JP3793339B2 - High-intensity discharge lamp lighting device - Google Patents

High-intensity discharge lamp lighting device Download PDF

Info

Publication number
JP3793339B2
JP3793339B2 JP31584197A JP31584197A JP3793339B2 JP 3793339 B2 JP3793339 B2 JP 3793339B2 JP 31584197 A JP31584197 A JP 31584197A JP 31584197 A JP31584197 A JP 31584197A JP 3793339 B2 JP3793339 B2 JP 3793339B2
Authority
JP
Japan
Prior art keywords
discharge lamp
intensity discharge
reference value
power
power reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31584197A
Other languages
Japanese (ja)
Other versions
JPH11135287A (en
Inventor
正興 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP31584197A priority Critical patent/JP3793339B2/en
Publication of JPH11135287A publication Critical patent/JPH11135287A/en
Application granted granted Critical
Publication of JP3793339B2 publication Critical patent/JP3793339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メタルハライドランプのような高輝度放電灯の点灯装置に係り、特に点灯後高速に輝度が立ち上がる特性の高輝度放電灯の点灯装置に係る。
【0002】
【従来の技術】
自動車のヘッドライト用ランプには夜間や雨・霧の悪天候時にも安全走行するために明るく視認性の良い光源が求められる。同時に、最近の自動車には多くの電子機器が装備され、バッテリーから供給される直流電流も年々大きくなり省エネルギーの観点から、消費電力の少ないランプが求められる。これらの要求を満たすランプとしてメタルハライドランプのような高輝度放電灯が注目されている。
【0003】
しかし、通常のメタルハライドランプは点灯後、定常の明るさに達するまでには数分程度の待ち時間を要するため、トンネルに入ったときや夜間の車の運転時に支障をきたすので自動車への適用には問題があった。この問題の解決のため、自動車用ランプは照明学会平成9年発行の『情報機器光源に関する研究調査委員会報告書』の88ページに記載されているように、立上がりを早めるため、キセノンガスを入れて、点灯直後の発光を確保している。
【0004】
【発明が解決しようとする課題】
そして、高速に明るさを立ち上げるため始動時に大きな電力を供給することを条件とする。供給電力を制御するのに、従来は、点灯からの時間経過と消灯していた時間を演算し、高輝度放電灯への供給電力を制御するなどの手段をとっており、制御が複雑で、時間計測と電力制御にマイクロコンピュータを必要としていた。高輝度放電灯の品種が変わるとそのつどマイクロコンピュータのプログラムを書き替えなければならず、煩雑で時間を要する問題がある。さらにマイクロコンピュータ制御の場合、電力はデジタル量になり、段階的に変わってくことになり、場合によっては見苦しく感じることもある。本発明では、高輝度放電灯の点灯装置において、管球の品種に自動的に対応できる特性を有するとともに、起動時の輝度の立ち上がりを高速にすることを課題とする。
【0005】
【課題を解決するための手段】
本発明は、電力基準値を生じる抵抗手段にそれぞれが直列接続される複数の時定数回路を組み合わせることで、高輝度放電灯の高速立ち上げを可能にし、管球が変っても容易に対応できるようにしたものである。第1の発明は、高輝度放電灯の瞬時電流を測定する手段と、瞬時電圧を測定する手段と、これらの瞬時電流測定手段と瞬時電圧測定手段との出力信号を乗算して瞬時電力値を算出する乗算手段と、前記瞬時電力値を一方の入力端子に受け、他方の入力端子に電力基準値を受けて、これらを演算する演算増幅器と、その演算増幅器からの出力信号をパルス幅変調信号として出力するパルス幅変調回路とからなる制御回路を備え、その制御回路によってスイッチング素子を制御することにより前記高輝度放電灯への供給電力を制御する高輝度放電灯の点灯装置において、前記制御回路は、前記演算増幅器の前記他方の入力端子に接続されて前記電力基準値を生じる抵抗手段と、その抵抗手段に直列接続された補正手段であって、前記高輝度放電灯の電圧に応じて、前記抵抗手段に現出する前記電力基準値を増加させる第1の電力基準値の補正手段と、前記抵抗手段に直列接続されたコンデンサと抵抗とからなる第1の時定数回路を有する補正手段であって、前記高輝度放電灯への電圧供給開始時又は電源投入時に前記第1の時定数回路を流れる電流によって前記電力基準値を一旦急峻に上昇させ、この上昇分を所定の時定数で減少させる第2の電力基準値の補正手段とを備えることを特徴とする高輝度放電灯の点灯装置を提供するものである。
【0006】
第2の発明は、前記第1の発明において、前記第2の電力基準値の補正手段が前記電力基準値を一旦急峻に上昇させる値は、定常値よりも30%から80%高い高輝度放電灯の点灯装置を提供する。第3の発明は前記第2の発明において、前記抵抗手段に直列接続されたコンデンサと抵抗とからなる第2の時定数回路を有する補正手段であって、前記高輝度放電灯への電圧供給開始時又は電源投入時に前記電力基準値を前記定常値よりも30%から80%高く一旦急峻に上昇させ、この上昇分を所定の時定数で減少させるとともに、前記高輝度放電灯への電力供給停止時に直ちにリセットされる第3の電力基準値の補正手段を備える高輝度放電灯の点灯装置を提供する。また、第4の発明は前記第3の発明において、前記抵抗手段に直列接続されたコンデンサと抵抗とからなる第3の時定数回路を有する補正手段であって、前記高輝度放電灯への電圧供給開始時又は電源投入時に前記電力基準値を前記定常値よりも50%から150%高く一旦急峻に上昇させ、この上昇分を所定の充電時定数で減少させるとともに所定の放電時定数でリセットされる第4の電力基準値の補正手段を備える高輝度放電灯の点灯装置を提供する。
【0007】
【作用】
高輝度放電灯の管球の特性を検討すると、キセノンを封入した自動車用ランプの点灯直後のランプ電圧は数十ボルトあり、一旦上昇しキセノンが活性化してくると管電圧が約30ボルトに低下する。その後ランプ内の水銀が気化し、管内気圧が上昇するにしたがいランプ電圧が上昇して行く。このとき、ランプ電圧の上昇に対し輝度は遅れて上昇していく。このランプ特性に対応した電力制御をかけることで高速立ち上げが可能になる。つまり、ランプの端子電圧に対応した制御と、時間遅れに対応した制御をする。具体的にはキセノンが活性化するまでの時間(自動車用のランプでは流す電流によって異なるが一例として0.5 秒以下)はランプ電圧が比較的高いため電力量を約3倍程度にし、十分な電流を流し、電圧が下がり電流が増加し過ぎるようになると、定常値の5から7倍程度に電流制限する。時間の経過とともに輝度が上昇していくのでランプへの供給電力を減らして行く。この電力を減らす時定数を10秒から30秒にすると約1分程度で定常電力に達し、輝度は点灯後数秒で定常値の±10%内に達し、この範囲内での増減があるがほぼ一定値を保つ。
【0008】
一方、高輝度放電灯を一旦消した後に直ちに再点灯させることがしばしばある。この場合、上述のような電力制御を行ったのでは、明るくなり過ぎ眩しすぎる等周囲へ悪影響を与えたり、ランプの寿命を短くする問題もある。また、消灯後直ちに点灯させる場合、電力の補正を行わずにランプ電圧に応じた電流とすると、電流が少なくなり過ぎ、例えばランプ電力35Wで電圧が80Vとすると、ランプ電流は約0.44Aでアーク放電の維持ができなくなり立ち消えの問題が発生する。また、ランプ消灯時間に従いランプの管内圧力が低下していき、点灯直後の電圧も低下していく。そして数十秒後にはランプ管内圧力はまだ高いが電圧はほぼ初期値に戻る。なお、全く同じになるには暗中の室温にて数時間を要する。
