有する光導波路を伝搬する伝搬光を、前記基板上の前記コア部の近傍に受光面を前記コア部に略平行にして配置された半導体受光素子で検出するための光導波路と半導体受光素子との接続構造であって、前記半導体受光素子は、上面に電極を有するとともに、該電極と前記半導体受光素子の周囲の前記基板の上面に形成された半導体受光素子設置用の電極配線とを電気的に接続する配線導体により前記電極およびその近傍の上面が覆われていることを特徴とするものである。
【0010】
本発明の光導波路と半導体受光素子との接続構造によれば、半導体受光素子が半導体受光素子設置用の電極配線を基板の上面に埋設することによって表面が略平坦に形成された設置部に設置されていることから、半導体受光素子をこの設置部に大きな湾曲や歪みを生じさせることなく設置することができる。
【0011】
また、本発明の光導波路と半導体受光素子との接続構造によれば、半導体受光素子が上面に電極を有するとともに、半導体受光素子のこの電極およびその近傍の上面が、この電極と半導体受光素子の周囲の基板の上面に形成された半導体受光素子設置用の電極配線とを電気的に接続する配線導体により覆われていることから、半導体受光素子は基板の上面に対して電極配線に乗ることなく平坦な状態で設置されるので、半導体受光素子に湾曲や歪みを生じさせることなく設置することができる。
【0012】
従って、本発明によれば、半導体受光素子の湾曲や歪みに伴う応力による暗電流の増加や感度の低下を抑制することができ、また、半導体受光素子に亀裂が生じたり、半導体受光素子に形成された金属配線に剥離・しわ・クラックが生じたりすることを抑制することができるので、高い信頼性を有した光導波路と半導体受光素子との接続構造を提供することができる。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明の光導波路と半導体受光素子との接続構造を詳細に説明する。
【0014】
図1および図2は、それぞれ本発明の光導波路と半導体受光素子との接続構造の実施の形態の例を示す断面図である。
【0015】
図1に示す例では、基板11上に半導体受光素子設置用の電極配線18を基板11の上面に埋設することによって表面が略平坦に形成された設置部に半導体受光素子12が配置固定されて設置されており、その上に下部クラッド部13・コア部14・上部クラッド部15から構成される光導波路16が形成されている。また、半導体受光素子12の下面に電圧印加用や光電流検出用の電極配線18が形成されている。
【0016】
図2に示す例では、基板11上に半導体受光素子22上が固定されて配置され、半導体受光素子22の上面に形成された電極と半導体受光素子22の周囲の基板11の上面に形成された半導体受光素子設置用の電極配線(塗りつぶし部分で示す)とを電気的に接続しつつ半導体受光素子22の上面の電極およびその近傍の上面を覆うように配線導体28が形成されており、さらにその上に、下部クラッド部13・コア部14・上部クラッド部15から構成される光導波路16が形成されている。
【0017】
本発明の光導波路と半導体受光素子との接続構造において、基板11は、電気回路および光導波路を始めとする光電気回路が形成され、また光導波路中に埋設される半導体受光素子12・22に対する支持基板として機能するものであり、光集積回路基板や光電子混在基板等の光信号を扱う基板として使用される種々の基板、例えばシリコン基板やアルミナ基板・ガラスセラミック基板・多層セラミック基板・薄膜多層セラミック基板・プラスチック電気配線基板等が使用できる。
【0018】
半導体受光素子設置用の電極配線18を基板11の上面に埋設することによって表面が略平坦な設置部を形成する方法としては、電極配線18を埋設する部分にプレス法やエッチング法によって予め電極配線18が埋め込まれる溝を形成した後、スクリーン印刷法や薄膜金属配線微細加工技術等を用いてこの溝内に電極配線18の材料を埋設すればよい。また、樹脂材料から成る基板11の上面に電極配線18を埋設して形成する場合には、基板11の上面に電極配線18を形成した後、加圧プレスによってこの電極配線18を基板11の樹脂中に埋設するようにしてもよい。また、その後、研磨やエッチバック法等によって設置部の表面をさらに平坦化してもよい。設置部の表面に対する平坦化の度合いとしては、電極配線18による段差が1μm程度以下となるようにすればよい。
【0019】
電極配線18および配線導体28の材料としては、Au・Ti・Pd・Pt・Al・Cu・W・Cr等の周知の配線導体材料を用いた単体もしくはこれらの合金による単層や多層体を用いればよい。また、AuSn・AuGeなどの半田材料を最上層としてもよい。
【0020】
本発明の接続構造に用いられる光導波路16の形成材料としては、光導波路を形成できる種々の光学材料を用いることができるが、中でもシロキサン系ポリマを用いることが望ましい。シロキサン系ポリマによる光導波路とすれば、下部および上部クラッド部13・15にシロキサン系ポリマを用い、コア部14に金属、例えばチタン(Ti)を含有したシロキサン系ポリマを用いた光導波路16とすることにより、チタン含有量の制御によってクラッド部13・15とコア部14との間で所望の屈折率差を有する光導波路16を容易に作製することができ、半導体受光素子12・22との受光効率が良好となる構造のものを設計することが容易となる。また、100℃〜300℃程度の低温で光導波路16を作製することができるので、半導体受光素子12・22を埋設するようにしてこの上に光導波路16を作製する場合でも、半導体受光素子12・22に熱的ダメージを与えることがない。また、下地の表面状態によらず膜表面の平坦化性・平滑化性に優れており、半導体受光素子12・22を埋設するように光導波路16を形成する場合に、散乱損失を招来する表面の凹凸を緩和することができるので好適である。
【0021】
このようなシロキサン系ポリマとしては、ポリマの骨格にシロキサン結合が含まれている樹脂であればよく、例えばポリフェニルシルセスキオキサン・ポリメチルフェニルシルセスキオキサン・ポリジフェニルシルセスキオキサン等がある。
【0022】
また、コア部14ならびにクラッド部13・15に含有させる金属としては、チタンに限られるものではなく、ゲルマニウム(Ge)・アルミニウム(Al)・エルビウム(Er)等も使用できる。これらの金属を含有したコア部14を形成するには、その金属アルコキシドを添加したシロキサン系ポリマ層を形成し、これを所望の形状・寸法に加工すればよい。
【0023】
なお、クラッド部13・15に用いるシロキサン系ポリマにも上記と同様の金属を含有させてもよく、その場合はコア部14との含有量の差により屈折率差を設けるようにすればよい。
【0024】
また、屈折率を制御するには、金属を添加する他に、例えばシロキサン系ポリマの組成を変化させて屈折率を制御してもよい。あるいは、光重合型のシロキサン系ポリマを用いて光照射量の違いによって生じる屈折率変化を利用してもよい。
【0025】
また、光導波路16の材料としては、この他にも、低損失で光を伝搬させることができる透明性があり、所望の屈折率差を得ることができるコア部材とクラッド部材との組合せであれば各種の材料を用いることができる。シロキサン系ポリマ以外には、例えばフッ素化ポリイミド・ポリメチルメタクリレート(PMMA)・ポリカーボネート(PC)等の溶液状態で塗布可能な樹脂系光学材料が好適に用いられる。また、気相成長法によるシリカ等の無機材料を用いてもよい。
【0026】
光導波路16の作製方法としては、まず基板11上に下部クラッド部13を形成する。次にコア部14となるコア層を積層形成した後、フォトリソグラフィやRIE(Reactive Ion Etching)等の周知の薄膜微細加工技術を用いて、所定の形状でコア部14を形成する。その後、上部クラッド部15を被覆形成する。この薄膜微細加工技術によれば、コア部14を形成する際、異なった幅のコア部14を容易に作製することができる。また、光硬化型のシロキサン系ポリマを用いれば、光未照射部が特定の溶液に対して可溶で硬化部が不溶となる場合にはフォトリソグラフィの手法と同様の方法によって容易にコアパターンが形成できる。このようなプレーナ微細加工技術を用いれば本発明のコア幅が部分的に異なるコアパターンも容易に形成できる。
【0027】
基板11上に配置され設置される半導体受光素子12・22は、例えばSi・Ge・InP・GaAs・InAs・InGaAsP等の半導体材料を用いて製造された半導体受光素子であり、pnフォトダイオード・pinフォトダイオード・フォトトランジスタ・MSM(Metal-Semiconductor-Metal)フォトダイオード・アバランシェフォトダイオードといった半導体受光素子が用いられる。
【0028】
【実施例】
次に、本発明の光導波路と半導体受光素子との接続構造について具体例を説明する。
【0029】
〔例1〕
図1に示すように、屈折率1.447の石英基板11の上面にフォトリソグラフィとドライエッチング法を用いて形成した深さ1.5μmの溝に、リフトオフ法を利用してAuから成る電極配線18を形成した。その後、基板11の上面をラッピング研磨により半導体受光素子12の設置部の実装領域において表面粗さにおける最大高さRmaxが0.1μm程度以下になるように平坦化した。
【0030】
次に、半導体受光素子12として厚さ1μmのInGaAs上にTi/Pt/Auからなるラダー型電極配線を形成した、受光面が100μm四方のMSM型フォトダイオードを準備し、MSM電極を下向きにして、電極配線18と電気的な接続が得られるように設置部に配置し固定した。その後、良好な電極接続が得られるように熱処理を施した。
【0031】
次に、クラッド部13・15がシロキサン系ポリマから成り、コア部14がチタン含有シロキサン系ポリマから成るステップインデックス型の光導波路16を形成した。光導波路16の各部の厚さは、下部クラッド部13を2μm、コア部14を7μm・上部クラッド部15を8μmとした。コア部14の幅は7μmとした。なお、クラッド部13・15の屈折率は1.448、コア部14の屈折率は1.4533とした。
【0032】
また、半導体受光素子12からの電気信号を検出するため、電極配線18の一部分をドライエッチング技術を用いて露出させ、外部電気回路と電気的に接続した。
【0033】
このようにして作製した、図1に示すような構成の本発明の光導波路と半導体受光素子との接続構造について、光入力ポート17から光導波路に波長1.3μmの光を伝搬させて、半導体受光素子12でコア部14から漏れ出した伝搬光を検出して光強度を測定したところ、この光導波路16と半導体受光素子12とは約7%の光結合効率を有しており、伝搬光を十分な強度で検出できることが確認できた。
【0034】
また、光導波路16の形成前後での半導体光素子12の破壊や顕著な特性の劣化は見られなかった。
【0035】
〔例2〕
図2に示すように、屈折率1.447の石英基板11の上面に、半導体受光素子22として厚さ1μmのInGaAs上にTi/Pt/Auからなるラダー型電極配線を形成した受光面が100μm四方のMSM型フォトダイオードを、MSM電極を上向きにして設置した。この際、半導体受光素子22と石英基板11とはファンデールスワールス力によって密着している状態とした。
【0036】
次に、フォトレジストパターンを形成した後、電子ビーム蒸着法によって全厚2μmのTi/Pt/Au層を形成し、リフトオフ法により不要部分を除去して、半導体受光素子22の上面のMSM電極と半導体受光素子22の周囲の基板11の上面に配設された半導体受光素子設置用の電極配線とを電気的に接続する配線導体28を形成した。配線導体28は半導体受光素子22のMSM電極と基板11の電極配線との電気的な接続を行なうとともに、半導体受光素子22のMSM電極およびその近傍の上面外周部を被覆することによって半導体受光素子22と基板11との密着強度を高めている。
【0037】
次に、クラッド部13・15がシロキサン系ポリマから成り、コア部14がチタン含有シロキサン系ポリマから成るステップインデックス型の光導波路16を形成した。光導波路16の各部の厚さは、下部クラッド部13を2μm、コア部14を7μm・上部クラッド部15を8μmとした。コア部14の幅は7μmとした。なお、クラッド部13・15の屈折率は1.448、コア部14の屈折率は1.4533とした。
【0038】
また、半導体受光素子12からの電気信号を検出するため、配線導体28の一部分をドライエッチング技術を用いて露出させ、外部電気回路と接続した。
【0039】
このようにして作製した本発明の光導波路と半導体受光素子との接続構造について、光入力ポート17から光導波路に波長1.3μmの光を伝搬させて、半導体受光素子22でコア部14から漏れ出した伝搬光を検出して光強度を測定したところ、この光導波路16と半導体受光素子22とは約5%の光結合効率を有しており、伝搬光を十分な強度で検出できることが確認できた。
【0040】
また、光導波路16の形成前後での半導体光素子22の破壊や顕著な特性の劣化は見られなかった。
【0041】
〔例3〕
本発明の実施例との比較のために、従来例による比較例の試作評価を行なった。
【0042】
図3に示すように、屈折率1.447の石英基板11の上面に厚さ1.5μmのAuから成る電極配線38を形成した。次に、半導体受光素子12として厚さ1μmのInGaAs上にTi/Pt/Auからなるラダー型電極配線を形成した受光面が100μm四方のMSM型フォトダイオードを、MSM電極を下向きにして、電極配線38と電気的な接続が得られるように配置し固定した。その後、良好な電極接続が得られるように熱処理を施した。
【0043】
次に、クラッド部33・35がシロキサン系ポリマから成り、コア部34がチタン含有シロキサン系ポリマから成るステップインデックス型の光導波路36を形成した。光導波路36の各部の厚さは、下部クラッド部33を2μm、コア部34を7μm・上部クラッド部35を8μmとした。コア部34の幅は7μmとした。なお、クラッド部33・35の屈折率は1.448、コア部34の屈折率は1.4533とした。
【0044】
また、半導体受光素子32からの電気信号を検出するため、電極配線38の一部分をドライエッチング技術を用いて露出させ、外部電気回路と接続した。
【0045】
このようにして作製した従来例による光導波路と半導体受光素子との接続構造について、評価を試みたところ、光導波路36の形成前後で半導体受光素子32としてのフォトダイオードの暗電流が50倍程度増大していた。さらに、評価を進める途中でフォトダイオードとしての特性が得られなくなったものがあった。これについてSEM(走査型電子顕微鏡)による断面観察を行なったところ、半導体受光素子32が湾曲していた結果、半導体受光素子32に形成された金属配線に剥離が見られた。
【0046】
【発明の効果】
以上のように、本発明の光導波路と半導体受光素子との接続構造によれば、半導体受光素子が半導体受光素子設置用の電極配線を基板の上面に埋設することによって表面が略平坦に形成された設置部に設置されていることから、半導体受光素子をこの設置部に大きな湾曲や歪みを生じさせることなく設置することができる。
【0047】
また、本発明の光導波路と半導体受光素子との接続構造によれば、半導体受光素子が上面に電極を有するとともに、半導体受光素子のこの電極およびその近傍の上面が、この電極と半導体受光素子の周囲の基板の上面に形成された半導体受光素子設置用の電極配線とを電気的に接続する配線導体により覆われていることから、半導体受光素子は基板の上面に対して電極配線に乗ることなく平坦な状態で設置されるので、半導体受光素子に湾曲や歪みを生じさせることなく設置することができる。
【0048】
従って、本発明によれば、半導体受光素子の湾曲や歪みに伴う応力による暗電流の増加や感度の低下を抑制することができ、また、半導体受光素子に亀裂が生じたり、半導体受光素子に形成された金属配線に剥離・しわ・クラックが生じたりすることを抑制することができるので、高い信頼性を有した光導波路と半導体受光素子との接続構造を提供することができた。
【図面の簡単な説明】
【図1】本発明の光導波路と半導体受光素子との接続構造の実施の形態の例を示す断面図である。
【図2】本発明の光導波路と半導体受光素子との接続構造の実施の形態の例を示す断面図である。
【図3】従来の光導波路と半導体受光素子との接続構造の例を示す断面図である。
【符号の説明】
11、31・・・・・基板
12、22、32・・・半導体受光素子
13、33・・・・・下部クラッド部
14、34・・・・・コア部
15、35・・・・・上部クラッド部
16、36・・・・・光導波路
18、38・・・・・電極配線
28・・・・・・・配線導体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connection between a highly reliable optical waveguide and a semiconductor light receiving element for receiving and detecting propagating light propagated by the optical waveguide formed on the substrate with a semiconductor light receiving element disposed on the same substrate. Concerning structure.
[0002]
[Prior art]
In optical circuit boards, photoelectric circuit boards, etc., various optical waveguides are used in order to optically connect and receive propagating light propagated by optical waveguides formed on the substrate to a semiconductor light receiving element disposed on the same substrate. And a semiconductor light receiving element are used.
[0003]
An example of a connection structure between a conventional optical waveguide and a semiconductor light receiving element is shown in a sectional view in FIG. In the connection structure shown in FIG. 3, a semiconductor light receiving element 32 is fixedly disposed on an electrode wiring 38 formed on a substrate 31, and a lower clad portion 33, a core portion 34, and an upper clad portion 35 are formed thereon. An optical waveguide 36 is formed. The core portion 34 is surrounded by the lower clad portion 33 and the upper clad portion 35 and is disposed in the clad portion.
[0004]
In this connection structure, the propagating light propagating around the core portion 34 has its electromagnetic field 37 spreading outside the core portion 34 as shown in FIG. The light can be received by being optically coupled to the light receiving surface of the semiconductor light receiving element 32 disposed on the surface.
[0005]
[Problems to be solved by the invention]
However, in the conventional connection structure as shown in FIG. 3, when the semiconductor light receiving element 32 is mounted on the electrode wiring 38, the electrode of the semiconductor light receiving element 32 is provided at the periphery thereof, and the center of the semiconductor light receiving element 32 is provided. Since there is a gap between the vicinity and the upper surface of the substrate 31, the central portion of the semiconductor light receiving element 32 may bend toward the substrate 31 as shown in FIG. This is particularly noticeable when the thickness of the semiconductor light receiving element 32 is as thin as several μm. When the semiconductor light receiving element 32 is curved in this way, the dark current of the semiconductor light receiving element 32 increases due to the stress generated in the curved portion, or in an extreme case, the semiconductor light receiving element 32 is cracked, or the semiconductor light receiving element 32 Due to the occurrence of peeling, wrinkles, or cracks in the metal wiring formed on the semiconductor, the semiconductor light receiving element 32 may be destroyed, or the characteristics as the light receiving element may deteriorate and the expected characteristics may not be obtained. Problems arise.
[0006]
On the other hand, in Japanese Patent Laid-Open No. 2000-215371, a proposal is made to fill the gap between the vicinity of the center of the semiconductor light receiving element 32 and the substrate 31 with an optical adhesive. However, in this case, a problem arises because the semiconductor light-receiving element 32 is bent or stressed due to contraction when the optical adhesive is cured. Further, it is not easy to fill a gap formed by a step of an electrode having a thickness of about several μm with a resin such as an optical adhesive.
[0007]
The present invention has been made in view of the above-described problems in the prior art, and an object thereof is a semiconductor in which propagating light propagating through an optical waveguide formed on a substrate is disposed in the vicinity of the optical waveguide on the substrate. An object of the present invention is to provide a highly reliable optical waveguide and semiconductor light receiving element connection structure that can be received and detected by the light receiving element.
[0008]
[Means for Solving the Problems]
In the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element, the propagating light propagating through the optical waveguide having the clad portion formed on the substrate and the core portion in the clad portion is transmitted to the core portion on the substrate. A connection structure between an optical waveguide and a semiconductor light receiving element for detecting by a semiconductor light receiving element arranged in the vicinity of a light receiving surface substantially parallel to the core portion, wherein the semiconductor light receiving element is used for installing a semiconductor light receiving element. The electrode wiring is embedded in the upper surface of the substrate and is installed in an installation portion whose surface is formed substantially flat.
[0009]
Further, the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element is such that the propagation light propagating through the optical waveguide having the clad portion formed on the substrate and the core portion in the clad portion is transmitted to the core on the substrate. A connection structure of an optical waveguide and a semiconductor light receiving element for detection by a semiconductor light receiving element arranged in the vicinity of the part so that the light receiving surface is substantially parallel to the core part, the semiconductor light receiving element having an electrode on the upper surface And the electrode and the upper surface in the vicinity thereof are covered by a wiring conductor that electrically connects the electrode and the electrode wiring for installing the semiconductor light receiving element formed on the upper surface of the substrate around the semiconductor light receiving element. It is characterized by being.
[0010]
According to the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element, the semiconductor light receiving element is installed in the installation portion whose surface is formed substantially flat by burying the electrode wiring for installing the semiconductor light receiving element in the upper surface of the substrate. Therefore, the semiconductor light receiving element can be installed in the installation portion without causing a large curve or distortion.
[0011]
Further, according to the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element, the semiconductor light receiving element has an electrode on the upper surface, and the electrode of the semiconductor light receiving element and the upper surface in the vicinity thereof are connected to the electrode and the semiconductor light receiving element. Since the semiconductor light receiving element is covered with the wiring conductor that electrically connects the electrode wiring for installing the semiconductor light receiving element formed on the upper surface of the surrounding substrate, the semiconductor light receiving element does not ride on the electrode wiring with respect to the upper surface of the substrate. Since it is installed in a flat state, the semiconductor light receiving element can be installed without causing bending or distortion.
[0012]
Therefore, according to the present invention, it is possible to suppress an increase in dark current and a decrease in sensitivity due to stress caused by bending or distortion of the semiconductor light receiving element, and the semiconductor light receiving element is cracked or formed in the semiconductor light receiving element. Since peeling, wrinkles, and cracks can be prevented from occurring in the formed metal wiring, a highly reliable connection structure between the optical waveguide and the semiconductor light receiving element can be provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a connection structure between an optical waveguide of the present invention and a semiconductor light receiving element will be described in detail with reference to the drawings.
[0014]
FIG. 1 and FIG. 2 are cross-sectional views showing examples of embodiments of a connection structure between an optical waveguide and a semiconductor light receiving element of the present invention, respectively.
[0015]
In the example shown in FIG. 1, the semiconductor light receiving element 12 is arranged and fixed on the installation portion whose surface is formed substantially flat by embedding the electrode wiring 18 for installing the semiconductor light receiving element on the substrate 11 on the upper surface of the substrate 11. An optical waveguide 16 composed of a lower cladding part 13, a core part 14, and an upper cladding part 15 is formed thereon. In addition, an electrode wiring 18 for voltage application or photocurrent detection is formed on the lower surface of the semiconductor light receiving element 12.
[0016]
In the example shown in FIG. 2, the semiconductor light receiving element 22 is fixedly disposed on the substrate 11, and the electrodes formed on the upper surface of the semiconductor light receiving element 22 and the upper surface of the substrate 11 around the semiconductor light receiving element 22 are formed. A wiring conductor 28 is formed so as to cover the electrode on the upper surface of the semiconductor light-receiving element 22 and the upper surface in the vicinity thereof while electrically connecting the electrode wiring for installing the semiconductor light-receiving element (indicated by a filled portion). An optical waveguide 16 composed of a lower clad part 13, a core part 14, and an upper clad part 15 is formed thereon.
[0017]
In the connection structure between the optical waveguide and the semiconductor light receiving element of the present invention, the substrate 11 is formed with an optoelectric circuit including the electric circuit and the optical waveguide, and is connected to the semiconductor light receiving elements 12 and 22 embedded in the optical waveguide. Various substrates that function as support substrates and are used as optical signal processing substrates such as optical integrated circuit substrates and mixed optoelectronic substrates, such as silicon substrates, alumina substrates, glass ceramic substrates, multilayer ceramic substrates, and thin film multilayer ceramics Substrates, plastic electrical wiring boards, etc. can be used.
[0018]
As a method of forming an installation portion having a substantially flat surface by embedding the electrode wiring 18 for installing the semiconductor light receiving element in the upper surface of the substrate 11, the electrode wiring 18 is preliminarily formed on the portion where the electrode wiring 18 is buried by a pressing method or an etching method. After forming the groove in which 18 is embedded, the material of the electrode wiring 18 may be embedded in the groove using a screen printing method, a thin film metal wiring fine processing technique, or the like. In the case where the electrode wiring 18 is embedded in the upper surface of the substrate 11 made of a resin material, the electrode wiring 18 is formed on the upper surface of the substrate 11 and then the electrode wiring 18 is formed on the resin of the substrate 11 by pressing. It may be embedded inside. Thereafter, the surface of the installation portion may be further flattened by polishing, an etch back method, or the like. As a degree of flattening with respect to the surface of the installation portion, a step due to the electrode wiring 18 may be set to about 1 μm or less.
[0019]
As the material of the electrode wiring 18 and the wiring conductor 28, a single layer using a well-known wiring conductor material such as Au, Ti, Pd, Pt, Al, Cu, W, Cr, or a single layer or multilayer body of these alloys is used. That's fine. A solder material such as AuSn / AuGe may be used as the uppermost layer.
[0020]
As a material for forming the optical waveguide 16 used in the connection structure of the present invention, various optical materials capable of forming an optical waveguide can be used. Among them, a siloxane polymer is preferably used. If the optical waveguide is made of a siloxane polymer, the optical waveguide 16 uses a siloxane polymer for the lower and upper clad portions 13 and 15 and a siloxane polymer containing a metal, for example, titanium (Ti), for the core portion 14. Thus, by controlling the titanium content, an optical waveguide 16 having a desired refractive index difference between the cladding portions 13 and 15 and the core portion 14 can be easily manufactured, and light reception with the semiconductor light receiving elements 12 and 22 is achieved. It becomes easy to design a structure with good efficiency. In addition, since the optical waveguide 16 can be manufactured at a low temperature of about 100 ° C. to 300 ° C., even when the optical waveguide 16 is manufactured on the semiconductor light receiving elements 12 and 22 so as to be embedded, the semiconductor light receiving element 12 is used.・ No thermal damage to 22 In addition, it has excellent flatness and smoothness on the surface of the film regardless of the surface condition of the underlying layer. When the optical waveguide 16 is formed so as to embed the semiconductor light receiving elements 12 and 22, the surface causes scattering loss. This is preferable because the unevenness can be relaxed.
[0021]
Such a siloxane polymer may be a resin containing a siloxane bond in the polymer skeleton, such as polyphenylsilsesquioxane, polymethylphenylsilsesquioxane, polydiphenylsilsesquioxane, and the like. is there.
[0022]
Further, the metal contained in the core portion 14 and the clad portions 13 and 15 is not limited to titanium, and germanium (Ge), aluminum (Al), erbium (Er), and the like can also be used. In order to form the core portion 14 containing these metals, a siloxane polymer layer to which the metal alkoxide is added may be formed and processed into a desired shape and size.
[0023]
The siloxane polymer used for the clad portions 13 and 15 may contain the same metal as described above. In that case, a difference in refractive index may be provided depending on the content difference from the core portion 14.
[0024]
In order to control the refractive index, in addition to adding a metal, for example, the refractive index may be controlled by changing the composition of a siloxane polymer. Or you may utilize the refractive index change which arises by the difference in the amount of light irradiation using a photopolymerization type siloxane polymer.
[0025]
In addition to the above, the material of the optical waveguide 16 may be a combination of a core member and a clad member that has a transparency that can propagate light with low loss and can obtain a desired refractive index difference. Various materials can be used. In addition to the siloxane polymer, a resin optical material that can be applied in a solution state such as fluorinated polyimide, polymethyl methacrylate (PMMA), and polycarbonate (PC) is preferably used. Moreover, you may use inorganic materials, such as a silica by a vapor phase growth method.
[0026]
As a method of manufacturing the optical waveguide 16, first, the lower clad portion 13 is formed on the substrate 11. Next, after a core layer to be the core portion 14 is laminated and formed, the core portion 14 is formed in a predetermined shape by using a well-known thin film microfabrication technique such as photolithography or RIE (Reactive Ion Etching). Thereafter, the upper clad portion 15 is formed by coating. According to this thin film microfabrication technology, when forming the core part 14, the core part 14 having different widths can be easily produced. In addition, if a photo-curable siloxane polymer is used, the core pattern can be easily formed by the same method as photolithography when the non-irradiated part is soluble in a specific solution and the cured part is insoluble. Can be formed. By using such a planar microfabrication technique, a core pattern having a partially different core width according to the present invention can be easily formed.
[0027]
The semiconductor light receiving elements 12 and 22 arranged and installed on the substrate 11 are semiconductor light receiving elements manufactured using a semiconductor material such as Si, Ge, InP, GaAs, InAs, InGaAsP, and the like. Semiconductor light receiving elements such as photodiodes, phototransistors, MSM (Metal-Semiconductor-Metal) photodiodes, and avalanche photodiodes are used.
[0028]
【Example】
Next, a specific example of the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element will be described.
[0029]
[Example 1]
As shown in FIG. 1, an electrode wiring 18 made of Au is formed using a lift-off method in a groove having a depth of 1.5 μm formed on the upper surface of a quartz substrate 11 having a refractive index of 1.447 using photolithography and dry etching. did. Thereafter, the upper surface of the substrate 11 was flattened by lapping polishing so that the maximum height Rmax in the surface roughness in the mounting region of the installation portion of the semiconductor light receiving element 12 was about 0.1 μm or less.
[0030]
Next, an MSM photodiode having a light receiving surface of 100 μm square is prepared by forming a ladder electrode wiring made of Ti / Pt / Au on InGaAs having a thickness of 1 μm as the semiconductor light receiving element 12, and the MSM electrode faces downward. In order to obtain electrical connection with the electrode wiring 18, it was arranged and fixed in the installation part. Thereafter, heat treatment was performed so that good electrode connection was obtained.
[0031]
Next, a step index type optical waveguide 16 in which the clad portions 13 and 15 are made of a siloxane-based polymer and the core portion 14 is made of a titanium-containing siloxane-based polymer was formed. The thickness of each part of the optical waveguide 16 was 2 μm for the lower cladding part 13, 7 μm for the core part 14, and 8 μm for the upper cladding part 15. The width of the core portion 14 was 7 μm. The refractive index of the cladding parts 13 and 15 was 1.448, and the refractive index of the core part 14 was 1.4533.
[0032]
Further, in order to detect an electrical signal from the semiconductor light receiving element 12, a part of the electrode wiring 18 was exposed using a dry etching technique and electrically connected to an external electrical circuit.
[0033]
With respect to the connection structure between the optical waveguide of the present invention having the structure shown in FIG. 1 and the semiconductor light-receiving element manufactured as described above, light having a wavelength of 1.3 μm is propagated from the optical input port 17 to the optical waveguide. When the propagation light leaking from the core part 14 is detected by the element 12 and the light intensity is measured, the optical waveguide 16 and the semiconductor light receiving element 12 have an optical coupling efficiency of about 7%. It was confirmed that detection was possible with sufficient intensity.
[0034]
In addition, the semiconductor optical device 12 was not broken or noticeably deteriorated before and after the formation of the optical waveguide 16.
[0035]
[Example 2]
As shown in FIG. 2, a light receiving surface having a ladder type electrode wiring made of Ti / Pt / Au formed on InGaAs having a thickness of 1 μm as a semiconductor light receiving element 22 on the upper surface of a quartz substrate 11 having a refractive index of 1.447 is 100 μm square. An MSM photodiode was placed with the MSM electrode facing up. At this time, the semiconductor light receiving element 22 and the quartz substrate 11 were brought into close contact with each other by van dale swirl force.
[0036]
Next, after forming a photoresist pattern, a Ti / Pt / Au layer having a total thickness of 2 μm is formed by an electron beam evaporation method, unnecessary portions are removed by a lift-off method, and an MSM electrode on the upper surface of the semiconductor light receiving element 22 is formed. A wiring conductor 28 for electrically connecting the electrode wiring for installing the semiconductor light receiving element disposed on the upper surface of the substrate 11 around the semiconductor light receiving element 22 was formed. The wiring conductor 28 makes an electrical connection between the MSM electrode of the semiconductor light receiving element 22 and the electrode wiring of the substrate 11, and covers the MSM electrode of the semiconductor light receiving element 22 and the upper surface outer periphery in the vicinity thereof, thereby covering the semiconductor light receiving element 22. The adhesion strength between the substrate 11 and the substrate 11 is increased.
[0037]
Next, a step index type optical waveguide 16 in which the clad portions 13 and 15 are made of a siloxane-based polymer and the core portion 14 is made of a titanium-containing siloxane-based polymer was formed. The thickness of each part of the optical waveguide 16 was 2 μm for the lower cladding part 13, 7 μm for the core part 14, and 8 μm for the upper cladding part 15. The width of the core portion 14 was 7 μm. The refractive index of the cladding parts 13 and 15 was 1.448, and the refractive index of the core part 14 was 1.4533.
[0038]
Further, in order to detect an electric signal from the semiconductor light receiving element 12, a part of the wiring conductor 28 was exposed using a dry etching technique and connected to an external electric circuit.
[0039]
With respect to the connection structure of the optical waveguide of the present invention thus fabricated and the semiconductor light receiving element, light having a wavelength of 1.3 μm is propagated from the optical input port 17 to the optical waveguide and leaks from the core portion 14 by the semiconductor light receiving element 22. When the transmitted light is detected and the light intensity is measured, it is confirmed that the optical waveguide 16 and the semiconductor light receiving element 22 have an optical coupling efficiency of about 5%, and that the propagated light can be detected with sufficient intensity. It was.
[0040]
In addition, the semiconductor optical device 22 was not broken or noticeably deteriorated before and after the formation of the optical waveguide 16.
[0041]
[Example 3]
For comparison with the example of the present invention, a trial evaluation of a comparative example by a conventional example was performed.
[0042]
As shown in FIG. 3, an electrode wiring 38 made of Au having a thickness of 1.5 μm was formed on the upper surface of the quartz substrate 11 having a refractive index of 1.447. Next, an MSM photodiode having a light-receiving surface of 100 μm square on which a ladder-type electrode wiring made of Ti / Pt / Au is formed on InGaAs having a thickness of 1 μm as a semiconductor light-receiving element 12 is arranged with the MSM electrode facing downward. Arranged and fixed so that electrical connection with 38 was obtained. Thereafter, heat treatment was performed so that good electrode connection was obtained.
[0043]
Next, a step index type optical waveguide 36 in which the cladding portions 33 and 35 are made of a siloxane-based polymer and the core portion 34 is made of a titanium-containing siloxane-based polymer was formed. The thickness of each part of the optical waveguide 36 was 2 μm for the lower cladding part 33, 7 μm for the core part 34, and 8 μm for the upper cladding part 35. The width of the core part 34 was 7 μm. The refractive index of the cladding portions 33 and 35 was 1.448, and the refractive index of the core portion 34 was 1.4533.
[0044]
Further, in order to detect an electric signal from the semiconductor light receiving element 32, a part of the electrode wiring 38 was exposed using a dry etching technique and connected to an external electric circuit.
[0045]
An attempt was made to evaluate the connection structure between the optical waveguide and the semiconductor light receiving element according to the conventional example thus fabricated. As a result, the dark current of the photodiode as the semiconductor light receiving element 32 increased by about 50 times before and after the formation of the optical waveguide 36. Was. Furthermore, there were some devices that could not obtain the characteristics as a photodiode during evaluation. As a result of cross-sectional observation with an SEM (scanning electron microscope), the semiconductor light receiving element 32 was bent, and as a result, peeling was observed on the metal wiring formed on the semiconductor light receiving element 32.
[0046]
【The invention's effect】
As described above, according to the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element, the surface of the semiconductor light receiving element is formed substantially flat by burying the electrode wiring for installing the semiconductor light receiving element in the upper surface of the substrate. Therefore, the semiconductor light receiving element can be installed without causing a large curve or distortion in the installation portion.
[0047]
Further, according to the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element, the semiconductor light receiving element has an electrode on the upper surface, and the electrode of the semiconductor light receiving element and the upper surface in the vicinity thereof are connected to the electrode and the semiconductor light receiving element. Since the semiconductor light receiving element is covered with the wiring conductor that electrically connects the electrode wiring for installing the semiconductor light receiving element formed on the upper surface of the surrounding substrate, the semiconductor light receiving element does not ride on the electrode wiring with respect to the upper surface of the substrate. Since it is installed in a flat state, the semiconductor light receiving element can be installed without causing bending or distortion.
[0048]
Therefore, according to the present invention, it is possible to suppress an increase in dark current and a decrease in sensitivity due to stress caused by bending or distortion of the semiconductor light receiving element, and the semiconductor light receiving element is cracked or formed in the semiconductor light receiving element. Since peeling, wrinkles, and cracks can be prevented from occurring in the formed metal wiring, a highly reliable connection structure between the optical waveguide and the semiconductor light receiving element can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a connection structure between an optical waveguide and a semiconductor light receiving element of the present invention.
FIG. 2 is a cross-sectional view showing an example of an embodiment of a connection structure between an optical waveguide and a semiconductor light receiving element of the present invention.
FIG. 3 is a cross-sectional view showing an example of a connection structure between a conventional optical waveguide and a semiconductor light receiving element.
[Explanation of symbols]
11, 31 ... Board
12, 22, 32 ... Semiconductor light receiving element
13, 33 ・ ・ ・ ・ ・ Lower cladding
14, 34 ... Core part
15, 35 ... upper clad part
16, 36 ... Optical waveguide
18, 38 ... Electrode wiring
28 ・ ・ ・ ・ ・ ・ ・ Wiring conductor

Claims (2)

基板上に形成されたクラッド部および該クラッド部中のコア部を有する光導波路を伝搬する伝搬光を、前記基板上の前記コア部の近傍に受光面を前記コア部に略平行にして配置された半導体受光素子で検出するための光導波路と半導体受光素子との接続構造であって、前記半導体受光素子は、半導体受光素子設置用の電極配線を前記基板の上面に埋設することによって表面が略平坦に形成された設置部に設置されていることを特徴とする光導波路と半導体受光素子との接続構造。Propagating light propagating through an optical waveguide having a clad portion formed on the substrate and a core portion in the clad portion is disposed in the vicinity of the core portion on the substrate with a light receiving surface substantially parallel to the core portion. The semiconductor light receiving element is connected to an optical waveguide for detection by the semiconductor light receiving element, and the semiconductor light receiving element has a surface substantially embedded by burying an electrode wiring for installing the semiconductor light receiving element in the upper surface of the substrate. A connection structure between an optical waveguide and a semiconductor light receiving element, characterized in that the optical waveguide and the semiconductor light receiving element are installed in a flat installation portion. 基板上に形成されたクラッド部および該クラッド部中のコア部を有する光導波路を伝搬する伝搬光を、前記基板上の前記コア部の近傍に受光面を前記コア部に略平行にして配置された半導体受光素子で検出するための光導波路と半導体受光素子との接続構造であって、前記半導体受光素子は、上面に電極を有するとともに、該電極と前記半導体受光素子の周囲の前記基板の上面に形成された半導体受光素子設置用の電極配線とを電気的に接続する配線導体により前記電極およびその近傍の上面が覆われていることを特徴とする光導波路と半導体受光素子との接続構造。Propagating light propagating through an optical waveguide having a clad portion formed on the substrate and a core portion in the clad portion is disposed in the vicinity of the core portion on the substrate with a light receiving surface substantially parallel to the core portion. An optical waveguide for detecting with a semiconductor light receiving element and a semiconductor light receiving element, wherein the semiconductor light receiving element has an electrode on an upper surface, and the upper surface of the substrate around the electrode and the semiconductor light receiving element A connection structure between an optical waveguide and a semiconductor light receiving element, wherein the electrode and the upper surface in the vicinity thereof are covered with a wiring conductor that electrically connects the electrode wiring for installing the semiconductor light receiving element formed on the electrode.
JP2001287709A 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element Expired - Fee Related JP3793561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287709A JP3793561B2 (en) 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287709A JP3793561B2 (en) 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JP2003101044A JP2003101044A (en) 2003-04-04
JP3793561B2 true JP3793561B2 (en) 2006-07-05

Family

ID=19110476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287709A Expired - Fee Related JP3793561B2 (en) 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP3793561B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107742A1 (en) * 2008-02-28 2009-09-03 日本電気株式会社 Semiconductor device
JP6507388B2 (en) * 2014-03-31 2019-05-08 住友大阪セメント株式会社 Optical waveguide device and method of manufacturing the same
JP7362761B2 (en) * 2019-10-31 2023-10-17 京セラ株式会社 Optical waveguide package and light emitting device

Also Published As

Publication number Publication date
JP2003101044A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
EP2413171A1 (en) Laterally coupled optical fiber component and processing method thereof
US6804440B2 (en) Integrated mode converter, waveguide, and on-chip function
JPH0567770A (en) Photoelectronic integrated circuit device
JP2011113039A (en) Optical waveguide device and method of manufacturing the same
EP1418462A3 (en) Optical waveguide device, method of manufacturing the same, and optical communication equipment
EP1225459A2 (en) Surface smoothing by spin coating technique for an opto-electronic component
KR100834648B1 (en) Optical and electrical hybrid board and fabricating method thereof
WO2014017107A1 (en) Integrated optical module
JP3793561B2 (en) Connection structure between optical waveguide and semiconductor light receiving element
JPH11183761A (en) Optical connection structure
US10564351B2 (en) Semi-finished product, method for the production thereof and component produced therewith
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JPH1152198A (en) Optical connecting structure
JP3652080B2 (en) Optical connection structure
US6108477A (en) Photonic component with electrical conduction paths
CN112558333A (en) Electro-optical device and manufacturing method thereof
JP2003121673A (en) Connecting structure of optical waveguide and semiconductor light receiving element
CN112558217A (en) Electro-optical device and manufacturing method thereof
JP4987335B2 (en) Optical device
JP5052195B2 (en) Method for forming metal reflective film
JP3898448B2 (en) Optical integrated circuit board
JP3559528B2 (en) Opto-electric circuit board
JP6325941B2 (en) Optical circuit
US20020076130A1 (en) Integrated optical device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees