JP3792857B2 - Electrochemical processing equipment - Google Patents

Electrochemical processing equipment Download PDF

Info

Publication number
JP3792857B2
JP3792857B2 JP26040397A JP26040397A JP3792857B2 JP 3792857 B2 JP3792857 B2 JP 3792857B2 JP 26040397 A JP26040397 A JP 26040397A JP 26040397 A JP26040397 A JP 26040397A JP 3792857 B2 JP3792857 B2 JP 3792857B2
Authority
JP
Japan
Prior art keywords
chamber
treatment
reaction chamber
reaction
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26040397A
Other languages
Japanese (ja)
Other versions
JPH1190449A (en
Inventor
泰樹 吉田
節郎 尾形
善則 錦
孝之 島宗
博史 井上
千秋 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP26040397A priority Critical patent/JP3792857B2/en
Publication of JPH1190449A publication Critical patent/JPH1190449A/en
Application granted granted Critical
Publication of JP3792857B2 publication Critical patent/JP3792857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃水を水素添加又は還元処理と酸化処理とを組合せて高度処理するために用いる電気化学処理装置に関し、特に、水素添加又は還元処理後に酸化処理を行うことにより、又は酸化処理後に水素添加又は還元処理を行うことにより、廃水処理、たとえば染料排液などの着色廃液の処理を効率的に行うことが可能な電気化学処理装置に関する。
【0002】
【従来の技術】
着色廃液の処理は、従来から効果的な処理が困難なものであって、この処理を効果的に行えるようにすることは多年の懸案事項であった。つまり、着色廃液は、着色の原因によってはその処理が極めて困難なものがある。廃液の着色の原因には大きく分けて二種類ある。そのひとつが金属イオンの含有であり、代表的にはいわゆる遷移金属イオンの存在により着色するものであり、例えば銅イオンの存在により青色に着色したり、コバルトイオンによりピンク色に着色するものである。これらの金属イオン由来の場合は、金属を取り除くことによって比較的容易に処理できることは良く知られていることである。
【0003】
もう一つの原因として有機物に由来するものがある。すなわち、二重結合や三重結合などの不飽和結合を有する有機物が含まれる場合には、それが原因となって着色すると言われている。この処理法として、従来から、活性炭で吸着する方法、強い酸化剤で有機物を分解する方法、更に、これらを組み合わせる方法などが知られている。
ここで着色廃水処理、特に有機物由来の着色廃液の処理について考えてみると、理想的には完全に有機物を分解処理してしまうことであるが、その一方で従来費用がかかるとされてきた脱色処理を含む前処理等と最終処理とを分離して考えることもできる。すなわち前処理としてある程度分解しておきそれを活性炭処理する、又は生物処理して着色をなくすと共に無害化する方法である。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の活性炭で直接吸着する方法では、通常このような着色廃液に含まれる有機物量がかなり多いためにその負荷が大きく、そのままては多量の活性炭を使用したり又は活性炭のメンテナンスを非常にしばしば行う必要があるなどの問題点があった。同様の意味で、含有有機物を強い酸化剤で完全に水と炭酸ガスにまで分解してしまうことは、その使用する酸化剤の量が極めて多くなる問題点が容易に考えられる。たとえばオゾン処理による着色廃水処理に於いては、最近の新聞記事によると(平成9年3月21日日刊工業新聞)3トン/時間の廃水を処理するのにオゾン生成量15kg/時間と言う大型のオゾン発生装置を使用する必要があるとしており、経済性の点から大きな問題であった。
【0005】
また生物化学処理としてバクテリアなどによって有機物を分解することが考えられているが、大きな場所を必要とすること、長時間を要することと共に、必ずしも選択的な反応が期待できないこと、廃液によっては分解しにくいために長時間処理しても十分な効果が得られないなどの問題点があった。
さらにまた、前処理と活性炭処理又は生物処理の組合せにおいても、選択的に着色原因を除き、更に分解を能率的に行う方法は従来見られず、着色廃水の処理は困難を極めていると言って良く、通常は過剰とも思える設備を使って処理するために経済的に大きな負担をかけるという問題があり、実用的な方法がなかったという問題点があった。
本発明は、叙上の問題点を解決するためになされたものであり、有機着色廃水の脱色を選択的に行うと共に効率的に無害化処理する装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は、前記課題を解決すべく鋭意検討した結果、水素添加又は還元と酸化処理を組合せて上記着色廃水を処理することによって上記目的を達成できることを見出して本発明を完成するに至った。
従って、本発明は、着色の主原因である有機物質の多重結合部分を水添又は還元反応で選択処理し、更に電解酸化により有機物を分解すること、或いはその処理順序を逆に行うことにより有機物を分解することによって無害化する、多年の懸案事項であった染色排水の処理に抜群の効果を発揮する電解反応装置を提供するものである。
【0007】
すなわち、本発明は、次の構成からなるものである。
(1)水素吸蔵金属からなる陰極を兼ねた隔壁により仕切られた反応室と電解室の2室からなり、前記隔壁の反応室側表面に反応触媒層を設け、電解室には酸化用陽極を該隔壁の陰極と対向して配置した電気化学処理装置であって、被処理物が反応室に入って該水素吸蔵金属隔壁と接触して水素添加、又は還元された後、電解室に送られて陽極酸化処理されるか、もしくは、被処理物が電解室に入って陽極酸化処理された後、反応室に送られて該水素吸蔵金属隔壁と接触して水素添加、又は還元されることを特徴とする有機着色廃水の脱色用電気化学処理装置。
(2)前記電解室の酸化用陽極の電極物質が酸化鉛であることを特徴とする前記(1)記載の電気化学処理装置。
(3)前記の水素吸蔵金属からなる陰極を兼ねた隔壁の反応室側表面をブラスト等により粗面化し、さらに多孔質触媒層を設けて、比表面積を拡大し、接触面積を増加したものであることを特徴とする前記(1)記載の電気化学処理装置。
【0008】
【発明の実施の形態】
典型的な電気化学処理装置を概念的に示した模式図を図1に示す。図1において、電気化学処理装置1の形状は、水素吸蔵金属からなる陰極兼隔壁2により仕切られた反応室3と電解室4とをそれぞれ有する反応槽型の容器をなしており、前記陰極兼隔壁2はその陰極側が電解室4に面し、その反対側が反応室3に面するように設置されており、それぞれの槽の頂部は蓋体5、5で覆われており、また底部には撹拌子6、6が設けられており、これらは磁気的に回転されるようになっている。また、電解室4には陽極7が挿入されている。更に、反応室3にはポンプP1により水素添加又は還元された処理液を電解室4へ移送する配管8が、また電解室4には陽極酸化された処理液をポンプP2により反応室3へ移送する配管9がそれぞれ接続されている。
【0009】
次に図1に基づいて、電気化学処理装置1による着色廃液の処理を以下に説明する。
そこにおける反応の概要は、次に示すとおりである。先ず電解質の電解により水素吸蔵金属からなる陰極2では水素が発生し、その水素の大部分は水素吸蔵金属に吸蔵され、吸蔵水素量の増加と共に陰極兼隔壁2の中を反対側に移動する。移動した水素は反応室3内の被反応物、ここでは被処理水内に活性水素、水素ラジカルなどとして移動し、被反応物と反応し、いわゆる水添反応を行う。この反応は有機化合物の二重結合のような多重結合部分を選択的にアタックする。これによって多重結合が飽和するので着色が消える。多重結合の水添による脱色は、一般に脱水素による再多重結合化が困難であるだけに処理の途中で再び着色する可能性が少ないという特徴を有している。
【0010】
この脱色した被反応物を更に電解室4に送る。その電解室4での陽極酸化により有機物の種類によっては完全に分解され、また有機物の種類によっては部分的に分解されて処理されやすい形となる。このときの陽極酸化は、そこで使用する電極の種類によって変わってくるので、水中の被処理物の種類を考えて使用する電極の種類を選択する。たとえば酸化鉛電極を使用すると、極めて酸化力が強いので、多くの有機物は分解されて二酸化炭素と水にまでなるケ−スが多い。また、そこまでの分解が起こらなくても比較的簡単な形の有機物にまで分解されるので、後は、そのまま排水したり、必要に応じて生物処理などの追加処理を行えばよい。
【0011】