【0009】
したがって、消灯後の再点灯時はアーク放電を確実に維持できるランプ電流を供給するとともに、さらに消灯していた時間に応じて再点灯時の電力を変えていくことが必要になる。
【0010】
この制御のため、再点灯時は定常電力の 1.5倍から2倍程度の電力を供給し0.5 秒から2秒の時定数で減少させる。この再点灯時のための時定数回路はランプ消灯時間が1秒程度の極端に短い時間の場合にも動作させる必要があり消灯を検出後直ちにリセットをかける。
【0011】
また前述したように消灯数十秒後で再点灯によるランプ電圧はほぼ定常値に戻るため第4の電力補正手段のリセットの放電時定数を10秒から30秒とすることで、30秒から1分程度でリセットが終了し、通常の点灯と同じ立上がりとなる。また時定数回路の利用により、リセットの途中での再点灯に対しほぼ適した電力を供給できる。
【0012】
【発明の実施の形態】
図1は、本発明に係る高輝度放電灯の点灯装置の実施の形態の一例の主回路を示す。図において、主電源1は変圧器3の一次巻線とスイッチング素子であるFET2の主電流端子の両端に接続される。FET2は、そのゲートに接続された制御回路5により高周波でオンオフ駆動制御される。制御回路5は、制御回路用電源回路4によって電力供給される。変圧器の二次巻線に接続された整流回路6により整流され、さらにスイッチング回路7において矩形波に変換される。この矩形波は、イグナイタ8を経て高輝度放電灯9に電力供給される。イグナイタ8は、高輝度放電灯9の起動時に、トリガ波形を与えるものである。
【0013】
制御回路5の各端子については、端子AはFET2のゲートに接続され、端子Bは高輝度放電灯9の電圧に比例する点である整流回路6の一端に接続され、端子Cは高輝度放電灯9の電流に比例する点である抵抗器11の一端に接続され、端子Dは回路のコモン線に接続され、端子Eは制御回路用電源回路4の+端子にそれぞれ接続される。端子Fは、高輝度放電灯9の点灯時の運転信号が接続される。
【0014】
図2は、この実施の形態における制御回路5の詳細を示す図である。この図2における端子A,B,C,D,Eは、それぞれ図1の同じ符号の端子に対応する。この制御回路5は、大別して、第1の電力基準値の補正手段510 と、第2の電力基準値の補正手段520 と、第3の電力基準値の補正手段530 と、第4の電力基準値の補正手段540 と、乗算器550 と、起動信号制御回路560 と、誤差増幅回路570 と、電流制限回路580 と、パルス巾変調回路590 とから構成されている。
【0015】
乗算器550 については、高輝度放電灯9の瞬時電力信号を算出する機能を行う。端子Bの電圧信号と端子Cの電流信号とが乗算器550 に送られ、その乗算出力信号は演算増幅器571 の−入力端子に送られる。乗算器550 については、よく普及している集積回路を利用するのが好都合ではあるが、演算増幅器を複数個組み合わせて乗算回路を構成することもできる。
【0016】
誤差増幅回路570 は、演算増幅器571 と抵抗器571 、572 、573 、574 、575 等から構成される。この誤差増幅回路570 においては、乗算器550 からの瞬時電力信号を、抵抗器574 と抵抗器573 とにより適当な値に分圧して、演算増幅器571 の−入力端子に送る。また、端子Eからの電圧を抵抗器576 と抵抗器572 とにより分圧して演算増幅器571 の+入力端子に供給される。演算増幅器571 の出力端子と−入力端子との間には帰還用の抵抗器575 が接続される。
【0017】
パルス巾変調回路590 は、演算増幅器571 の出力信号を受けて、必要なパルス巾変調出力信号を端子Aに送出する。また、端子Cの電流信号は、電流制限回路580 のコンパレータ581 の+入力端子に接続され、その−入力端子は、基準電源582 に接続されて、基準値を超えたときにパルス巾変調回路590 の出力を制限もしくは停止するように作動する。
【0018】
これまで説明した構成において、高輝度放電灯9の瞬時電圧と瞬時電流の検出値の乗算値である瞬時電力値と、抵抗器572 の両端の電圧である電力基準値とを誤差増幅回路570 で比較して、これらが等しくなるようにパルス巾変調回路590 が作動する。
【0019】
以上の構成の説明では、電力基準値の補正手段を除外して説明してきたが、次にそれら電力基準値の補正手段を含めた説明を行う。
【0020】
第1の電力基準値の補正手段510 は、演算増幅器511 と、その+入力端子とコモン線間に接続された基準電圧514 と、−入力端子と出力端子の間に接続された帰還用の抵抗器513 と、出力端子に直列接続された抵抗器515 とダイオード516 とからなる。この第1の電力基準値の補正手段510 は高輝度放電灯9の端子電圧がバラツキを含めた正常動作範囲以下になると動作を開始し、高輝度放電灯9の電圧が低下する程、電力基準値を上昇させるものである。高輝度放電灯9の電圧が上昇したときには基準値に影響しないようダイオード516 が挿入されている。
【0021】
次に、起動信号制御回路560 の説明をする。この起動信号制御回路560 は、高輝度放電灯9が点灯した時点で、端子Fに現れる点灯運転信号を、第2の電力基準値の補正手段520 と第3の電力基準値の補正手段530 と第4の電力基準値の補正手段540 とに共通に与えるための回路である。構成については、ゲート論理回路561 と、その出力端子に逆流阻止用のダイオード568 を介して個別に直列接続された抵抗器562 と抵抗器563 と抵抗器564 と、その入力端子に接続されたダイオード565 と抵抗器567 とからなる。
【0022】
第2の電力基準値の補正手段520 は、点灯装置10に動作命令が出され、端子Fの動作開始信号のレベルがL→Hになり、ゲート論理回路561 の出力レベルがH→Lになると、pnp形のトランジスタ521 はオンになり基準電圧を上昇させ、コンデンサ522 と抵抗器523 との時定数で基準値の上昇を減らしていく。この時定数回路のリセットはダイオード524 を介して行う。したがって放電時定数は充電時定数とほぼ同じになるが、電源を遮断し放電灯9が消灯した後も少しの時間、制御回路用電源4の残留電荷が端子Eに残っており時定数回路がリセットされない。したがって、1秒以下程度の短時間の電源断ではこのリセット回路は動作しない。
【0023】
第3の電力基準値の補正手段530 は、点灯装置10に動作命令が出され、端子Fの動作開始信号のレベルがL→Hになり、ゲート論理回路561 の出力レベルがH→Lになると、トランジスタ531 はオンになり基準電圧を上昇させ、コンデンサ532 と抵抗器533 との時定数で基準値の上昇を減らしていく。この時定数回路のリセットは点灯装置10の動作開始信号のレベルがH→Lになり点灯装置10の動作を停止すると同時にダイオード564 とダイオード534 と抵抗器565 とを介して行う。
【0024】
第4の電力基準値の補正手段540 は、点灯装置10に動作命令が出され、端子Fの動作開始信号のレベルがL→Hになり、ゲート論理回路561 の出力レベルがH→Lになると、トランジスタ541 がオンになり基準電圧を上昇させ、コンデンサ542 と抵抗器543 との時定数で基準値の上昇を減らしていく。この時定数回路のリセットは抵抗器544 を介して行いリセットの時定数は抵抗器544 の値とコンデンサ542 の値で決まる。なお、抵抗器544 の値は抵抗器543 の値に比べ十分大きくトランジスタ541 のオン時にはほとんど影響を与えない。
【0025】
図3は、第1の電力基準値の補正手段510 の特性の一例を示す。図において、横軸は高輝度放電灯に印加される電圧のパーセント値を表し、縦軸はこの第1の電力基準値の補正手段510 の補正値を表す。この図に示す例においては、印加電圧値が低いときは、縦軸の補正値は約+70%であり、印加電圧の比率が20%以上になると直線的に下降し、印加電圧の約70%以上では補正値はゼロの漸近線になる。ただし、これらの補正値の曲線については、元の電力基準値の100%分への加算値として作用するものである。
【0026】
以上の各補正値について、好ましい実施例として、以下の定数の設定がある。
【0027】
第2の補正手段520 の時定数(コンデンサ522 と抵抗器523 とに係る)を0.2秒〜0.5秒に設定する。
【0028】
第3の補正手段530 の時定数(コンデンサ532 と抵抗器533 とに係る)を1秒〜5秒に設定する。
【0029】
第4の補正手段540 の時定数(コンデンサ542 と抵抗器543 とに係る)をおおよそ5秒〜30秒に設定する。
【0030】
第4の補正手段のリセット回路定数(コンデンサ542 と抵抗器544 とに係る)との時定数をおおよそ30秒〜120秒に設定する。
【0031】
また、動作設定として、第1から第4の補正手段の補正値の総計を200%以上とし始動時の高輝度放電灯への供給電力を定常時の3倍強程度とし、立上がりを早め、供給電圧低下時や出力の短絡等の事故時に電流が著しく増加するのを電流制限手段で定常時の5〜7倍程度に抑え、高輝度放電灯の寿命や安定器の大型化を防ぐ。
【0032】
図4は、第2、第3、第4の電力基準値の補正手段の特性の一例を示す。横軸は、高輝度放電灯に電圧が印加された後の経過時間を表し、縦軸はこれら第2、第3、第4の電力基準値の補正手段のパーセント値を表す。第2の補正値(2) は最高値で+40%、第3の補正値(3) は最高値で+30%、第4の補正値(4) は最高値で+70%、これらの和として(2) +(3) +(4) の補正値は、+140%の補正値となる。いずれも動作開始直後はそれぞれ最高値を示し、その後ゆるやかに下降して漸近線のゼロに近づく。
【0033】
図3に示す第1の電力基準値の補正値と、図4に示す第2、第3、第4の電力基準値の補正値と元の電力基準値の100%分との全加算値が、演算増幅器571 の+入力端子に供給されて、その全加算の電力基準値に常に等しくなるような値の電力が高輝度放電灯9に供給される。
【0034】
図5は、高輝度放電灯が冷えているときの起動特性を示す。この起動直後は電力基準値は300%を超える値であり、その後5秒程でゆるやかに下降してきて、数十秒後には定格100%になる。この電力基準値の特性に対応して高輝度放電灯に電流が流れる。光出力は、3秒ないし5秒でほぼ100%に達する。
【0035】
図6は、点灯中の高輝度放電灯を一旦消した後に再点灯させた場合の動作を示す。消灯1秒後に再点灯すると、最高電流値は130%に抑えられる。5秒後に再点灯すると、最高電流値は150%に抑えられ、10秒後では180%に抑えられる。
【0036】
図7は、制御回路5の他の実施の形態を示す図である。第2の補正手段にトランジスタを使用せず、抵抗とコンデンサのみにしたもので、他は全て同じである。第2の電力基準値の補正手段の動作開始の時期を起動信号制御回路560 から受けず、単に電源の投入とともに動作することにして、構成の簡略化と経済化を図るものである。同様にして第3、第4の電力基準値の補正手段についても、この簡略化の構成を利用することができる。
【0037】
図8は、制御回路5の中の第3の電力基準値の補正手段530 の他の実施例を示す部分図である。この回路は、コンデンサ532 の充電特性を利用する点では図2に示す回路と同様の構成であるが、トランジスタ531 のベース側に抵抗器535 とコンデンサ532 と抵抗器533 とからなる時定数回路を配置し、その時定数回路の充電特性をトランジスタ531 により電流増幅して、この第3の電力基準値の補正手段530 を構成するものである。この回路は、トランジスタの電流増幅作用を利用しており、したがって、特に時定数を長くするときに、抵抗値を大きくしても、その出力インピーダンスを低く保ち、より安定した動作とすることができる利点がある。同様にして、第2電力基準値の補正手段520 、第4の電力基準値の補正手段540 についても、この構成を利用することができる。
【0038】
本発明の実施の態様において、乗算器550 を使用している構成については、実用上は乗算手段の代わりに加算手段を用いることもできる。つまり、電力基準値の補正が作用する動作点たる電流値と電圧値の組み合わせについては、1点付近のことなので、この動作点に対応して電流と電圧の組み合わせに対して係数を設定することにより、同様の動作結果を得ることができる。数式で表すと、a、bを係数とし、xを電圧値、yを電流値とすると、下記の等式が成立することが条件となる。
【0039】
ax+by=ax・by
【0040】
つまり、この等式が成立するような係数a,bを設定することは可能であり、その状態において、本発明の作用を近似的に実現することができる。
【0041】
本発明に係る高輝度放電灯の点灯装置は、自動車用のみでなく例えばOHPやプロジェクタテレビ等の使用される高輝度放電灯の点灯装置においても同様な制御を行い高速に立ち上げることが可能になる。この場合、自動車用ほどの高速性を要求しなければ電力を2倍程度に抑える等の変更を行えばよい。
【0042】
【発明の効果】
本発明は、以上述べたような特徴を有するので、高輝度放電灯点灯において、電源投入時から3秒〜5秒で高輝度放電灯の輝度を定常状態の90%以上までに立ち上げることができる。管球の瞬時電流と瞬時電圧に基づいて制御されるので、管球の品種の変更や電源電圧の変動に対しても、点灯特性には影響を与えることがなく、常に所期の点灯特性を得ることができる。また、高輝度放電灯への供給電流が連続的に制御されるので、輝度連続的になり、品位の高い光源となる。
【図面の簡単な説明】
【図1】本発明に係る高輝度放電灯の点灯装置の実施の形態の一例の主回路を示す。
【図2】本発明に係る高輝度放電灯の点灯装置における制御回路を示す。
【図3】第1の電力基準値の補正手段の特性を示す。
【図4】第2、第3、第4の電力基準値の補正手段の特性を示す。
【図5】高輝度放電灯が冷えているときの起動特性を示す。
【図6】点灯中の高輝度放電灯を一旦消した後に再点灯させた場合の動作を示す。
【図7】制御回路の他の実施の形態を示す。
【図8】制御回路の中の電力基準値の補正手段の他の実施例を示す部分図である。
【符号の説明】
1…主電源 2…FET 3…変圧器 4…制御回路用電源回路
5…制御回路 6…整流回路 7…スイッチング回路
8…イグナイタ 9…高輝度放電灯 10…点灯装置
510 …第1の電力基準値の補正手段 520…第2の電力基準値の補正手段
530 …第3の電力基準値の補正手段 540…第4の電力基準値の補正手段
550 …乗算器 560 …起動信号制御回路
570 …演算増幅器 580 …電流制限回路 590 …パルス巾変調回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lighting device for a high-intensity discharge lamp such as a metal halide lamp, and more particularly to a lighting device for a high-intensity discharge lamp having a characteristic that the luminance rises at high speed after lighting.
[0002]
[Prior art]
Automotive headlight lamps require a light source that is bright and highly visible for safe driving at night and in bad weather such as rain and fog. At the same time, many automobiles are equipped with recent electronic devices, and the direct current supplied from the battery increases year by year, so that a lamp with low power consumption is required from the viewpoint of energy saving. High-intensity discharge lamps such as metal halide lamps are attracting attention as lamps that satisfy these requirements.
[0003]
However, since normal metal halide lamps require a few minutes to reach steady brightness after they are turned on, they may cause problems when entering tunnels or driving cars at night. Had a problem. To solve this problem, xenon gas is used in the automotive lamp to accelerate the start-up, as described on page 88 of the “Survey Committee on Information Equipment Light Sources” published in 1997 by the Lighting Society of Japan. The light emission immediately after lighting is ensured.
[0004]
[Problems to be solved by the invention]
In order to increase the brightness at high speed, it is necessary to supply a large amount of power at the start. In order to control the supply power, conventionally, the time elapsed since lighting and the time when it was turned off are calculated, and measures such as controlling the supply power to the high-intensity discharge lamp are taken. A microcomputer was required for time measurement and power control. Each time the type of high-intensity discharge lamp is changed, the microcomputer program must be rewritten, which is complicated and time-consuming. Furthermore, in the case of microcomputer control, the electric power becomes a digital amount and changes in stages, and in some cases, it may feel unsightly. It is an object of the present invention to provide a lighting device for a high-intensity discharge lamp that has a characteristic that can automatically cope with the type of tube and that the rise in luminance at the time of startup is increased.
[0005]
[Means for Solving the Problems]
The present invention enables a high-intensity discharge lamp to be started at high speed by combining a plurality of time constant circuits each connected in series with a resistance means that generates a power reference value, and can easily cope with changes in the tube. It is what I did. The first invention is a means for measuring an instantaneous current of a high-intensity discharge lamp, a means for measuring an instantaneous voltage, and multiplying output signals of these instantaneous current measuring means and instantaneous voltage measuring means to obtain an instantaneous power value. Multiplying means for calculating, an operational amplifier for receiving the instantaneous power value at one input terminal and a power reference value at the other input terminal and calculating them, and an output signal from the operational amplifier as a pulse width modulation signal In a lighting device for a high-intensity discharge lamp, the control circuit comprising a control circuit comprising a pulse width modulation circuit that outputs the control circuit, and controlling the switching element by the control circuit to control the power supplied to the high-intensity discharge lamp. includes a resistance means for producing said power reference value is connected to the other input terminal of the operational amplifier, a series-connected compensation means to the resistance means, said high intensity discharge lamp Depending on the voltage, and means for correcting the first power reference value to increase the power reference value for revealing the resistance means, the first time constant circuit comprising a series-connected capacitor and a resistor to said resistance means The power reference value is once sharply increased by a current flowing through the first time constant circuit at the start of voltage supply to the high-intensity discharge lamp or when the power is turned on, and the increase is predetermined. there is provided a lighting device with high intensity discharge lamp, characterized in that it comprises a correction means of the second power reference value to reduce a time constant of.
[0006]
According to a second aspect of the present invention , in the first aspect of the present invention, the value by which the second power reference value correction means increases the power reference value once sharply is 30% to 80% higher than the steady value. An electric lighting device is provided. According to a third aspect of the present invention, in the second aspect of the present invention, correction means having a second time constant circuit comprising a capacitor and a resistor connected in series to the resistance means, wherein voltage supply to the high-intensity discharge lamp is started. When the power is turned on or when the power is turned on, the power reference value is suddenly increased 30% to 80% higher than the steady value, and the increase is decreased by a predetermined time constant, and the power supply to the high-intensity discharge lamp is stopped. There is provided a lighting device for a high-intensity discharge lamp comprising a third power reference value correcting means that is sometimes reset immediately . According to a fourth aspect of the present invention , there is provided a correction means having a third time constant circuit comprising a capacitor and a resistor connected in series to the resistance means in the third aspect, wherein the voltage to the high-intensity discharge lamp is At the start of power supply or when the power is turned on, the power reference value is once suddenly increased 50% to 150% higher than the steady value, and the increase is reduced by a predetermined charging time constant and reset by a predetermined discharging time constant. There is provided a lighting device for a high-intensity discharge lamp comprising a fourth power reference value correcting means .
[0007]
[Action]
Examining the characteristics of the tube of a high-intensity discharge lamp, the lamp voltage immediately after lighting an xenon-enclosed automotive lamp is several tens of volts. To do. Thereafter, the mercury in the lamp is vaporized, and the lamp voltage increases as the pressure inside the tube increases. At this time, the luminance rises with a delay with respect to the rise of the lamp voltage. It is possible to start up at high speed by applying power control corresponding to the lamp characteristics. That is, control corresponding to the lamp terminal voltage and control corresponding to the time delay are performed. Specifically, the time until xenon is activated (depending on the current that flows in an automobile lamp, but 0.5 seconds or less as an example), the lamp voltage is relatively high. When the voltage drops and the current increases excessively, the current is limited to about 5 to 7 times the steady value. Since the luminance increases with time, the power supplied to the lamp is reduced. If the time constant for reducing this power is changed from 10 seconds to 30 seconds, the steady power will be reached in about 1 minute, and the brightness will reach within ± 10% of the steady value within a few seconds after lighting. Keep a constant value.
[0008]
On the other hand, the high-intensity discharge lamp is often turned on immediately after being turned off. In this case, if the power control as described above is performed, there is a problem in that the surroundings are adversely affected, such as being too bright and too dazzling, or shortening the lamp life. In addition, when the lamp is turned on immediately after the lamp is turned off, if the current is set according to the lamp voltage without correcting the power, the current becomes too small. For example, if the lamp power is 35 W and the voltage is 80 V, the lamp current is about 0.44 A and the arc Discharging cannot be maintained, causing a problem of disappearance. In addition, the lamp internal pressure decreases as the lamp turns off, and the voltage immediately after lighting also decreases. After several tens of seconds, the pressure in the lamp tube is still high, but the voltage returns to the initial value. Note that it takes several hours at room temperature in the dark to be exactly the same.
[0009]
Therefore, it is necessary to supply a lamp current that can reliably maintain the arc discharge when relighting after the light is turned off, and to change the power at the time of relighting according to the time that the light has been turned off.
[0010]
For this control, when re-lighting, power is supplied from 1.5 to 2 times the steady power, and the time constant is reduced from 0.5 to 2 seconds. The time constant circuit for relighting needs to be operated even when the lamp turn-off time is extremely short, such as about 1 second, and is reset immediately after the turn-off is detected.
[0011]
Further, as described above, the lamp voltage due to re-lighting returns to a steady value after several tens of seconds after the light is turned off, so that the discharge time constant for resetting the fourth power correction means is changed from 10 seconds to 30 seconds, so that 30 seconds to 1 seconds. The reset is completed in about minutes, and the same rise as normal lighting. In addition, by using a time constant circuit, it is possible to supply power almost suitable for relighting during reset.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a main circuit of an example of an embodiment of a lighting device for a high-intensity discharge lamp according to the present invention. In the figure, a main power source 1 is connected to both ends of a primary winding of a transformer 3 and a main current terminal of an FET 2 which is a switching element. The FET 2 is on / off driven and controlled at a high frequency by a control circuit 5 connected to its gate. The control circuit 5 is supplied with power by the control circuit power supply circuit 4. The current is rectified by the rectifier circuit 6 connected to the secondary winding of the transformer, and further converted into a rectangular wave by the switching circuit 7. This rectangular wave is supplied to the high-intensity discharge lamp 9 through the igniter 8. The igniter 8 gives a trigger waveform when the high-intensity discharge lamp 9 is started.
[0013]
For each terminal of the control circuit 5, the terminal A is connected to the gate of the FET 2, the terminal B is connected to one end of the rectifier circuit 6 that is proportional to the voltage of the high-intensity discharge lamp 9, and the terminal C is connected to the high-intensity discharge. It is connected to one end of a resistor 11 which is a point proportional to the current of the lamp 9, the terminal D is connected to the common line of the circuit, and the terminal E is connected to the + terminal of the control circuit power supply circuit 4. The terminal F is connected to an operation signal when the high-intensity discharge lamp 9 is lit.
[0014]
FIG. 2 is a diagram showing details of the control circuit 5 in this embodiment. Terminals A, B, C, D, and E in FIG. 2 correspond to terminals having the same reference numerals in FIG. The control circuit 5 is roughly divided into a first power reference value correcting means 510, a second power reference value correcting means 520, a third power reference value correcting means 530, and a fourth power reference value. It comprises a value correction means 540, a multiplier 550, an activation signal control circuit 560, an error amplification circuit 570, a current limiting circuit 580, and a pulse width modulation circuit 590.
[0015]
The multiplier 550 performs a function of calculating an instantaneous power signal of the high intensity discharge lamp 9. The voltage signal at terminal B and the current signal at terminal C are sent to multiplier 550, and the multiplied output signal is sent to the negative input terminal of operational amplifier 571. For the multiplier 550, it is convenient to use a widely used integrated circuit, but a multiplier circuit can be configured by combining a plurality of operational amplifiers.
[0016]
The error amplifying circuit 570 includes an operational amplifier 571 and resistors 571, 572, 573, 574, 575 and the like. In this error amplifying circuit 570, the instantaneous power signal from the multiplier 550 is divided to an appropriate value by the resistor 574 and the resistor 573 and sent to the negative input terminal of the operational amplifier 571. Further, the voltage from the terminal E is divided by the resistors 576 and 572 and supplied to the + input terminal of the operational amplifier 571. A feedback resistor 575 is connected between the output terminal and the negative input terminal of the operational amplifier 571.
[0017]
The pulse width modulation circuit 590 receives the output signal of the operational amplifier 571 and sends a necessary pulse width modulation output signal to the terminal A. The current signal at the terminal C is connected to the + input terminal of the comparator 581 of the current limiting circuit 580, and the − input terminal is connected to the reference power source 582. When the reference value is exceeded, the pulse width modulation circuit 590 is output. Operates to limit or stop the output of the.
[0018]
In the configuration described so far, an instantaneous power value that is a product of the instantaneous voltage of the high-intensity discharge lamp 9 and the detected value of the instantaneous current, and a power reference value that is the voltage across the resistor 572 are obtained by the error amplification circuit 570. In comparison, the pulse width modulation circuit 590 operates so that they are equal.
[0019]
In the above description of the configuration, the power reference value correcting means has been excluded, but the following description includes the power reference value correcting means.
[0020]
The first power reference value correcting means 510 includes an operational amplifier 511, a reference voltage 514 connected between the + input terminal and the common line, and a feedback resistor connected between the − input terminal and the output terminal. And a resistor 515 and a diode 516 connected in series to the output terminal. The first power reference value correcting means 510 starts operating when the terminal voltage of the high-intensity discharge lamp 9 falls below the normal operating range including variations, and the power reference value increases as the voltage of the high-intensity discharge lamp 9 decreases. It will increase the value. A diode 516 is inserted so as not to affect the reference value when the voltage of the high-intensity discharge lamp 9 rises.
[0021]
Next, the activation signal control circuit 560 will be described. The start signal control circuit 560 converts the lighting operation signal appearing at the terminal F when the high-intensity discharge lamp 9 is lit into the second power reference value correction unit 520, the third power reference value correction unit 530, and the like. This circuit is commonly provided to the fourth power reference value correcting means 540. As for the configuration, a gate logic circuit 561, a resistor 562, a resistor 563, a resistor 564, and a diode connected to the input terminal thereof are individually connected in series to the output terminal via a diode 568 for preventing a backflow. 565 and resistor 567.
[0022]
The second power reference value correction means 520 receives an operation command from the lighting device 10 and changes the level of the operation start signal at the terminal F from L to H and the output level of the gate logic circuit 561 from H to L. The pnp-type transistor 521 is turned on to increase the reference voltage, and the increase in the reference value is reduced by the time constant of the capacitor 522 and the resistor 523. The time constant circuit is reset via the diode 524. Accordingly, the discharge time constant is almost the same as the charge time constant, but the residual charge of the control circuit power supply 4 remains at the terminal E for a short time after the power supply is cut off and the discharge lamp 9 is turned off. Not reset. Therefore, the reset circuit does not operate when the power is turned off for a short time of about 1 second or less.
[0023]
The third power reference value correcting means 530 outputs an operation command to the lighting device 10, the level of the operation start signal at the terminal F changes from L → H, and the output level of the gate logic circuit 561 changes from H → L. The transistor 531 is turned on to increase the reference voltage, and the increase in the reference value is reduced by the time constant of the capacitor 532 and the resistor 533. The time constant circuit is reset through the diode 564, the diode 534, and the resistor 565 at the same time as the level of the operation start signal of the lighting device 10 changes from H to L and the operation of the lighting device 10 is stopped.
[0024]
The fourth power reference value correcting means 540 receives an operation command from the lighting device 10 and changes the level of the operation start signal at the terminal F from L to H and the output level of the gate logic circuit 561 from H to L. The transistor 541 is turned on to increase the reference voltage, and the increase in the reference value is reduced by the time constant of the capacitor 542 and the resistor 543. The time constant circuit is reset through the resistor 544, and the reset time constant is determined by the value of the resistor 544 and the value of the capacitor 542. Note that the value of the resistor 544 is sufficiently larger than the value of the resistor 543 and has little effect when the transistor 541 is turned on.
[0025]
FIG. 3 shows an example of the characteristics of the first power reference value correcting means 510. In the figure, the horizontal axis represents the percentage value of the voltage applied to the high-intensity discharge lamp, and the vertical axis represents the correction value of the correcting means 510 for the first power reference value. In the example shown in this figure, when the applied voltage value is low, the correction value on the vertical axis is about + 70%, and when the ratio of the applied voltage becomes 20% or more, it falls linearly and about 70% of the applied voltage. In the above, the correction value becomes an asymptotic line of zero. However, these correction value curves act as an addition value to 100% of the original power reference value.
[0026]
For the above correction values, the following constants are set as a preferred embodiment.
[0027]
The time constant (related to the capacitor 522 and the resistor 523) of the second correction means 520 is set to 0.2 seconds to 0.5 seconds.
[0028]
The time constant (related to the capacitor 532 and the resistor 533) of the third correction means 530 is set to 1 second to 5 seconds.
[0029]
The time constant (related to the capacitor 542 and the resistor 543) of the fourth correction means 540 is set to approximately 5 seconds to 30 seconds.
[0030]
The time constant of the reset circuit constant (related to the capacitor 542 and the resistor 544) of the fourth correction means is set to approximately 30 seconds to 120 seconds.
[0031]
Also, as the operation setting, the total correction value of the first to fourth correction means is 200% or more, the power supplied to the high-intensity discharge lamp at the time of starting is about three times that of the steady state, the rise is accelerated, and the supply The current limiting means suppresses the current from significantly increasing during an accident such as a voltage drop or an output short-circuit by about 5 to 7 times that in the steady state, thereby preventing the life of the high-intensity discharge lamp and the size of the ballast from becoming large.
[0032]
FIG. 4 shows an example of the characteristics of the correction means for the second, third, and fourth power reference values. The horizontal axis represents the elapsed time after the voltage is applied to the high-intensity discharge lamp, and the vertical axis represents the percentage value of the correction means for the second, third, and fourth power reference values. The second correction value (2) is the highest value + 40%, the third correction value (3) is the highest value + 30%, the fourth correction value (4) is the highest value + 70%, and the sum of these ( 2) The correction value of + (3) + (4) is + 140%. In either case, the maximum values are shown immediately after the start of the operation, and then slowly descends and approaches the asymptotic zero.
[0033]
The total added value of the correction value of the first power reference value shown in FIG. 3, the correction values of the second, third, and fourth power reference values shown in FIG. 4 and 100% of the original power reference value is , And supplied to the + input terminal of the operational amplifier 571, the power having a value that is always equal to the power reference value of the total addition is supplied to the high-intensity discharge lamp 9.
[0034]
FIG. 5 shows the starting characteristics when the high-intensity discharge lamp is cold. Immediately after this startup, the power reference value exceeds 300%, and after that, it gradually falls in about 5 seconds, and after a few tens of seconds, reaches the rated value of 100%. A current flows through the high-intensity discharge lamp corresponding to the characteristics of the power reference value. The light output reaches almost 100% in 3 to 5 seconds.
[0035]
FIG. 6 shows the operation when the high-intensity discharge lamp being turned on is once turned off and then turned on again. When the light is turned on again after 1 second, the maximum current value is suppressed to 130%. When it is turned on again after 5 seconds, the maximum current value is suppressed to 150%, and after 10 seconds, it is suppressed to 180%.
[0036]
FIG. 7 is a diagram showing another embodiment of the control circuit 5. A transistor is not used for the second correction means, only a resistor and a capacitor are used, and everything else is the same. The operation start timing of the second power reference value correcting means is not received from the activation signal control circuit 560, but is simply operated when the power is turned on, thereby simplifying the configuration and making it economical. Similarly, the simplified configuration can be used for the third and fourth power reference value correction means.
[0037]
FIG. 8 is a partial view showing another embodiment of the third power reference value correcting means 530 in the control circuit 5. This circuit is similar in configuration to the circuit shown in FIG. 2 in that the charging characteristic of the capacitor 532 is used, but a time constant circuit including a resistor 535, a capacitor 532, and a resistor 533 is provided on the base side of the transistor 531. The third power reference value correcting means 530 is configured by arranging and amplifying the charge characteristic of the time constant circuit by a transistor 531. This circuit utilizes the current amplification effect of the transistor, and therefore, even when the time constant is increased, even if the resistance value is increased, the output impedance can be kept low, and more stable operation can be achieved. There are advantages. Similarly, the second power reference value correcting means 520 and the fourth power reference value correcting means 540 can also use this configuration.
[0038]
In the embodiment of the present invention, with respect to the configuration using the multiplier 550, an adding means can be used in place of the multiplying means in practice. In other words, since the combination of the current value and the voltage value, which is the operating point at which the correction of the power reference value acts, is near one point, a coefficient is set for the combination of current and voltage corresponding to this operating point. Thus, the same operation result can be obtained. When expressed in mathematical formulas, if a and b are coefficients, x is a voltage value, and y is a current value, the following equation is satisfied.
[0039]
ax + by = ax · by
[0040]
That is, it is possible to set the coefficients a and b such that this equation holds, and in this state, the operation of the present invention can be approximately realized.
[0041]
The high-intensity discharge lamp lighting device according to the present invention can be started up at high speed by performing similar control not only for automobiles but also in high-intensity discharge lamp lighting devices used, for example, for OHP and projector TVs. Become. In this case, if the speed as high as that for automobiles is not required, the power may be changed to about twice.
[0042]
【The invention's effect】
Since the present invention has the characteristics as described above, when the high-intensity discharge lamp is turned on, the brightness of the high-intensity discharge lamp can be raised to 90% or more of the steady state in 3 to 5 seconds after the power is turned on. it can. Because it is controlled based on the instantaneous current and voltage of the tube, changes in tube type and fluctuations in the power supply voltage will not affect the lighting characteristics, and the expected lighting characteristics will always be maintained. Obtainable. Moreover, since the supply current to the high-intensity discharge lamp is continuously controlled, the luminance is continuous and the light source has high quality.
[Brief description of the drawings]
FIG. 1 shows a main circuit of an example of an embodiment of a lighting device for a high-intensity discharge lamp according to the present invention.
FIG. 2 shows a control circuit in a lighting device for a high-intensity discharge lamp according to the present invention.
FIG. 3 shows the characteristics of the first power reference value correcting means.
FIG. 4 shows characteristics of correction means for second, third, and fourth power reference values.
FIG. 5 shows the starting characteristics when the high-intensity discharge lamp is cold.
FIG. 6 shows an operation when a high-intensity discharge lamp that is on is turned off and then turned on again.
FIG. 7 shows another embodiment of the control circuit.
FIG. 8 is a partial view showing another embodiment of the power reference value correcting means in the control circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Main power supply 2 ... FET 3 ... Transformer 4 ... Control circuit power supply circuit 5 ... Control circuit 6 ... Rectification circuit 7 ... Switching circuit 8 ... Igniter 9 ... High-intensity discharge lamp 10 ... Lighting device
510 ... First power reference value correction means 520 ... Second power reference value correction means
530 ... Third power reference value correction means 540 ... Fourth power reference value correction means
550 ... Multiplier 560 ... Start signal control circuit
570… operational amplifier 580… current limiting circuit 590… pulse width modulation circuit

Claims (4)

高輝度放電灯の瞬時電流を測定する手段と、瞬時電圧を測定する手段と、これらの瞬時電流測定手段と瞬時電圧測定手段との出力信号を乗算して瞬時電力値を算出する乗算手段と、前記瞬時電力値を一方の入力端子に受け、他方の入力端子に電力基準値を受けて、これらを演算する演算増幅器と、該演算増幅器からの出力信号をパルス幅変調信号として出力するパルス幅変調回路とからなる制御回路を備え、該制御回路によってスイッチング素子を制御することにより前記高輝度放電灯への供給電力を制御する高輝度放電灯の点灯装置において、
前記制御回路は、
前記演算増幅器の前記他方の入力端子に接続されて前記電力基準値を生じる抵抗手段と、
該抵抗手段に直列接続された補正手段であって、前記高輝度放電灯の電圧に応じて、前記抵抗手段に現出する前記電力基準値を増加させる第1の電力基準値の補正手段と、
前記抵抗手段に直列接続されたコンデンサと抵抗とからなる第1の時定数回路を有する補正手段であって、前記高輝度放電灯への電圧供給開始時又は電源投入時に前記第1の時定数回路を流れる電流によって前記電力基準値を一旦急峻に上昇させ、この上昇分を所定の時定数で減少させる第2の電力基準値の補正手段と
を備えることを特徴とする高輝度放電灯の点灯装置。
Means for measuring the instantaneous current of the high-intensity discharge lamp, means for measuring the instantaneous voltage, multiplication means for calculating an instantaneous power value by multiplying the output signals of these instantaneous current measuring means and the instantaneous voltage measuring means, An operational amplifier that receives the instantaneous power value at one input terminal and a power reference value at the other input terminal and calculates them, and pulse width modulation that outputs an output signal from the operational amplifier as a pulse width modulation signal In a lighting device for a high-intensity discharge lamp, comprising a control circuit comprising a circuit and controlling power supplied to the high-intensity discharge lamp by controlling a switching element by the control circuit ,
The control circuit includes:
Resistor means connected to the other input terminal of the operational amplifier to produce the power reference value;
Correction means connected in series to the resistance means, the first power reference value correction means for increasing the power reference value appearing in the resistance means according to the voltage of the high-intensity discharge lamp,
A correction means having a first time constant circuit comprising a series-connected capacitor and a resistor in the resistance means, said first time constant circuit when the voltage supply start or power supply to the high-intensity discharge lamp A second power reference value correcting means for once sharply increasing the power reference value by a current flowing through the current and reducing the increase by a predetermined time constant ;
High-intensity discharge lamp lighting device, characterized in that it comprises a.
請求項1において、
前記第2の電力基準値の補正手段が前記電力基準値を一旦急峻に上昇させる値は、定常値よりも30%から80%高いことを特徴とする高輝度放電灯の点灯装置。
In claim 1,
A lighting device for a high-intensity discharge lamp, wherein the second power reference value correcting unit temporarily increases the power reference value sharply by 30% to 80% higher than a steady value .
請求項2において、
前記抵抗手段に直列接続されたコンデンサと抵抗とからなる第2の時定数回路を有する補正手段であって、前記高輝度放電灯への電圧供給開始時又は電源投入時に前記電力基準値を前記定常値よりも30%から80%高く一旦急峻に上昇させ、この上昇分を所定の時定数で減少させるとともに、前記高輝度放電灯への電力供給停止時に直ちにリセットされる第3の電力基準値の補正手段を備えることを特徴とする高輝度放電灯の点灯装置。
In claim 2,
Compensation means having a second time constant circuit comprising a capacitor and a resistor connected in series to the resistance means, wherein the power reference value is set to the steady state when voltage supply to the high-intensity discharge lamp is started or when power is turned on. A third power reference value that is immediately reset when the power supply to the high-intensity discharge lamp is stopped, while increasing the value sharply once by 30% to 80% higher than the value, and decreasing the increase by a predetermined time constant. A lighting device for a high-intensity discharge lamp, comprising a correcting means .
請求項3において、
前記抵抗手段に直列接続されたコンデンサと抵抗とからなる第3の時定数回路を有する補正手段であって、前記高輝度放電灯への電圧供給開始時又は電源投入時に前記電力基準値を前記定常値よりも50%から150%高く一旦急峻に上昇させ、この上昇分を所定の充電時定数で減少させるとともに所定の放電時定数でリセットされる第4の電力基準値の補正手段を備えることを特徴とする高輝度放電灯の点灯装置。
In claim 3,
Compensating means having a third time constant circuit comprising a capacitor and a resistor connected in series to the resistance means, wherein the power reference value is set to the steady state when voltage supply to the high-intensity discharge lamp is started or when power is turned on. And a fourth power reference value correction means for once increasing steeply from 50% to 150% higher than the value, decreasing the increased amount with a predetermined charging time constant, and resetting with a predetermined discharging time constant. A lighting device for a high-intensity discharge lamp.
JP31584197A 1997-10-31 1997-10-31 High-intensity discharge lamp lighting device Expired - Fee Related JP3793339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31584197A JP3793339B2 (en) 1997-10-31 1997-10-31 High-intensity discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31584197A JP3793339B2 (en) 1997-10-31 1997-10-31 High-intensity discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JPH11135287A JPH11135287A (en) 1999-05-21
JP3793339B2 true JP3793339B2 (en) 2006-07-05

Family

ID=18070233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31584197A Expired - Fee Related JP3793339B2 (en) 1997-10-31 1997-10-31 High-intensity discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP3793339B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260808A (en) 2005-03-15 2006-09-28 Sanyo Tekunika:Kk Control device of high-luminance discharge bulb and its control method

Also Published As

Publication number Publication date
JPH11135287A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
JP2587710B2 (en) Lighting circuit for vehicle discharge lamps
US5142203A (en) Lighting circuit for high-pressure discharge lamp for vehicles
US20080122386A1 (en) Control Unit for a Lamp Driver Providing Smooth Transition Between Operation Modes
JP2007194044A (en) Lighting circuit
JPH0785986A (en) Discharge lamp lighting device
GB2233796A (en) Lighting circuit for high-pressure discharge lamp for vehicles
JPH11339992A (en) High-pressure discharge lamp lighting device, lighting system and vehicle
US6208088B1 (en) Method and ballast for starting a discharge lamp
US6605906B2 (en) Light source device
US4550272A (en) Operating circuit for electric discharge lamp
JP3440667B2 (en) Discharge lamp lighting device
WO2009145108A1 (en) Device for operating discharge lamp, device for operating vehicle-mounted operating high-intensity discharge lamp, vehicle-mounted headlight, and vehicle
JPH0121598B2 (en)
JP3326968B2 (en) Discharge lamp lighting device
JP3793339B2 (en) High-intensity discharge lamp lighting device
JP4601558B2 (en) Light emitting device for vehicle
US7015651B2 (en) Light source device having a discharge lamp with high radiance and a current feed controller
JPH076885A (en) High-pressure discharge lamp lighting circuit
US8080949B2 (en) HID ballast with integrated voltage multiplier and lamp temperature compensation
JP4708020B2 (en) Discharge lamp lighting device
JPH11508401A (en) Circuit assembly
JP2004119164A (en) Discharge lamp lighting device
JPH0982480A (en) Discharge lamp lighting device
JP2001085185A (en) High pressure discharge lamp lighting device
JP3280563B2 (en) Discharge lamp lighting circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees