JP3793348B2 - Raw material yard three-dimensional management method - Google Patents

Raw material yard three-dimensional management method Download PDF

Info

Publication number
JP3793348B2
JP3793348B2 JP07559898A JP7559898A JP3793348B2 JP 3793348 B2 JP3793348 B2 JP 3793348B2 JP 07559898 A JP07559898 A JP 07559898A JP 7559898 A JP7559898 A JP 7559898A JP 3793348 B2 JP3793348 B2 JP 3793348B2
Authority
JP
Japan
Prior art keywords
raw material
yard
dimensional
pile
material yard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07559898A
Other languages
Japanese (ja)
Other versions
JPH11268834A (en
Inventor
利明 安波
昭義 大塩
修司 冨田
篤洋 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07559898A priority Critical patent/JP3793348B2/en
Publication of JPH11268834A publication Critical patent/JPH11268834A/en
Application granted granted Critical
Publication of JP3793348B2 publication Critical patent/JP3793348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄所等の原料ヤードを三次元管理する方法に関し、特に原料ヤード上に原料粒を積み付けて形成された原料山の三次元的な存在範囲を管理する方法に関する。
【0002】
【従来の技術】
製鉄所等の原料ヤードでは、典型的にはシーバースで輸送船から荷揚げされた粒状の原料を受入れ、その種類(鉱石、石炭等)および銘柄(出産地等)が混入しないように別々の原料山として積み付け、操業スケジュールに応じて高炉等の後工程に払い出す。そのために、積み付け機(スタッカー)により原料山を積み付け、また原料山から払い出し機(リクレーマー)により原料を払い出す作業が行われている。それに伴い、原料山の形状や寸法は常に変動しており、それを常に把握し管理することは、原料ヤードの運用効率を高めるために極めて重要である。例えば、輸送船が到着しても原料の置き場が無ければ船を待たせることになり、待ち時間に応じたペナルティーを支払わなければならない。
【0003】
運用効率を高めるには、そもそも積み付けの際に多種類の原料を一定面積に効率よく配置することが重要である。ただし、異種銘柄を混入させないため、また積み付け機および払い出し機(「移動機」と総称)同士を衝突させないために、原料山同士の間は一定の間隔を確保する必要がある。また、移動機の作動を含め原料ヤードの操業は自動化される趨勢にあり、その場合には作動の許容誤差を人間による操業よりも大きく見込む必要があるため、更にデッドスペースが大きくなる。
【0004】
従来の原料ヤード管理方法は、移動機の動作実績に基づき、原料山をその底面の位置、形状、寸法により原料ヤード平面上で二次元的に把握し、管理していた。例えば、図1に示した原料山Rは、左端面(西側端面)は積み付けたままの状態であり、底面の輪郭は図1(A)のように外向きに張り出した円弧状をしており、左端面の外観は図1(B)のように滑らかな斜面である。一方、右端面(東側端面)は途中まで払い出してできた新たな端面であり、図1(A)のように内向きに入り込んだ円弧状をしており、右端面の外観は図1(B)のように階段状になっている。払い出し機は、腕を左右に旋回させつつその先端の掻き取り装置で原料を掻き取り、1旋回毎に山頂部から段階的に最下段まで腕を下ろしてくる。そのため、払い出しにより新たにできた右端面は、図1(B)に立断面で示したように階段状になる。
【0005】
上記の場合、原料ヤード平面(x軸:東西軸すなわち長さ方向の座標軸,y軸:南北軸すなわち幅方向の座標軸)上で、原料山Rはその最西端Wおよび最東端Eの(x,y)座標と、南北の縁S,Nそれぞれの西端SW,NWおよび東端SE,NEの(x,y)座標によって二次元的に表される。
従来のように1つの原料山が1つの銘柄の原料でできているという前提であれば、上記のような二次元管理方法で十分に足りる。
【0006】
一方、上記従来の前提を覆して、払い出し途中の原料山の払い出し側端面に被せて、異種銘柄の原料を積み付けることができれば、一定面積の原料ヤードにより多種・多量の原料を置けるようになり、原料ヤードの運用効率を高める上で非常に有利である。
ただし、このように異種銘柄を上被せした場合、払い出し時に異種銘柄間の混入を最小限に抑えるという新たな課題が生ずる。それには、原料山内における異種銘柄間の境界面を管理することが前提になる。すなわち、図2に示したように、銘柄G1の原料山を途中まで払い出した後に、払い出し側端面Fに上被せして銘柄G2を積み付けた場合、端面Fが銘柄G1と銘柄G2の境界面になり、この境界面Fは図1で説明したように立体的な形状を持つものであるから、管理は三次元的に行わなければならない。
【0007】
特公平7−100542号公報に、原料ヤードの三次元管理方法が提案されている。具体的な座標管理方法は明記はされていないが、実施例等の記載から推察すると、払い出し機が切り出した高さ方向の各段毎の長さx方向・幅y方向での存在範囲で管理していると考えられる。
しかし上記提案の方法では、例えば、払い出し機による切り出しやオペレータによる山の合成や削除といった座標修正の際、処理ロジックが非常に難解になり、そのための演算時間が長くならざるを得ない。また、切り出し段の高さが山の両端で異なっている場合には表現不可能である。
【0008】
【発明が解決しようとする課題】
本発明は、製鉄所等の原料ヤード上に鉄鉱石、石炭等の原料を積み付けて形成された原料山の三次元的な存在範囲を管理する方法であって、座標修正の処理ロジックが容易であり、そのための演算時間も短くて済み、山の両端で切り出し段の高さが異なる場合にも適用できる原料ヤードの三次元管理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的は、本発明によれば、走行式積み付け機の旋回腕の先端から原料を原料ヤード上に積み付けて該原料ヤードの長手方向に伸びる原料山を形成するに際し、前記走行式積み付け機の走行位置、腕先端の旋回位置、積み付け高さ、および原料の安息角に基づいて、積み付けられた原料山の前記原料ヤード上の位置および三次元形状を計算機に算出させて、原料ヤード上の原料山の三次元的な存在範囲を管理する原料ヤード三次元管理方法であって、
前記計算機により、下記のステップ:
前記原料ヤードの幅方向の座標軸および高さ方向の座標軸で規定される仮想平面を多数に区切った各メッシュについて、その代表点を通り原料ヤード長さ方向の座標軸に平行な長軸線と、原料山の両端面との交点を両端とする線分をそれぞれ求めるステップ、および
全メッシュについての線分の束として各原料山の三次元的な存在範囲を求めるステップ
を実行させることを特徴とする原料ヤード三次元管理方法によって達成される。
【0010】
また、上記の目的は、本発明によれば、走行式払い出し機の旋回腕の先端にある掻き取り装置により原料山の一端面から原料を掻き取って原料を払い出す際に、前記掻き取り装置の作動軌跡に基づいて、前記原料山の払い出し側端面の前記原料ヤード上の位置および三次元形状を計算機に算出させて、原料ヤード上の原料山の三次元的な存在範囲を管理する原料ヤード三次元管理方法であって、
前記計算機により、下記のステップ:
前記原料ヤードの幅方向の座標軸および高さ方向の座標軸で規定される仮想平面を多数に区切った各メッシュについて、その代表点を通り原料ヤード長さ方向の座標軸に平行な長軸線と、個々の原料山の両端面および原料山内における異種銘柄領域の両端面との交点を両端とする線分をそれぞれ求めるステップ、および
全メッシュについての線分の束として各原料山および各異種銘柄領域の三次元的な存在範囲を求めるステップ
を実行させることを特徴とする原料ヤード三次元管理方法によっても達成される。
【0011】
本発明の望ましい一態様においては、前記掻き取り装置により途中まで第1原料の払い出しを行なっている原料山の払い出し側端面に被せて異種銘柄の第2原料を積み付けて原料山の高さを増加させて形成する原料山である場合には、
前記計算機に、下記のステップ:
前記原料山の長さ増加前の元の両端面および長さ増加後の新たな両端面と前記各メッシュからの仮想長軸線との交点を両端とする線分を各々求めるステップ、および
前記求めた各メッシュの線分により、原料山内にある前記第1原料と第2原料の各々の領域の三次元的な存在範囲を求めるステップ
を実行させる。
【0014】
【発明の実施の形態】
図3の典型例に基づき、本発明の原料ヤード三次元管理方法をより具体的に説明する。
図3の例では、原料ヤードの長さ方向の座標軸(x軸)に沿って延びた原料山Rは、両端面P1およびP2を持ち、第1銘柄の領域G1と第2銘柄の領域G2から成り、領域G1とG2は境界面Fで接している。すなわち、第1銘柄の領域G1は原料山Rの一端面P1から境界面Fまでを占めており、第2銘柄の領域G2は境界面Fから原料山Rの他端面P2までを占めている。このように異種銘柄の原料から成る原料山Rの典型例は、元々第1銘柄のみから成る原料山を図中で右から左へ境界面Fの位置まで払い出し、その後、払い出し端面Fに上被せする形で第2銘柄の原料を積み付けて右方向へP2の位置まで原料山の長さを延ばした場合である。
【0015】
端的に表現すれば、本発明の原料ヤード三次元管理方法では、このように異種銘柄の領域が連接して一体化した形の原料山Rおよびその各銘柄領域G1,G2を、それぞれ原料ヤード長さ方向の線分の束として把握し管理する。
そのために、まず原料ヤードの幅方向の座標軸(y軸)および高さ方向の座標軸(z軸)で規定される平面Aを想定し、この平面Aを多数のメッシュMに区切り、各メッシュMについて、その代表点を通り原料ヤード長さ方向の座標軸(x軸)に平行な長軸線Lを想定する。説明を簡潔にするために、図3中には長軸線Lを1本のみ示したが、実際には平面Aを区切った多数のメッシュMと同数の長軸線Lが存在する。
【0016】
そして、長軸線Lが原料山の両端面で切られてできる線分を全メッシュについて求め、得られた全線分の束として原料山の三次元的な存在範囲を把握し管理する。同様に、長軸線Lが銘柄領域間の境界面で切られてできる線分を全メッシュについて求め、得られた全線分の束として各銘柄領域の三次元的な存在範囲をそれぞれ把握し管理する。更に視覚的に表現すれば、1つのメッシュを基面としてx軸方向に延び、原料山あるいは銘柄領域の両端面の位置に前後端がある柱を考え、各メッシュについてこのような柱を求め、各メッシュの位置にある柱をそのまま全部束ねた立体によって原料山あるいは銘柄領域を近似することになる。
【0017】
図3を参照すると、長軸線Lと、▲1▼原料山Rの個々の両端面P1,P2との交点x1,x2を両端とする線分SR (=From x1 To x2)、▲2▼原料山R内の第1銘柄領域G1の両端面P1,Fとの交点x1,xFを両端とする線分S1 (=From xF To x2)、および▲3▼長軸線Lと原料山R内の第2銘柄領域G2の両端面F,P2との交点xF,P2を両端とする線分S2 (=From xF To P2)をそれぞれ求め、全メッシュMについての線分SR,S1,S2の束として各原料山および各異種銘柄領域の三次元的な存在範囲を把握し管理する。
【0018】
既に述べたように、払い出し途中の原料山の払い出し側端面に異種銘柄を上被せして積み付けることができれば、原料ヤードの運用効率を飛躍的に高めることができ、非常に有利である。それには、異種銘柄間の境界面Fを管理できることが大前提となり、そのために原料山Rおよび各銘柄領域G1,G2の存在範囲を三次元的に管理することが必要になる。
【0019】
三次元空間の座標計算方法は種々考えられるが、原料ヤードの状況をリアルタイムで把握・管理するには高速で演算処理する必要があり、それにはデータ量はできるだけ少なく且つ演算ロジックはできるだけ簡単な方が有利である。
これら両方の観点で、本発明の原料ヤード三次元管理方法は、想定される種々の方法の中で最も優れている。
【0020】
図4に、本発明の方法を含めて、想定される典型的な3種類の三次元管理方法の原理図を示す。
図4(1) に示した方法は、対象とする全領域を立方体(例えば1辺10cm)で区切り、その各範囲内で山の有無を管理する方法である。この方法は、モデルの構造が単純で感覚的にも分かり易い点が長所であるが、データ量が膨大にならざるを得ないという欠点がある。例えば、幅50m,長さ600mの有効寸法を持つ原料ヤードに原料山が最大20個存在する場合、このヤード全体についての必要なデータ量は2.8GB程度になる。
【0021】
図4(2) に示した方法は、対象領域全体を原料ヤードの幅方向(y軸方向)に例えば10cm単位で区切り、その各点について山の存在範囲を高さ方向の座標軸(z軸)および長さ方向の座標軸(x軸)で規定されるz−x平面上の多角形として管理する方法である。データ量は、上記と同じ原料ヤードについて最大1MB程度、通常は300kB程度と少なくてすむ点が長所であるが、各y座標についてz−x平面上での多角形の構造が複雑になり、データ処理の演算ロジックが複雑にならざるを得ないという欠点がある。
【0022】
これに対して本発明の方法は、図4(3) に示したように、原料ヤードの幅方向の軸(y軸)と高さ方向の軸(z軸)とで規定されるy−z平面を例えば1辺10cmの正方形メッシュで区切り、各メッシュ内の代表点(例えば正方形の中心)について山の存在範囲を長さ方向(x軸)の線分の両端のx座標で管理する。この方法は、感覚的には山の形状を掴み難いが、データ量が比較的少なくて済む上、非常に簡潔な演算ロジックで処理できるので、高速処理によるリアルタイム管理に極めて適している。データ量は、上記と同じ原料ヤードについて最大16MB程度、通常は4MB程度である。
【0023】
【実施例】
以下、実施例により本発明を更に具体的に説明する。
図5(A)および(B)に、原料の積み付け機(スタッカー)および払い出し機(リクレーマ)による原料山の積み付けおよび払い出しの操作の例をそれぞれ示す。
【0024】
スタッカー10の基本構造は、原料ヤードに沿って敷設された軌道12上を走行するための走行部14と、走行部14から延びた腕(ブーム)16とから成り、図示しないベルトコンベアで搬送されてきた原料をブーム16の先端から原料ヤード上に落下させて積み付け、原料山Rを形成する。なお、図示はしていないが、スタッカー10は走行位置検出装置および積み付け高さ検出装置を装備している。
【0025】
リクレーマ20の基本構造は、原料ヤードに沿って敷設された軌道22上を走行するための走行部24と、走行部24から延びた腕(ブーム)26とから成り、ブーム26の先端にある掻き取り装置28で原料山Rから原料を掻き取ることにより払い出しを行い、図示しないベルトコンベアにより後工程へ搬送する。図示はしていないが、リクレーマ20は、走行位置検出装置、ブーム26の俯仰角度検出装置、およびブーム26の旋回角度検出装置を装備している。
【0026】
図6(1) (2) (3) および図7(1) (2) (3) を参照して、(1) 積み付け、(2) 払い出し、および(3) 上被せ積み付けの処理手順を説明する。図8には、三次元管理全体の機能ブロック図を示す。
図6(1) の積み付け操作においては、図5(A)のような走行式積み付け機(スタッカー)10の旋回腕16の先端から原料粒を原料ヤード上に積み付けて原料山を形成する。これは、図6(1) に示したように、先ず所定高さまで円錐形に積み付けて第一領域R1を形成し、次いで、既に積み付けられている領域R1,R2,・・・の傾斜端面上に上被せして上記の所定高さまで積み付けて第二領域以降R2 〜Rn を順次形成することにより行う。
【0027】
その際、各領域R1 〜Rn の形成毎に、スタッカーの走行位置、腕先端の旋回位置、積み付け高さ、および原料粒の安息角θ(図6(1) )の情報を、図8のスタッカー制御用オペレータ入力装置に送り、先ず円錐形の第1領域R1のみから成る原料山の位置および三次元形状を図7(1) の処理フローで計算し、次いで第2領域以降R2 〜Rn の上被せ部分について位置および三次元形状を図7(3) の処理フローで計算し、図3に示したように全メッシュについて原料山Rの両端面P1,P2と長軸線Lとの交点x1,x2を両端とする線分SRを求め、データを図8の三次元座標管理計算機に送り、全メッシュについての線分SRの束として原料山Rの三次元的な存在範囲を管理する。
【0028】
図6(2) の払い出し操作においては、図5(B)のような走行式払い出し機(リクレーマ)20の旋回腕26の先端にある掻き取り装置28により原料山Rの一端面から原料を掻き取って原料を払い出す。
その際、掻き取り装置28の作動軌跡の情報を図8のリクレーマ制御用オペレータ入力装置に送り、原料山Rの払い出し側端面の位置および三次元形状を図7(2) の処理フローで計算し、全メッシュについて長軸線Lと払い出し側端面Fとの交点xF(図3)を原料山Rを表す各線分S1の新たな一端として求め、データを図8の三次元座標管理計算機に送り、全メッシュについて線分S1の束として上記払い出し後の原料山Rの三次元的な存在範囲を管理する。
【0029】
図6(3) の上被せ積み付け操作は、図6(1) の積み付け操作の第2領域以降を積み付ける操作と基本的に同様であり、第1原料の原料山の端面Fに被せて第2原料を積み付けて原料山の長さを増加させる。その際に、第1原料と第2原料とが同種銘柄の場合には、端面Fを表す線分の一端xF(図3)の移動として、上記長さ増加後の新たな端面P2を表す。一方、第1原料と第2原料とが異種銘柄である場合には、長さ増加前の元の端面Fおよび長さ増加後の新たな端面P2と長軸線L(図3)との交点を両端とする線分xFx2を求める。いずれの場合にも、得られたデータを図8の三次元座標管理計算機に送り、全メッシュについての線分の束として、長さ増加後の原料山内にある第2原料からなる異種銘柄領域を管理する。
【0030】
【発明の効果】
以上説明したように、本発明によれば、原料山の存在範囲の変動を各メッシュについて単に線分の長さ変化すなわちFrom座標(x1), To座標(x2)の2点のみの変化で管理できるので、データ量も比較的少なくて済む上、座標修正の処理ロジックが容易であり、そのための演算時間も短くて済み、高速処理によるリアルタイムの三次元管理が可能となる。また、山の両端で切り出し段の高さが異なる場合にも適用できる。
【0031】
これにより、単一の原料山内にある異種銘柄間の境界面を高精度で把握し管理することができるので、ある銘柄の原料山の端面に上被せして異種の銘柄の原料を積み付けることが可能になり、原料ヤードの運用効率を飛躍的に高めることができる。
【図面の簡単な説明】
【図1】図1(A),(B) は、単一銘柄の原料の原料山を途中まで払い出した状態を示す(A) 平面図および(B) 断面図である。
【図2】図2(A),(B) は、第1銘柄の原料の原料山を途中まで払い出した後、その払い出し側端面に上被せして第2銘柄の原料を積み付けた状態を示す(A) 平面図および(B) 断面図である。
【図3】図3は、本発明による三次元座標管理方法の原理を示す斜視図である。
【図4】図4(1),(2),(3) は、本発明の方法を含めて、想定される三次元座標管理方法の原理を比較して示す斜視図である。
【図5】図5(A),(B) は、 (A)積み付け機(スタッカー)および (B)払い出し機(リクレーマ)の一例を示す正面図である。
【図6】図6(1),(2),(3) は、(1) 新たな原料山の積み付け、(2) 原料山からの払い出し、および(3) 途中まで払い出した原料山の払い出し側端面への上被せの各操作を模式的に示す断面図である。
【図7】図7(1),(2),(3) は、(1) 一回の積み付けにより形成される円錐形領域の三次元的存在範囲を計算する手順、(2) 払い出しによる原料山の存在範囲の変化を計算する手順、および(3) 既に存在する原料山の端面に上被せして積み付けた場合の新たな原料山および原料山内の異種銘柄領域の存在範囲を計算する手順をそれぞれ示すフローチャートである。
【図8】図8は、本発明による三次元管理を行うための機能ブロック図である。
【符号の説明】
10…スタッカー(積み付け機)
12…スタッカー走行用軌道
14…スタッカーの走行部
16…スタッカーの腕(ブーム)
20…リクレーマ(払い出し機)
22…リクレーマ走行用軌道
24…リクレーマの走行部
26…リクレーマの腕(ブーム)
28…腕先端の掻き取り装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for three-dimensionally managing a raw material yard such as a steel mill, and more particularly, to a method for managing a three-dimensional existence range of a raw material pile formed by stacking raw material grains on a raw material yard.
[0002]
[Prior art]
In raw material yards such as steelworks, granular raw materials that are typically unloaded from a transport ship by sea berth are received, and separate piles of raw materials are kept so that the type (ore, coal, etc.) and brand (delivery place, etc.) are not mixed. And paying off to the blast furnace and other subsequent processes according to the operation schedule. For this purpose, a stack of raw materials is stacked with a stacker (stacker), and an operation of discharging the raw materials from the raw material stack with a discharger (reclaimer) is performed. Along with this, the shape and dimensions of the raw material piles are constantly changing, and it is extremely important to constantly grasp and manage them in order to increase the operational efficiency of the raw material yard. For example, even if a transport ship arrives, if there is no place for raw materials, the ship will wait and a penalty corresponding to the waiting time must be paid.
[0003]
In order to increase operational efficiency, it is important to efficiently arrange many kinds of raw materials in a certain area when stacking. However, in order not to mix different brands and to prevent the stacker and the dispenser (collectively referred to as “moving machine”) from colliding with each other, it is necessary to ensure a certain interval between the raw material piles. In addition, the operation of the raw material yard including the operation of the mobile equipment is in a trend to be automated, and in that case, it is necessary to allow for an operation tolerance larger than that of the operation by humans.
[0004]
The conventional raw material yard management method grasps and manages the raw material pile two-dimensionally on the raw material yard plane based on the position, shape and dimensions of the bottom surface based on the operation results of the mobile device. For example, the raw material pile R shown in FIG. 1 has the left end face (west end face) as it is stacked, and the outline of the bottom face has an arc shape protruding outward as shown in FIG. The appearance of the left end surface is a smooth slope as shown in FIG. On the other hand, the right end face (east end face) is a new end face that has been paid out partway, and has an arc shape that inwardly enters as shown in FIG. 1 (A). ). The dispensing machine scrapes the raw material with a scraping device at the tip of the arm while turning the arm left and right, and lowers the arm step by step from the top of the mountain step by step to the lowest level. Therefore, the right end face newly formed by the payout has a stepped shape as shown in the vertical section in FIG.
[0005]
In the above case, on the raw material yard plane (x axis: east-west axis, that is, the coordinate axis in the length direction, y axis: north-south axis, that is, the coordinate axis in the width direction), the raw material mountain R is located at the (x, y) It is expressed two-dimensionally by the coordinates and the (x, y) coordinates of the west ends SW and NW and the east ends SE and NE of the north and south edges S and N, respectively.
If it is assumed that one raw material pile is made of one brand of raw material as in the prior art, the above two-dimensional management method is sufficient.
[0006]
On the other hand, if it is possible to put the raw material of different brands over the payout side end face of the raw material pile that is in the middle of paying out, it will be possible to place various kinds and large quantities of raw material in the raw material yard of a certain area. It is very advantageous in improving the operation efficiency of the raw material yard.
However, when different brands are covered in this way, a new problem arises of minimizing mixing between different brands at the time of payout. This is based on the premise of managing the interface between different brands in the raw material mountain. That is, as shown in FIG. 2, when the stock G1 of the brand G1 is paid out partway and then the brand G2 is stacked on the payout side end face F, the end face F is the boundary surface between the brand G1 and the brand G2. Thus, since the boundary surface F has a three-dimensional shape as described with reference to FIG. 1, the management must be performed three-dimensionally.
[0007]
Japanese Examined Patent Publication No. 7-100542 proposes a three-dimensional management method for a raw material yard. The specific coordinate management method is not specified, but it can be inferred from the description of the examples, etc. that it is managed by the existence range in the length x direction and width y direction for each step in the height direction cut out by the dispenser. it seems to do.
However, in the proposed method, for example, when correcting coordinates such as cutout by a dispenser or synthesis or deletion of a mountain by an operator, the processing logic becomes very difficult, and the calculation time for that is unavoidable. In addition, it cannot be expressed when the heights of the cutout stages are different at both ends of the mountain.
[0008]
[Problems to be solved by the invention]
The present invention is a method for managing a three-dimensional existence range of a raw material mountain formed by stacking raw materials such as iron ore and coal on a raw material yard such as a steelworks, and processing logic for correcting coordinates is easy. Therefore, an object of the present invention is to provide a three-dimensional management method of a raw material yard that can be applied even when the calculation time for that is short and the heights of cutout stages are different at both ends of a mountain.
[0009]
[Means for Solving the Problems]
According to the present invention, according to the present invention, when the raw material is stacked on the raw material yard from the tip of the swivel arm of the traveling stacker and the raw material pile extending in the longitudinal direction of the raw material yard is formed, Based on the running position of the attaching machine, the turning position of the arm tip, the stacking height, and the angle of repose of the raw material, the computer calculates the position on the raw material yard and the three-dimensional shape of the stacked raw material pile, A raw material yard three-dimensional management method for managing a three-dimensional existence range of a raw material mountain on a raw material yard,
According to the calculator, the following steps:
For each mesh separated virtual plane number defined by the axes of the coordinate axes and the height direction of the width direction of the raw material yard, a long axis parallel to the axis of the street raw material yard length direction the representative point, the raw material mountain determining a three-dimensional existence range of each raw material mountain segment and ends the intersection between both end surfaces as a line segment of the bundle of the Ru steps, and all the meshes determined each
It is achieved by a raw material yard three-dimensional management method characterized in that it is executed .
[0010]
In addition, according to the present invention, the scraping device is used to scrape the raw material from one end surface of the raw material pile by the scraping device at the tip of the swivel arm of the traveling type dispenser. The raw material yard for managing the three-dimensional existence range of the raw material hill on the raw material yard by causing the computer to calculate the position and the three-dimensional shape of the discharge side end surface of the raw material hill on the raw material yard based on the operation locus of A three-dimensional management method,
According to the calculator, the following steps:
With respect to each mesh obtained by dividing a large number of virtual planes defined by the coordinate axis in the width direction and the coordinate axis in the height direction of the raw material yard, a long axis parallel to the coordinate axis in the raw material yard length direction through the representative point, tertiary end faces intersection Ru asked each segment to both ends of the steps, and the raw material peak and the heterologous stock area as a segment of the bundle for all the meshes of both end surfaces and different brands regions in the raw material Yamauchi material mountain Step for determining the original existence range
Also achieved by the raw material yard dimensional management method, characterized in that for the execution.
[0011]
In a desirable mode of the present invention, the second raw material of different brands is stacked on the discharge side end surface of the raw material pile where the first raw material is being discharged halfway by the scraping device to increase the height of the raw material pile. If it is a pile of raw materials to be increased,
The computer has the following steps:
Obtaining each line segment having both ends at the intersection of the original both end faces before the length increase of the raw material pile and the new both end faces after the length increase and the virtual long axis from each mesh; and
A step of obtaining a three-dimensional existence range of each region of the first raw material and the second raw material in the raw material mountain by the obtained line segment of each mesh.
Is executed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Based on the typical example of FIG. 3, the raw material yard three-dimensional management method of this invention is demonstrated more concretely.
In the example of FIG. 3, the raw material ridge R extending along the coordinate axis (x axis) in the length direction of the raw material yard has both end faces P1 and P2, and from the first brand region G1 and the second brand region G2. The regions G1 and G2 are in contact with each other at the boundary surface F. That is, the first brand region G1 occupies from one end surface P1 of the raw material pile R to the boundary surface F, and the second brand region G2 occupies from the boundary surface F to the other end surface P2 of the raw material mountain R. In this way, a typical example of the raw material stack R composed of different brands of raw materials is that the raw material stack originally composed of only the first brand is discharged from the right to the left in the figure to the position of the boundary surface F, and then is placed on the discharge end surface F. This is a case where the material of the second brand is stacked in such a manner that the length of the material peak is extended to the position P2 in the right direction.
[0015]
In short, in the raw material yard three-dimensional management method of the present invention, the raw material ridge R and the respective brand regions G1 and G2 in a form in which the regions of different brands are connected and integrated in this way are respectively set to the raw material yard length. Understand and manage as a bundle of vertical line segments.
For this purpose, first, a plane A defined by the coordinate axis (y axis) in the width direction and the coordinate axis (z axis) in the height direction of the raw material yard is assumed, and the plane A is divided into a number of meshes M. A major axis L passing through the representative point and parallel to the coordinate axis (x axis) in the raw material yard length direction is assumed. For the sake of brevity, only one major axis L is shown in FIG. 3, but there are actually as many major axes L as many meshes M dividing the plane A.
[0016]
Then, a line segment formed by cutting the major axis L at both end faces of the raw material mountain is obtained for all meshes, and the three-dimensional existence range of the raw material mountain is grasped and managed as a bundle of all obtained line segments. Similarly, a line segment formed by cutting the long axis L at the boundary surface between the brand areas is obtained for all meshes, and the three-dimensional existence range of each brand area is grasped and managed as a bundle of all obtained line segments. . Furthermore, if visually expressed, a column extending in the x-axis direction with one mesh as a base surface and having front and rear ends at positions of both ends of the raw material mountain or the brand region, such a column is obtained for each mesh, The raw material mountain or the brand area is approximated by a solid in which all the columns at the positions of the meshes are bundled as they are.
[0017]
Referring to FIG. 3, line segment SR (= From x1 To x2) having both ends of intersections x1 and x2 of long axis L and each end face P1, P2 of (1) raw material mountain R, (2) raw material A line segment S1 (= From xF To x2) having both ends of intersections x1 and xF with both end faces P1 and F of the first brand region G1 in the mountain R, and (3) the major axis L and the first in the raw material mountain R The line segments S2 (= From xF To P2) having the intersections xF and P2 with the both end faces F and P2 of the two brand regions G2 as both ends are obtained, and each of the line segments SR, S1 and S2 for all meshes M is obtained as a bundle. Understand and manage the three-dimensional existence range of raw material piles and different brands.
[0018]
As already described, if the different side brands can be placed on the paying side end face of the raw material pile in the middle of paying out and stacked, the operation efficiency of the raw material yard can be greatly improved, which is very advantageous. For that purpose, it is a major premise that the boundary surface F between different brands can be managed, and for that purpose, it is necessary to three-dimensionally manage the existence ranges of the raw material mountain R and the brand areas G1, G2.
[0019]
There are various ways to calculate the coordinates of the three-dimensional space, but in order to grasp and manage the situation of the raw material yard in real time, it is necessary to perform arithmetic processing at high speed, and for this, the amount of data is as small as possible and the arithmetic logic is as simple as possible Is advantageous.
From both these viewpoints, the raw material yard three-dimensional management method of the present invention is the most excellent among the various methods envisaged.
[0020]
FIG. 4 shows the principle diagram of three typical three-dimensional management methods envisaged including the method of the present invention.
The method shown in FIG. 4 (1) is a method of managing the presence or absence of a mountain within each range by dividing the entire target region with a cube (for example, 10 cm on a side). This method is advantageous in that the model structure is simple and easy to understand sensuously, but has the disadvantage that the amount of data must be enormous. For example, when there are 20 raw material peaks in a raw material yard having an effective dimension of 50 m in width and 600 m in length, the required data amount for the entire yard is about 2.8 GB.
[0021]
In the method shown in FIG. 4 (2), the entire target area is divided in the width direction (y-axis direction) of the raw material yard, for example, in units of 10 cm, and the range of the mountain at each point is defined as the coordinate axis (z-axis) in the height direction. And a method of managing as a polygon on the zx plane defined by the coordinate axis (x axis) in the length direction. The amount of data is the advantage that it can be reduced to about 1MB at the maximum for the same raw material yard as described above, usually about 300kB, but the polygonal structure on the zx plane becomes complicated for each y coordinate, and the data There is a drawback that the arithmetic logic of processing must be complicated.
[0022]
On the other hand, in the method of the present invention, as shown in FIG. 4 (3), yz defined by an axis in the width direction (y axis) and an axis in the height direction (z axis) of the raw material yard. The plane is divided by, for example, a square mesh having a side of 10 cm, and the mountain existence range is managed by the x coordinates at both ends of the line segment in the length direction (x axis) at the representative point (for example, the center of the square) in each mesh. This method is sensibly difficult to grasp the shape of a mountain, but requires a relatively small amount of data and can be processed with a very simple arithmetic logic, and is therefore extremely suitable for real-time management by high-speed processing. The amount of data is about 16 MB at the maximum for the same raw material yard as described above, and usually about 4 MB.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
FIGS. 5A and 5B show examples of raw material stacking and dispensing operations by the raw material stacker (stacker) and the dispenser (reclaimer), respectively.
[0024]
The basic structure of the stacker 10 includes a traveling unit 14 for traveling on a track 12 laid along the raw material yard, and an arm (boom) 16 extending from the traveling unit 14, and is conveyed by a belt conveyor (not shown). The raw material is dropped and stacked on the raw material yard from the tip of the boom 16 to form a raw material mountain R. Although not shown, the stacker 10 is equipped with a travel position detection device and a stacking height detection device.
[0025]
The basic structure of the reclaimer 20 includes a traveling unit 24 for traveling on a track 22 laid along the raw material yard, and an arm (boom) 26 extending from the traveling unit 24. Dispensing is performed by scraping the raw material from the raw material pile R by the take-off device 28 and transporting it to the subsequent process by a belt conveyor (not shown). Although not shown, the reclaimer 20 is equipped with a traveling position detection device, a boom 26 elevation angle detection device, and a boom 26 turning angle detection device.
[0026]
Referring to Fig. 6 (1) (2) (3) and Fig. 7 (1) (2) (3), (1) Loading, (2) Dispensing, and (3) Overlaying processing procedures Will be explained. FIG. 8 shows a functional block diagram of the entire three-dimensional management.
6 (1), the raw material grains are stacked on the raw material yard from the tip of the swivel arm 16 of the traveling type stacker (stacker) 10 as shown in FIG. To do. As shown in FIG. 6 (1), first, the first region R1 is formed by stacking in a conical shape up to a predetermined height, and then the slopes of the regions R1, R2,. This is performed by covering the end surface and stacking to the above-mentioned predetermined height to sequentially form R2 to Rn after the second region.
[0027]
At that time, for each formation of the regions R1 to Rn, information on the stacker running position, the swivel position of the arm tip, the stacking height, and the angle of repose θ of the raw material grains (FIG. 6 (1)) is shown in FIG. First, the position and three-dimensional shape of the raw material stack consisting only of the conical first region R1 are calculated by the processing flow of FIG. 7 (1), and then the second region and subsequent R2 to Rn are sent to the stacker control operator input device. The position and three-dimensional shape of the top cover part are calculated by the processing flow of FIG. 7 (3). As shown in FIG. 3, the intersection points x1, X2 of the both ends P1, P2 of the raw material pile R and the long axis L are shown for all meshes. A line segment SR having x2 at both ends is obtained, data is sent to the three-dimensional coordinate management computer of FIG. 8, and the three-dimensional existence range of the raw material mountain R is managed as a bundle of line segments SR for all meshes.
[0028]
6 (2), the material is scraped from one end face of the material pile R by the scraping device 28 at the tip of the swivel arm 26 of the traveling type dispenser (reclaimer) 20 as shown in FIG. 5 (B). Take out the ingredients.
At that time, the information on the operation trajectory of the scraping device 28 is sent to the operator input device for reclaimer control in FIG. 8, and the position and three-dimensional shape of the discharge side end face of the raw material pile R are calculated by the processing flow in FIG. The intersection xF (FIG. 3) between the major axis L and the payout side end face F is obtained as a new end of each line segment S1 representing the raw material mountain R for all meshes, and the data is sent to the three-dimensional coordinate management computer of FIG. For the mesh, the three-dimensional existence range of the raw material pile R after the dispensing is managed as a bundle of line segments S1.
[0029]
The top stacking operation in FIG. 6 (3) is basically the same as the operation of stacking the second and subsequent areas of the stacking operation in FIG. 6 (1). Stack the second raw material to increase the length of the raw material pile. At that time, when the first raw material and the second raw material are of the same brand, the new end face P2 after the increase in length is represented as the movement of one end xF (FIG. 3) of the line segment representing the end face F. On the other hand, when the first raw material and the second raw material are different brands, the intersection of the original end face F before the length increase and the new end face P2 after the length increase with the long axis L (FIG. 3) is determined. A line segment xFx2 as both ends is obtained. In either case, the obtained data is sent to the three-dimensional coordinate management computer shown in FIG. 8, and as a bundle of line segments for all the meshes, the different brand region consisting of the second raw material in the raw material pile after the length increase is obtained. to manage.
[0030]
【The invention's effect】
As described above, according to the present invention, the fluctuation of the existence range of the raw material mountain is managed by simply changing the length of the line segment for each mesh, that is, by changing only two points of From coordinate (x1) and To coordinate (x2). As a result, the amount of data can be relatively small, the coordinate correction processing logic is easy, the calculation time for that is short, and real-time three-dimensional management by high-speed processing becomes possible. Further, the present invention can also be applied when the heights of the cutout steps are different at both ends of the mountain.
[0031]
As a result, it is possible to grasp and manage the boundary surface between different brands in a single raw material pile with high accuracy, so it is possible to stack raw materials of different brands on the end face of a certain stock pile. It becomes possible and the operational efficiency of the raw material yard can be dramatically improved.
[Brief description of the drawings]
FIGS. 1A and 1B are a plan view and a cross-sectional view, respectively, showing a state in which a raw material pile of a single brand of raw material has been discharged halfway.
[Figure 2] Figures 2 (A) and 2 (B) show the state in which the material pile of the first brand is discharged to the middle, and then the second brand of raw material is stacked on the discharge side end face. FIG. 2A is a plan view and FIG.
FIG. 3 is a perspective view showing the principle of a three-dimensional coordinate management method according to the present invention.
FIGS. 4 (1), (2), and (3) are perspective views showing a comparison of the principles of an assumed three-dimensional coordinate management method including the method of the present invention.
FIGS. 5A and 5B are front views showing examples of (A) a stacker (stacker) and (B) a dispenser (reclaimer).
[Fig. 6] Fig. 6 (1), (2), (3) shows (1) stacking of new raw material piles, (2) paying out raw material piles, and (3) raw material piles paid out halfway It is sectional drawing which shows typically each operation of covering on the payout side end surface.
7 (1), (2), and (3) are (1) a procedure for calculating the three-dimensional existence range of a conical region formed by a single stacking, and (2) by payout Procedure for calculating the change in the existence range of raw material piles, and (3) Procedure for calculating the existence range of new stock piles and dissimilar brand areas in the raw material piles when overlaid on the end faces of existing raw piles FIG.
FIG. 8 is a functional block diagram for performing three-dimensional management according to the present invention.
[Explanation of symbols]
10 ... Stacker
12 ... Stacker running track 14 ... Stacker running part 16 ... Stacker arm (boom)
20 ... Reclaimer (dispenser)
22 ... Reclaimer running track 24 ... Reclaimer running part 26 ... Reclaimer arm (boom)
28 ... Arm scraping device

Claims (3)

走行式積み付け機の旋回腕の先端から原料を原料ヤード上に積み付けて該原料ヤードの長手方向に伸びる原料山を形成するに際し、前記走行式積み付け機の走行位置、腕先端の旋回位置、積み付け高さ、および原料の安息角に基づいて、積み付けられた原料山の前記原料ヤード上の位置および三次元形状を計算機に算出させて、原料ヤード上の原料山の三次元的な存在範囲を管理する原料ヤード三次元管理方法であって、
前記計算機により、下記のステップ:
前記原料ヤードの幅方向の座標軸および高さ方向の座標軸で規定される仮想平面を多数に区切った各メッシュについて、その代表点を通り原料ヤード長さ方向の座標軸に平行な長軸線と、原料山の両端面との交点を両端とする線分をそれぞれ求めるステップ、および
全メッシュについての線分の束として各原料山の三次元的な存在範囲を求めるステップ
を実行させることを特徴とする原料ヤード三次元管理方法。
When the raw material is stacked on the raw material yard from the tip of the swivel arm of the traveling type stacker to form the raw material pile extending in the longitudinal direction of the raw material yard, the traveling position of the traveling type stacker, the swivel position of the arm tip Based on the stacking height and the angle of repose of the raw material, the computer calculates the position and three-dimensional shape of the stacked raw material pile on the raw material yard, and A raw material yard three-dimensional management method for managing the existence range,
According to the calculator, the following steps:
For each mesh separated virtual plane number defined by the axes of the coordinate axes and the height direction of the width direction of the raw material yard, a long axis parallel to the axis of the street raw material yard length direction the representative point, the raw material mountain determining a three-dimensional existence range of each raw material mountain segment and ends the intersection between both end surfaces as a line segment of the bundle of the Ru steps, and all the meshes determined each
Raw material yard dimensional management method, characterized in that for the execution.
走行式払い出し機の旋回腕の先端にある掻き取り装置により原料山の一端面から原料を掻き取って原料を払い出す際に、前記掻き取り装置の作動軌跡に基づいて、前記原料山の払い出し側端面の前記原料ヤード上の位置および三次元形状を計算機に算出させて、原料ヤード上の原料山の三次元的な存在範囲を管理する原料ヤード三次元管理方法であって、
前記計算機により、下記のステップ:
前記原料ヤードの幅方向の座標軸および高さ方向の座標軸で規定される仮想平面を多数に区切った各メッシュについて、その代表点を通り原料ヤード長さ方向の座標軸に平行な長軸線と、個々の原料山の両端面および原料山内における異種銘柄領域の両端面との交点を両端とする線分をそれぞれ求めるステップ、および
全メッシュについての線分の束として各原料山および各異種銘柄領域の三次元的な存在範囲を求めるステップ
を実行させることを特徴とする原料ヤード三次元管理方法。
When the raw material is scraped off from one end surface of the raw material pile by the scraping device at the tip of the swivel arm of the traveling type dispenser, the raw material pile discharge side is based on the operation trajectory of the scraping device. A raw material yard three-dimensional management method for managing a three-dimensional existence range of raw material hills on a raw material yard by causing a computer to calculate the position and three-dimensional shape of the end surface on the raw material yard,
According to the calculator, the following steps:
With respect to each mesh obtained by dividing a large number of virtual planes defined by the coordinate axis in the width direction and the coordinate axis in the height direction of the raw material yard, a long axis parallel to the coordinate axis in the raw material yard length direction through the representative point, tertiary end faces intersection Ru asked each segment to both ends of the steps, and the raw material peak and the heterologous stock area as a segment of the bundle for all the meshes of both end surfaces and different brands regions in the raw material Yamauchi material mountain Step for determining the original existence range
Raw material yard dimensional management method, characterized in that for the execution.
前記掻き取り装置により途中まで第1原料の払い出しを行なっている原料山の払い出し側端面に被せて異種銘柄の第2原料を積み付けて原料山の長さを増加させて形成する原料山である場合には、
前記計算機に、下記のステップ:
前記原料山の長さ増加前の元の両端面および長さ増加後の新たな両端面と前記各メッシュからの仮想長軸線との交点を両端とする線分を各々求めるステップ、および
前記求めた各メッシュの線分により、原料山内にある前記第1原料と第2原料の各々の領域の三次元的な存在範囲を求めるステップ
を実行させることを特徴とする請求項2に記載の原料ヤードの三次元管理方法。
It is a raw material pile formed by stacking the second raw material of different brands and increasing the length of the raw material pile by covering the discharge side end face of the raw material pile where the first raw material is being discharged halfway by the scraping device. in case of,
The computer has the following steps:
Obtaining each line segment having both ends of the original both end faces before increasing the length of the raw material pile and the new both end faces after increasing the length and the virtual major axis from each mesh; and The raw material yard according to claim 2 , wherein a step of obtaining a three-dimensional existence range of each region of the first raw material and the second raw material in the raw material mountain is performed by a line segment of each mesh. Three-dimensional management method.
JP07559898A 1998-03-24 1998-03-24 Raw material yard three-dimensional management method Expired - Lifetime JP3793348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07559898A JP3793348B2 (en) 1998-03-24 1998-03-24 Raw material yard three-dimensional management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07559898A JP3793348B2 (en) 1998-03-24 1998-03-24 Raw material yard three-dimensional management method

Publications (2)

Publication Number Publication Date
JPH11268834A JPH11268834A (en) 1999-10-05
JP3793348B2 true JP3793348B2 (en) 2006-07-05

Family

ID=13580813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07559898A Expired - Lifetime JP3793348B2 (en) 1998-03-24 1998-03-24 Raw material yard three-dimensional management method

Country Status (1)

Country Link
JP (1) JP3793348B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479714B1 (en) * 2002-08-23 2005-03-30 주식회사 포스코 Pile management method of yard in piled ore
KR100492939B1 (en) * 2002-08-30 2005-06-03 재단법인 포항산업과학연구원 A method for automatically determinding reclaiming position
KR100489677B1 (en) * 2002-08-30 2005-05-17 재단법인 포항산업과학연구원 Method for controlling position of reclaimer
JP4512046B2 (en) * 2006-02-10 2010-07-28 新日本製鐵株式会社 Three-dimensional management equipment for raw material pile in raw material yard
JP2012101867A (en) * 2010-11-08 2012-05-31 Ube Techno Enji Kk Automatic stowage system, and yard management system
JP5847409B2 (en) * 2011-03-17 2016-01-20 新日鐵住金株式会社 Raw material yard management system, raw material yard management method, and computer program
CN113291841B (en) * 2020-06-24 2022-12-13 中冶长天国际工程有限责任公司 Material leveling control method of material taking machine
CN111932624B (en) * 2020-08-13 2023-08-18 秦皇岛燕大滨沅科技发展有限公司 Inclination image segmentation-based repose angle detection method
CN114313890A (en) * 2022-01-06 2022-04-12 中冶北方(大连)工程技术有限公司 C-type stock yard stock bed dynamic simulation control system and method
JP2023167517A (en) * 2022-05-12 2023-11-24 株式会社日立製作所 Inventory management device and inventory management method

Also Published As

Publication number Publication date
JPH11268834A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3793348B2 (en) Raw material yard three-dimensional management method
WO2022012116A1 (en) Reclaiming system and method
DE102019203300A1 (en) Targeted loading system
CN108557500A (en) A kind of bar shaped stock ground automatic operating system
JP4512046B2 (en) Three-dimensional management equipment for raw material pile in raw material yard
KR20020009560A (en) A stockyard for bulk materials
CN112299048B (en) Train loading and distributing system and method based on unmanned grab bucket running mode
CN111595355B (en) Unmanned rolling machine group path planning method
JP5847409B2 (en) Raw material yard management system, raw material yard management method, and computer program
CN107324075A (en) The windrow method moved based on stacker row
CN208439990U (en) A kind of automatic heap feeding device for bar shaped stock ground
CN115140657A (en) Multi-crown-block scheduling and collision avoidance method and system
CN114888790A (en) Space coordinate locating method based on three-dimensional characteristic distribution of bulk materials
JP3911085B2 (en) Reclaimer operation control device and control method
JP5729964B2 (en) Raw material yard three-dimensional management method
DE112021001004T5 (en) Working system and control procedures
CN117303017A (en) Method for process selection, digital realization and simulation evaluation of bucket-wheel stacker-reclaimer
CN205953062U (en) Waste material transportation changes row device
JP3771709B2 (en) Payment method by reclaimer
JP3793349B2 (en) Payment method by reclaimer
CN113291854B (en) Material piling method and material piling device
CN113291844B (en) Unloading control method of fixed-point unloading trolley
JPS58167326A (en) Carry-out device with bucket wheel for bulk load deposited
CN114313890A (en) C-type stock yard stock bed dynamic simulation control system and method
CN108116900A (en) A kind of windrow method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term