また、酸化錫電極では有機物のうちでもベンゼン環の開環に有効であるとされている。白金めっきチタン電極では酸化鉛ほどの酸化力はないが、大きな酸素過電圧を有するので高電位による酸化分解が行える。導電性ダイヤモンド電極は過電圧は大きいが、酸化力は優れている。これらの電極は、被分解物によって選択するが、いずれの場合もそのままで排水できる状態となったり、少なくとも二次処理が極めて容易になると言う特徴がある。しかも、他の処理と異なり水添により水素の飽和化が進んでいるので、再着色の心配なしに二次処理まで可能である。
【0012】
アゾ染料として代表的なアマランスを含む廃水の場合、図1に示す装置で水素吸蔵金属としてパラジウム箔を用い、反応側の表面にパラジウム黒を触媒と反応面積拡大を兼ねて生成させ、電解室4の陽極7として酸化鉛電極を用いた。室温で電流密度2〜3A/dm2 で電解を行いながら、前記廃液を反応室3を通し、さらに電解室4に流した場合、反応室3を出た段階で液は見掛け上無色となった。しかしCODは殆ど変化しなかった。この液のCODは100〜120ppmであった。これを更に電解室4側に通したところ、電解室4側出口ではCODは5ppm程度まで下がり、確実にCODの低下効果のあることがわかった。また、アントラキノン系の染料や、キノリン系の染料でも程度の差はあるが同様の効果が認められた。
【0013】
【実施例】
以下に、本発明を実施例によって具体的に説明するが、本発明はこれに限定されないことは言うまでもない。
【0014】
実施例1
図1の処理装置を用いてアマランス含有の模擬廃水(COD=103ppm)の処理を行った。まずブラスト処理して有効面積が1cm2 である厚さ0.05mmのパラジウム板の反応室側表面にパラジウム黒の電気めっきを行い、さらにその表面にPtの電気めっきを行った。電解室の陽極は、熱シュウ酸で酸洗したTi板にPbO2 めっきをして作成した。反応室側に100mg/dm3 のアマランス含有模擬廃水を10dm3 入れて撹拌子6の回転で撹拌するとともにポンプで循環し、室温、電流密度5A/dm2 の条件で5時間電解を行った。処理後の前記模擬廃水の脱色度は吸光光度計を用いて測定した。その方法は、510nmにおける吸光度を電解前後で比較し、その比を脱色率とするものである。この試験結果は97%の脱色率であった。この時のCOD値は変わっていなかった。そこで、この装置の反応室から出た液を電解室に流すように配管を変更して同様の電解を行ったところ、脱色率は95%になり、CODは5ppmまで低下していた。
この処理済み液を室温で2日間放置した後、脱色率とCOD値の測定を行ったところ、電解処理直後と同等の値であった。
【0015】
比較例1
図1の処理装置を用いて電解室のみに前記廃液を入れて5時間電解したところ、脱色率は20%、COD値は25ppmであった。
実施例2
実施例1と同様の条件で、被処理液を100mg/dm3 のクリスタルバイオレット含有液に変えて、反応室から電解室に被処理液を流して処理したところ、89%の脱色率が得られた。その後に酸化鉛電極を有する電解槽で酸化分解処理を行ったところCOD値は10ppmまで下がった。このときの着色の変化は全く認められなかった。
【0016】
実施例3
実施例1と同様の条件で、アゾ染料廃液(COD=3300ppm)を被処理液として、反応室から電解室に処理液を流して処理したところ、9時間の反応時間で97%の脱色率が得られた。この時のCODは30ppmまで低下していた。
【0017】
【発明の効果】
本発明の電気化学処理装置においては、次のような優れた効果が奏される。
(1)反応室内の被処理液を水素を十分に吸蔵させた水素吸蔵金属に接触させることによって染料などを含む着色液の脱色が出来る。
(2)この脱色反応は有機物への水素添加によると考えられるので、後の電解酸化などで再度の着色が起こらない。
(3)水素添加や還元による脱色液を電解室に送り電解を行うことによってCODの低減、染料の分解が促進される。
(4)脱色とCOD低減(分解)を別に行う結果となり確実な脱色が行える。
(5)COD低減には食塩などの添加物を入れずに電解を行うので二次汚染の問題が全く起こらない。
【図面の簡単な説明】
【図1】本発明の電気化学処理装置の1態様を説明する模式図である。
【符号の説明】
1 電気化学処理装置
2 陰極兼隔壁
3 反応室
4 電解室
5 蓋体
6 撹拌子
7 陽極
8 配管
9 配管
P1 ポンプ
P2 ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrochemical treatment apparatus used for advanced treatment of wastewater by combining hydrogenation or reduction treatment and oxidation treatment, and in particular, by performing oxidation treatment after hydrogenation or reduction treatment, or hydrogenation after oxidation treatment. The present invention relates to an electrochemical treatment apparatus capable of efficiently performing waste water treatment, for example, treatment of colored waste liquid such as dye waste liquid by performing addition or reduction treatment.
[0002]
[Prior art]
The treatment of colored waste liquid has hitherto been a matter of concern for many years, since it has been difficult to perform an effective treatment. That is, some colored waste liquids are extremely difficult to process depending on the cause of coloring. There are two main reasons for coloring the waste liquid. One of them is the inclusion of metal ions, which are typically colored by the presence of so-called transition metal ions, for example, colored blue by the presence of copper ions or colored pink by cobalt ions. . It is well known that these metal ions can be treated relatively easily by removing the metal.
[0003]
Another cause is derived from organic matter. That is, when an organic substance having an unsaturated bond such as a double bond or a triple bond is contained, it is said that the coloring is caused by that. As this treatment method, conventionally, a method of adsorbing with activated carbon, a method of decomposing organic substances with a strong oxidizing agent, and a method of combining them are known.
Here, when considering the treatment of colored wastewater, especially the treatment of colored waste liquid derived from organic matter, it is ideally to completely decompose organic matter, but on the other hand, decolorization has been considered to be costly in the past It is also possible to separate the pre-processing including processing from the final processing. That is, it is a method of decomposing to some extent as a pretreatment and treating it with activated carbon, or biologically treating it to eliminate coloration and detoxify it.
[0004]
[Problems to be solved by the invention]
However, in the conventional method of directly adsorbing with activated carbon, the amount of organic matter contained in such colored waste liquid is usually quite large, so the load is large, and as it is, a large amount of activated carbon is used or maintenance of activated carbon is very much. There were problems such as needing to do it often. In the same meaning, the decomposition of the contained organic matter completely into water and carbon dioxide gas with a strong oxidizing agent can easily be considered as a problem that the amount of the oxidizing agent to be used becomes extremely large. For example, in the treatment of colored wastewater by ozone treatment, according to a recent newspaper article (Nikkan Kogyo Shimbun, March 21, 1997), a large amount of ozone generation of 15 kg / hour is required to treat 3 tons / hour of wastewater. It was necessary to use the ozone generator of this, and it was a big problem from the point of economical efficiency.
[0005]
In addition, it is considered to decompose organic substances by bacteria as biochemical treatment. However, it requires a large place, takes a long time, and cannot always expect selective reaction. Due to the difficulty, sufficient effects cannot be obtained even if the treatment is performed for a long time.
Furthermore, even in the combination of pretreatment and activated carbon treatment or biological treatment, there has been no conventional method for selectively removing the cause of coloring and further efficient decomposition, and it is said that the treatment of colored wastewater is extremely difficult. Well, there is a problem that a large financial burden is required for processing using equipment that usually seems to be excessive, and there was a problem that there was no practical method.
The present invention has been made to solve the above problems, and an object thereof is to provide an apparatus for selectively decolorizing and efficiently detoxifying organic colored wastewater.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the object can be achieved by treating the colored wastewater by combining hydrogenation or reduction and oxidation treatment, and have completed the present invention. It was.
Therefore, the present invention selectively treats multiple bonds of organic substances, which are the main cause of coloration, by hydrogenation or reduction reaction, and further decomposes organic substances by electrolytic oxidation, or reverses the order of the treatment, thereby removing organic substances. It is intended to provide an electrolytic reaction apparatus that exhibits an excellent effect on the treatment of dye wastewater, which has been a matter of concern for many years.
[0007]
That is, this invention consists of the following structures.
(1) hydrogen occlusion reaction chamber partitioned by the doubles septum cathode made of metal and consists of two chambers of the electrolysis chamber, a catalyst layer in the reaction chamber side surface of the partition wall is provided, the oxidizing anode in electrolysis chamber An electrochemical treatment apparatus disposed opposite to the cathode of the partition wall, wherein an object to be processed enters the reaction chamber, contacts the hydrogen storage metal partition wall, is hydrogenated or reduced, and then sent to the electrolytic chamber. To be anodized, or after the workpiece enters the electrolytic chamber and is anodized, it is sent to the reaction chamber and contacted with the hydrogen storage metal partition wall to be hydrogenated or reduced. An electrochemical treatment device for decolorizing organic colored wastewater .
(2) The electrochemical treatment apparatus according to (1), wherein the electrode material of the oxidation anode in the electrolytic chamber is lead oxide.
(3) The reaction chamber side surface of the partition wall also serving as a cathode made of the hydrogen storage metal is roughened by blasting, etc., and further provided with a porous catalyst layer to increase the specific surface area and increase the contact area. The electrochemical processing apparatus according to (1), wherein the electrochemical processing apparatus is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A schematic diagram conceptually showing a typical electrochemical processing apparatus is shown in FIG. In FIG. 1, the shape of the electrochemical treatment apparatus 1 is a reaction vessel type vessel having a reaction chamber 3 and an electrolysis chamber 4 each partitioned by a cathode / partition 2 made of a hydrogen storage metal. The partition wall 2 is installed so that the cathode side faces the electrolysis chamber 4 and the opposite side faces the reaction chamber 3. The top of each tank is covered with lids 5 and 5, and the bottom is Stirring elements 6 and 6 are provided, and these are magnetically rotated. An anode 7 is inserted into the electrolysis chamber 4. Further, the reaction chamber 3 is provided with a pipe 8 for transferring the processing solution hydrogenated or reduced by the pump P1 to the electrolysis chamber 4, and the electrolysis chamber 4 is supplied with the anodized processing solution to the reaction chamber 3 by the pump P2. Pipes 9 to be connected are respectively connected.
[0009]
Next, based on FIG. 1, the process of the colored waste liquid by the electrochemical processing apparatus 1 is demonstrated below.
The outline of the reaction is as follows. First, hydrogen is generated in the cathode 2 made of a hydrogen storage metal by electrolysis of the electrolyte, and most of the hydrogen is stored in the hydrogen storage metal, and moves in the cathode / partition wall 2 to the opposite side as the amount of stored hydrogen increases. The transferred hydrogen moves as an active hydrogen, a hydrogen radical, or the like into the reactant in the reaction chamber 3, here, the water to be treated, and reacts with the reactant to perform a so-called hydrogenation reaction. This reaction selectively attacks multiple bond moieties such as double bonds in organic compounds. As a result, the multiple bond is saturated and the color disappears. Decolorization by hydrogenation of multiple bonds generally has a feature that there is little possibility of coloring again in the middle of processing because re-multibonding by dehydrogenation is difficult.
[0010]
This decolorized reactant is further sent to the electrolysis chamber 4. By the anodic oxidation in the electrolytic chamber 4, some organic substances are completely decomposed, and some organic substances are partially decomposed and easily processed. Since the anodic oxidation at this time varies depending on the type of electrode used there, the type of electrode to be used is selected in consideration of the type of object to be treated in water. For example, when a lead oxide electrode is used, the oxidizing power is extremely strong, and many organic substances are often decomposed into carbon dioxide and water. Moreover, even if the decomposition does not occur so far, it is decomposed to a relatively simple organic substance, and thereafter, it is only necessary to drain the water as it is or to perform additional treatment such as biological treatment as necessary.
[0011]
Moreover, it is said that a tin oxide electrode is effective in opening a benzene ring among organic substances. A platinum-plated titanium electrode is not as oxidizing as lead oxide, but has a large oxygen overvoltage and can be oxidatively decomposed at a high potential. The conductive diamond electrode has a large overvoltage, but has an excellent oxidizing power. These electrodes are selected depending on the material to be decomposed, but in any case, the electrodes can be drained as they are, or at least the secondary treatment is extremely easy. In addition, unlike other treatments, hydrogen saturation is progressing by hydrogenation, so secondary treatment is possible without worrying about recoloration.
[0012]
In the case of wastewater containing amaranth typical as an azo dye, palladium foil is used as a hydrogen storage metal in the apparatus shown in FIG. 1, and palladium black is generated on the reaction side surface as a catalyst and the reaction area is expanded. A lead oxide electrode was used as the anode 7. When the waste liquid was allowed to flow through the reaction chamber 3 and further to the electrolysis chamber 4 while performing electrolysis at a current density of 2 to 3 A / dm 2 at room temperature, the liquid became apparently colorless at the stage of exiting the reaction chamber 3. . However, the COD changed little. The COD of this liquid was 100 to 120 ppm. When this was further passed to the electrolysis chamber 4 side, the COD decreased to about 5 ppm at the electrolysis chamber 4 side outlet, and it was found that there was a surely lowering effect of COD. In addition, similar effects were observed with anthraquinone dyes and quinoline dyes to some extent.
[0013]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but it goes without saying that the present invention is not limited thereto.
[0014]
Example 1
Amaranth-containing simulated wastewater (COD = 103 ppm) was treated using the treatment apparatus of FIG. First, blasting was performed, and a palladium black electroplating was performed on the reaction chamber side surface of a 0.05 mm thick palladium plate having an effective area of 1 cm 2 , and Pt electroplating was further performed on the surface. The anode of the electrolysis chamber was prepared by plating PbO 2 on a Ti plate pickled with hot oxalic acid. And 10 dm 3 put Amaranth containing simulated wastewater 100 mg / dm 3 in the reaction chamber side circulating pump with stirring by the rotation of the stirrer 6 was carried out at room temperature, for 5 hours electrolysis at a current density of 5A / dm 2. The degree of decolorization of the simulated wastewater after the treatment was measured using an absorptiometer. In this method, the absorbance at 510 nm is compared before and after electrolysis, and the ratio is defined as the decolorization rate. The test result was 97% decolorization. The COD value at this time was not changed. Therefore, when the same electrolysis was carried out by changing the piping so that the liquid coming out of the reaction chamber of this apparatus flows into the electrolysis chamber, the decolorization rate was 95% and the COD was reduced to 5 ppm.
The treated liquid was allowed to stand at room temperature for 2 days, and then the decolorization rate and COD value were measured. The values were the same as those immediately after the electrolytic treatment.
[0015]
Comparative Example 1
When the waste liquid was put into only the electrolytic chamber using the processing apparatus of FIG. 1 and electrolyzed for 5 hours, the decolorization rate was 20% and the COD value was 25 ppm.
Example 2
Under the same conditions as in Example 1, the treatment liquid was changed to a crystal violet-containing liquid of 100 mg / dm 3 and the treatment liquid was allowed to flow from the reaction chamber to the electrolysis chamber. As a result, a decolorization rate of 89% was obtained. It was. Thereafter, when an oxidative decomposition treatment was performed in an electrolytic cell having a lead oxide electrode, the COD value decreased to 10 ppm. At this time, no color change was observed.
[0016]
Example 3
Under the same conditions as in Example 1, the azo dye waste liquid (COD = 3300 ppm) was used as the liquid to be treated, and the treatment liquid was allowed to flow from the reaction chamber to the electrolysis chamber. As a result, a 97% decolorization rate was obtained in a reaction time of 9 hours. Obtained. The COD at this time was reduced to 30 ppm.
[0017]
【The invention's effect】
The electrochemical processing apparatus of the present invention has the following excellent effects.
(1) A colored liquid containing a dye or the like can be decolored by bringing the liquid to be treated in the reaction chamber into contact with a hydrogen occlusion metal that has sufficiently occluded hydrogen.
(2) Since this decolorization reaction is considered to be due to hydrogenation to organic matter, coloring does not occur again by subsequent electrolytic oxidation or the like.
(3) Reduction of COD and decomposition of the dye are promoted by carrying out electrolysis by sending a decolorizing solution by hydrogenation or reduction to the electrolysis chamber.
(4) As a result of separately performing decolorization and COD reduction (decomposition), reliable decolorization can be performed.
(5) Since the electrolysis is performed without adding an additive such as salt to reduce COD, the problem of secondary contamination does not occur at all.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating one embodiment of an electrochemical treatment apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrochemical processing apparatus 2 Cathode and partition 3 Reaction chamber 4 Electrolysis chamber 5 Lid body 6 Stirrer 7 Anode 8 Piping 9 Piping P1 Pump P2 Pump

Claims (3)

水素吸蔵金属からなる陰極を兼ねた隔壁により仕切られた反応室と電解室の2室からなり、前記隔壁の反応室側表面に反応触媒層を設け、電解室には酸化用陽極を該隔壁の陰極と対向して配置した電気化学処理装置であって、被処理物が反応室に入って該水素吸蔵金属隔壁と接触して水素添加、又は還元された後、電解室に送られて陽極酸化処理されるか、もしくは、被処理物が電解室に入って陽極酸化処理された後、反応室に送られて該水素吸蔵金属隔壁と接触して水素添加、又は還元されることを特徴とする有機着色廃水の脱色用電気化学処理装置。It consists of two chambers, a reaction chamber and an electrolysis chamber, which are partitioned by a partition also serving as a cathode made of a hydrogen storage metal. A reaction catalyst layer is provided on the reaction chamber side surface of the partition, and an oxidation anode is provided in the electrolytic chamber. An electrochemical treatment apparatus disposed opposite to a cathode, wherein an object to be treated enters a reaction chamber and is brought into contact with the hydrogen storage metal partition wall to be hydrogenated or reduced, and then sent to an electrolytic chamber to be anodized. Or the material to be processed enters the electrolytic chamber and is anodized, and then sent to the reaction chamber to be contacted with the hydrogen storage metal partition wall to be hydrogenated or reduced. Electrochemical treatment equipment for decolorizing organic colored wastewater . 前記電解室の酸化用陽極の電極物質が酸化鉛であることを特徴とする請求項1記載の電気化学処理装置。2. The electrochemical treatment apparatus according to claim 1, wherein the electrode material of the anode for oxidation in the electrolytic chamber is lead oxide. 前記の水素吸蔵金属からなる陰極を兼ねた隔壁の反応室側表面をブラスト等により粗面化し、さらに多孔質触媒層を設けて、比表面積を拡大し、接触面積を増加したものであることを特徴とする請求項1記載の電気化学処理装置。The reaction chamber side surface of the partition wall that also serves as the cathode made of the hydrogen storage metal is roughened by blasting or the like, and further provided with a porous catalyst layer to increase the specific surface area and increase the contact area. The electrochemical processing apparatus according to claim 1, wherein:
JP26040397A 1997-09-25 1997-09-25 Electrochemical processing equipment Expired - Fee Related JP3792857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26040397A JP3792857B2 (en) 1997-09-25 1997-09-25 Electrochemical processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26040397A JP3792857B2 (en) 1997-09-25 1997-09-25 Electrochemical processing equipment

Publications (2)

Publication Number Publication Date
JPH1190449A JPH1190449A (en) 1999-04-06
JP3792857B2 true JP3792857B2 (en) 2006-07-05

Family

ID=17347438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26040397A Expired - Fee Related JP3792857B2 (en) 1997-09-25 1997-09-25 Electrochemical processing equipment

Country Status (1)

Country Link
JP (1) JP3792857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221691A (en) * 2002-01-31 2003-08-08 Permelec Electrode Ltd Electrolytic cathode and electrolytic cell using this
WO2005092448A1 (en) * 2004-03-29 2005-10-06 Ait Co., Ltd. Method and apparatus for dehalogenating organic halide through electrolysis

Also Published As

Publication number Publication date
JPH1190449A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
Öğütveren et al. Color removal from textile effluents by electrochemical destruction
CN107129011B (en) Device and method for treating high-chloride organic wastewater through electrolysis-ionic membrane coupling
US20090152123A1 (en) Methods and Apparatus for Generating Oxidizing Agents
US3926771A (en) Apparatus for electrosanitizing waste water
JP2004181329A (en) Wastewater treatment method and apparatus therefor
JP2003126861A (en) Method and apparatus for water treatment
CN106145483B (en) Multiple oxidation treatment method and device for wastewater
CA1063062A (en) Method and apparatus for electrosanitizing waste water
JP3792857B2 (en) Electrochemical processing equipment
JP2003145161A (en) Water treatment apparatus and water treatment method
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JPH09150159A (en) Cod-related component removing method for the component containing water
JPH07256297A (en) Purification treatment of livestock excretion
US4248684A (en) Electrolytic-cell and a method for electrolysis, using same
JP3601673B2 (en) Electrolytic treatment method for water containing oxidizable pollutants and electrode for electrolytic treatment
JPH1110160A (en) Method for treating water by electrolytic oxidation
JPS6036835B2 (en) How to purify human waste water
JP3470997B2 (en) Organic wastewater treatment method and apparatus
JP2000263049A (en) Method and apparatus for cleaning barn effluent
CN114920398B (en) High-salt ammonia nitrogen wastewater treatment device and treatment method
JPH1190448A (en) Electrolytic treatment of polluted water
Ochoa-Chavez et al. Advanced oxidation processes for removal of pharmaceuticals and personal care products
JPH081167A (en) Water treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees