JP3792292B2 - Press shock absorbing method and press shock absorbing device - Google Patents

Press shock absorbing method and press shock absorbing device Download PDF

Info

Publication number
JP3792292B2
JP3792292B2 JP09320296A JP9320296A JP3792292B2 JP 3792292 B2 JP3792292 B2 JP 3792292B2 JP 09320296 A JP09320296 A JP 09320296A JP 9320296 A JP9320296 A JP 9320296A JP 3792292 B2 JP3792292 B2 JP 3792292B2
Authority
JP
Japan
Prior art keywords
oil chamber
buffer
oil
pressure
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09320296A
Other languages
Japanese (ja)
Other versions
JPH09253898A (en
Inventor
清二 木村
Original Assignee
パスカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パスカル株式会社 filed Critical パスカル株式会社
Priority to JP09320296A priority Critical patent/JP3792292B2/en
Publication of JPH09253898A publication Critical patent/JPH09253898A/en
Application granted granted Critical
Publication of JP3792292B2 publication Critical patent/JP3792292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/0076Noise or vibration isolation means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Presses And Accessory Devices Thereof (AREA)
  • Control Of Presses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ブレークスルー付近における衝撃を緩衝するプレスの衝撃緩衝方法及び衝撃緩衝装置に関し、特に、上型が下型又はワークにタッチする直前から緩衝用油室の油圧を急速昇圧させて緩衝し、ブレークスルー近傍で油圧が所定圧以上になってからは、緩衝用圧縮ガス室の圧縮ガスを圧縮しながら緩衝するものに関する。
【0002】
【従来の技術】
一般に、ワークの切断、穴あけ、打抜き等の破断を伴うプレス加工においては、負荷衝撃音と除荷衝撃音とに大別される騒音が発生する。負荷衝撃音は、上型の下型又はワークへの衝突により発生するタッチ音である。一方、除荷衝撃音は、ワーク破断時(ブレークスルー)の除荷衝撃に伴う非常に大きな音であり、上型を含む可動体及びプレス本体に作用していた大きな負荷が、ワーク破断時に瞬間的に除去されるために発生する。従来、可動体に作用している負荷の急激な低下を抑制すること、即ち、ブレークスルー時の除荷衝撃を緩衝することで、除荷衝撃音を低下させる種々の緩衝装置が実用化されている。
【0003】
例えば、実開平4−94197号公報の緩衝装置においては、下型に形成され可変絞り弁を介してタンクに接続された緩衝用油室と、上型に固定された押圧部材とを有し、押圧部材で緩衝用油室のピストン部材を押圧することで、緩衝用油室の油圧を可変絞り弁からリリーフさせつつ昇圧させて、上型に荷重を付加することで除荷衝撃を緩衝する。
【0004】
実開平3−126298号公報の緩衝装置においては、基台とスライド間に配設された緩衝用シリンダと、緩衝用シリンダに電磁方向切換え弁を介して接続され可変絞り弁とタンクとを有する緩衝装置本体とを有し、無負荷時と負荷時のスライドのモーションを比較してブレークスルー発生時期を算出し、これに合わせて緩衝作用が働くように電磁方向切換え弁を切換え制御して、ブレークスルーに伴う除荷衝撃を緩衝するように構成してある。
【0005】
特開平6−79500号公報の緩衝装置及び緩衝方法においては、下型に形成された緩衝用油室及び上型に固定された押圧部材と、緩衝用油室に接続されたタンクを有するタイミング調整装置とを有し、前記公報と同様、押圧部材で緩衝用油室のピストン部材を押圧することで、緩衝用油室の作動油を可変絞り弁からリリーフさせつつ昇圧させるが、除荷衝撃音が最小になるように、タンクに内装されたタイミング調整ピストンを駆動制御して、緩衝用油室のピストン部材の上限位置を決定、即ち、油圧を昇圧し始めるタイミングを調節した後に、油圧を昇圧させ上型に荷重を付加して除荷衝撃を緩衝するように構成してある。
【0006】
従来の油圧式の衝撃緩衝技術においては、下降するスライド又は上型の押圧力を利用してピストン部材を下降させ、緩衝用油室の油圧を絞り弁からリリーフさせつつ昇圧させ、スライドや上型に付加する荷重を発生させることで除荷衝撃を緩衝して、除荷衝撃音を低下させるが、プレスの加圧能力を低下させずに、除荷衝撃音を極力低下させるには、ブレークスルー直前に油圧を急速昇圧させ、しかも、除荷衝撃を適正な緩衝力で緩衝する必要がある。即ち、適正な緩衝力以上の荷重で除荷衝撃を緩衝すれば、プレスの加圧能力が低下するからである。
【0007】
【発明が解決しようとする課題】
しかし、実開平4−94197号公報のような制御装置を設けない油圧式の衝撃緩衝技術においては、可変絞り弁の絞り量を調節することで、ブレークスルー直前に油圧を急速昇圧させ、ブレークスルー時に適正な緩衝力で除荷衝撃を緩衝するが、絞り弁の抵抗作用で油温の上昇が著しくなる。気温やプレスの稼働時間等によっても油温が変化する。油温が高くなると、油の粘性が低下するため、ブレークスルー時の緩衝用油室の油圧が所定圧まで達しなくなり、除荷衝撃音を十分に低減できなくなる。また、油温が低くなると、油の粘性が大きくなるため、ブレークスルー時の緩衝用油室の油圧が所定以上になり、適正な緩衝力以上の荷重で除荷衝撃を緩衝することになるので、プレスの加圧能力が低下するという問題がある。
【0008】
一方、実開平3−126298号公報、実開平3−126298号公報のような油圧式の衝撃緩衝技術においては、電磁方向切換え弁により油圧を自在に昇圧したり、油圧を昇圧し始めるタイミングを調節したりすることで、適正な緩衝力で除荷衝撃を緩衝して、除荷衝撃音を低減できるが、センサ類や制御装置を設ける関係上、製作コストが非常に高くなるし、油温の影響や油の応答遅れ等により精密な制御が非常に困難である。
【0009】
また、前記公報の緩衝装置では、上型が下型又はワークにタッチすると同時に、押圧部材でピストン部材を押圧して油室を昇圧させて緩衝するので、上型が下型又はワークに衝突する際のタッチ音を低減することができない。
実開平4−94197号公報と実開平3−126298号公報の緩衝装置においては、下型に緩衝用油室が形成されているので、緩衝装置の製作が困難になり、既存のプレスへの適用も不可能になる。
【0010】
本発明の目的は、油温の変動による影響を殆ど受けずに、適正な緩衝力で除荷衝撃を緩衝すること、上型が下型やワークに衝突する際のタッチ音を低減すること、既存のプレスに適用可能にすること、等である。
【0011】
【課題を解決するための手段】
請求項1のプレスの衝撃緩衝方法は、プレスの基台とスライドとの間に配設され且つ緩衝用油室と緩衝用圧縮ガス室とを有しブレークスルー付近における衝撃を緩衝する緩衝装置を用いて衝撃を緩衝する緩衝方法において、スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前から緩衝用油室の油圧を急速昇圧させて緩衝し、ブレークスルー近傍で緩衝用油室の油圧が所定圧以上になってからは、緩衝用圧縮ガス室に封入した圧縮ガスを圧縮しながら緩衝するものである。
【0012】
即ち、上型が下型又は下型上のワークにタッチする直前から、緩衝用油室の油圧を急速昇圧させるので、油圧の急速昇圧による収縮により、上型が下型又はワークへ衝突するときの衝撃を緩衝してタッチ音を低減することができる。特に、ブレークスルー近傍で緩衝用油室の油圧が所定圧以上になってからは、緩衝用圧縮ガス室に封入した圧縮ガスを圧縮しながら緩衝するので、緩衝用油室の油圧を前記所定圧に近い略一定圧に維持することができ、その一定圧付近の油圧を介して適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。しかも、油温が変動して所定圧に達するタイミングが多少変化しても、ブレークスルー時における緩衝用油室の油圧を前記所定圧に近い略一定圧に維持でき、プレスの加圧能力を低下させることなく、適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。
【0013】
請求項2のプレスの衝撃緩衝装置は、プレスの基台とスライドとの間に配設されブレークスルー付近における衝撃を緩衝する緩衝装置において、所定の低圧の油圧を供給する油圧供給源に接続されるとともに絞り作用のある油路を介してタンクに接続された緩衝用油室と、スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前からスライドから作用する荷重を受けて緩衝用油室の作動油を圧縮する荷重入力用ピストン部材と、前記緩衝用油室に対して前記荷重入力用ピストン部材と反対側にピストン部材を隔てて緩衝用油室と直列状に形成され所定圧の圧縮ガスが封入された圧縮ガス室とを備え、前記ピストン部材の一端部に緩衝用油室に臨む第1ピストンを設けると共に他端部に圧縮ガス室に臨む第2ピストンを設け、前記緩衝用油室の油圧を受圧するピストン部材により、ブレークスルー付近で緩衝用油室の油圧が設定圧以上になってから前記圧縮ガス室の圧縮ガスを圧縮するように構成したものである。
【0014】
即ち、上型が下型にタッチする直前から、スライドから作用する荷重が荷重入力用ピストン部材に入力され、荷重入力用ピストン部材が移動して緩衝用油室の作動油が急速昇圧されるので、作動油の急速昇圧による収縮により、上型の下型又はワークへの衝突が緩衝され、タッチ音を低減することができる。ブレークスルー近傍で緩衝用油室の油圧が所定圧以上になってからは、ピストン部材により緩衝用圧縮ガス室に封入した圧縮ガスを圧縮しながら緩衝するので、緩衝用油室の油圧を前記所定圧に近い略一定圧に維持することができ、その一定圧付近の油圧を介してブレークスルーに伴う除荷衝撃を緩衝することができる。しかも、油温が変動して所定圧に達するタイミングが多少変化しても、ブレークスルー時における緩衝用油室の油圧を前記所定圧に近い略一定圧に維持でき、プレスの加圧能力を低下させることなく、適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。
【0015】
請求項3のプレスの衝撃緩衝装置は、請求項2の発明において、前記タンクと緩衝用油室とを接続する絞り作用のある油路に絞り弁が設けられたものである。即ち、絞り弁により緩衝用油室の作動油のタンクへのリリーフ量を調節して、緩衝用油室の油圧が所定圧以上になる荷重入力用ピストン部材の移動ストロークを設定可能に構成できる。
【0016】
請求項4のプレスの衝撃緩衝装置は、請求項2又は請求項3の発明において、前記緩衝用油室と圧縮ガス室とはプレスの構成部材とは別体のケーシングに形成し、このケーシングに、荷重入力用ピストン部材とピストン部材とを組み込んだものである。即ち、緩衝装置の製作が容易になるとともに、既存のプレスに取付けて適用可能になる。
【0017】
請求項5のプレスの衝撃緩衝装置は、請求項4の発明において、前記スライドに固定されたタイミング調節部材であって、前記スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前から、スライドから作用する荷重を荷重入力用ピストン部材に作用させるタイミング調節部材を備えたものである。即ち、プレスに取付けられる種々の大きさの金型に対応して、スライドからの荷重入力タイミングを調節可能になる。
【0018】
請求項6のプレスの衝撃緩衝装置は、請求項5の発明において、前記荷重入力用ピストン部材は、緩衝用油室の油圧を受圧するピストン部と、このピストン部からケーシング外まで一体的に延びる荷重入力部とを有するものである。即ち、ピストン部により緩衝用油室の油圧を確実に受圧でき、荷重入力部によりスライドから作用する荷重を荷重入力用ピストン部材に確実に入力することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しつつ説明する。
本実施形態は、プレス加工時のブレークスルー付近における衝撃を緩衝する衝撃緩衝方法及び衝撃緩衝装置に本発明を適用した場合の一例であり、以下の説明は、衝撃緩衝方法と衝撃緩衝装置の両方の説明を含むものである。
図1、図2に示すように、プレス1は、基台2と、基台2に立設された4本の柱状のアップライト3と、アップライト3にガイド部材3aを介してガイドされクランク式の駆動機構(図示略)で昇降駆動されるスライド4を有し、基台2の上に下型5が固定され、スライド4の下面側に上型6が固定される。
【0020】
前記プレス1の基台2とスライド4間には、プレス加工時のブレークスルー付近における衝撃を緩衝する4組の衝撃緩衝装置7が配設されている。
図3に示すように、各衝撃緩衝装置7は、緩衝装置本体8と、ベース部材9と、タイミング調節部材10とで構成されている。ベース部材9は、アップライト3の内側近傍部の基台2上に、フランジ部50aを複数のボルト50bで固定して立設され、緩衝装置本体8は、その基端部をベース部材9の上端部に複数のボルト11aで固着し、上端部を連結金具9aでアップライト3に連結し、ベース部材9上に固定されている。タイミング調節部材10は1対の軸部材55,56を連結してなり、緩衝装置本体8と対向させ、スライド4のガイド部4a付近に固定されている(図2参照)。
【0021】
図4、図5に示すように、緩衝装置本体8は、プレス1の構成部材と別体のケーシング11と、所定の低圧A0(例えば、A0=5 kgf/cm 2 G)の油圧を供給する油圧供給源50に接続されるとともに絞り作用のある油路58,59を介して油圧タンク51に接続された緩衝用油室25と、上型6が下型5又は下型5上のワークにタッチする直前からスライド4から作用する荷重を受けて緩衝用油室25の作動油を圧縮する荷重入力用ピストン部材15と、荷重入力用ピストン部材15の下側に緩衝用油室25と直列状に形成され所定圧B0(例えば、B0=66 kgf/cm 2 G)の圧縮ガス(例えば、圧縮窒素ガス)が封入された圧縮ガス室26と、緩衝用油室25に臨む第1ピストン21を一端部に有し圧縮ガス室26に臨む第2ピストン22を他端部に有するピストン部材20とで構成される。
【0022】
ケーシング11は、筒状部材12と、孔部13aを有し筒状部材12の先端部に内嵌固着された蓋部材13と、凹部14aを有し筒状部材12の基端部に内嵌固着された底蓋14からなり、筒状部材12の内部には、蓋部材13の孔部13aより大径の先端側孔部12aと、孔部12aより小径の孔部12bと、孔部12bより僅かに大径の孔部12cと、孔部12aと同径の孔部12dとが、先端側から直列状に形成されている。尚、蓋部材13には、荷重入力用ピストン部材15のピストン部17と孔部13a間に注入される潤滑剤(例えば、アルバニアグリス)の注入口13bが設けられている。
【0023】
荷重入力用ピストン部材15は、シール部材16aを介して孔部12aに摺動し緩衝用油室25の油圧を受圧するピストン部16と、ピストン部16から蓋部材13の孔部13aを挿通してケーシング11外まで一体的に延びる荷重入力部17と、荷重入力部17の先端部に固着された円板状の焼入れブロック18と焼入れブロック18を囲繞するウレタンパッド19からなり、荷重入力部17には、油充填時に空気を抜く為のエア抜き弁17aも形成されている。
【0024】
ピストン部材20は、シール部材21aを介して孔部12cに摺動する第1ピストン21と、シール部材22aを介して孔部12dに摺動する第2ピストン22と、第1ピストン21と第2ピストン22を連結する連結軸部23からなり、このピストン部材20には、第2ピストン22の下端面側から穴部20aが形成されている。
緩衝用油室25は、孔部12a,12bにおいて、荷重入力用ピストン部材15のピストン部16とピストン部材20の第1ピストン21との間に形成され、圧縮ガス室26は、孔部12dにおいてピストン部材20の第2ピストン22の下側と底蓋14の凹部14aの間に形成されている。
【0025】
緩衝用油室25には、筒状部材12に形成された油圧通路30,31,32が連通し、油圧通路30は、チェック弁33を介して油圧供給源50に接続され、油圧通路31は、緩衝用油室25の油圧を所定圧(例えば、250 kgf/cm 2 G)以下に保持する為のリリーフ弁34を介して油圧供給源50に接続され、油圧通路32は、可変絞り弁60と温度補償弁61を介してタンク51に接続されている(図6参照)。
【0026】
圧縮ガス室26には、底蓋14に形成されたガス通路35,36が連通し、ガス通路35は、圧縮ガス供給源65に接続され、ガス通路36には、圧縮ガス室26の圧縮ガスを所定圧(例えば、120 kgf/cm 2 G)以下に保持する為のリリーフ弁37が接続されている。尚、このリリーフ弁37は省略可能である。ベース部材9は、筒部材50とその上端部固着された板状部材51からなり、板状部材51には、リリーフ弁37を配設する為に孔部51aが形成されている。
【0027】
筒状部材12の孔部12aにおいてピストン部16の上側には、エア室40が形成されるが、エア室40は蓋部材13に形成されたエア通路41からサイレンサー42に接続されている。また、孔部12dにおいて第2ピストン22の上側にも、エア室43が形成されるが、エア室43は筒状部材12に形成されたエア通路44からサイレンサー42に接続さている。
【0028】
次に、4組の緩衝装置本体8を作動させる油圧供給源50と圧縮ガス供給源65を有する流体圧回路について、図6を参照して説明する。
油圧供給源50は、作動油が貯槽され油圧を発生させる油圧タンク51と、加圧エア供給源52を有し、加圧エア供給源52から所定圧の加圧エアをエアレギュレータ53を介して油圧タンク51に供給し、油圧タンク51から所定圧A0の油圧を発生させるように構成してある。油圧タンク51は、フィルタ55が介装された油路54と、チェック弁33が夫々介装された油路56を介して各緩衝装置本体8の緩衝用油室25の油圧通路30に接続されている。
【0029】
各緩衝用油室25の油圧通路31から延びるリリーフ用の油路57は、リリーフ弁34を介して油路56のチェック弁33より油圧供給源50側に接続されている。また、各緩衝用油室25の油圧通路32は、油路58と、可変絞り弁60と温度補償弁61が介装された共通の油路59とを介して油圧タンク51に接続されている。但し、緩衝用油室25の油圧が急速昇圧された際、絞り作用のある油路58,59及び可変絞り弁60により、緩衝用油室25の油圧はタンク51に殆どリリーフされることなく昇圧していく。
所定圧B0の圧縮ガスを発生させる圧縮ガス供給源65は、圧力スイッチ68が装着された油路66と油路67を介して、各緩衝装置本体8の圧縮ガス室26に接続されている。
【0030】
次に、プレスの衝撃緩衝技術について、図4〜図7を参照して説明する。
図4は、緩衝装置7が作動していない初期状態を示しており、緩衝用油室25には、所定圧A0の油圧が供給され、圧縮ガス室26には、ガス圧B0の圧縮ガスが封入されている。即ち、荷重入力用ピストン部材15は、ピストン部16で緩衝用油室25の油圧を受圧して、上限位置に移動した状態である。
一方、ピストン部材20においては、第1ピストン21の受圧面積が第2ピストン22の受圧面積の約1/2であるが、初期状態においてA0<B0×2であるので、ピストン部材20も上限位置に移動した状態である。
【0031】
スライド4が下降駆動されると、上型6が下型5又は下型5上のワークにタッチする直前に、先ず、タイミング調節部材10の下面が、ウレタンパッド19を介して荷重入力部17の焼き入れブロック18に当接し、その後、スライド4から作用する荷重を受けてピストン部材20が押下げられ、緩衝用油室25の油圧は急速昇圧していく。図7に示すように、荷重入力用ピストン部材15の下降ストロークがL1(例えば、1mm)の時、上型6が下型5又は下型5上のワークに衝突した際、緩衝用油室25の油圧がA1(例えば、A1=32 kgf/cm 2 G)に昇圧されているが、その後油圧の急速昇圧による収縮及び衝突時のウレタンパッド19の収縮により、上型6が下型5又はワークに衝突する衝撃が緩衝されタッチ音を低減することができる。
【0032】
その後、ブレークスルー近傍において、荷重入力用ピストン部材15の下降ストロークがL2(例えば、4mm)になり、緩衝用油室25の油圧が所定圧A2(例えば、A2=132 kgf/cm 2 G)以上になってからは、荷重入力用ピストン部材15とともにピストン部材20が下降し、荷重入力用ピストン部材15の下降ストロークがL2を超えると、圧縮ガス室26に封入した圧縮ガスが圧縮されるので、緩衝用油室25の油圧の昇圧速度は著しく低下する。それ故、油温の影響により図7の昇圧特性線aの勾配が多少変化しても、ブレークスルー時における油圧は所定圧A2に略等しい値となるので、適正な緩衝力でブレークスルーに伴う除荷衝撃を低減することができる。尚、スライド4の最下点に対応する荷重入力用ピストン部材15のストロークはL3(例えば、L3=20mm)であり、緩衝用油室25の油圧はA3(例えば、A3=193 kgf/cm 2 G)である。
【0033】
即ち、この衝撃緩衝方法及び衝撃荷重装置1によれば、上型6が下型5又はワークにタッチする直前から緩衝用油室25の油圧を急速昇圧させて緩衝し、ブレークスルー近傍で緩衝用油室25の油圧が所定圧A2以上になってからは、圧縮ガス室26に封入した圧縮ガスを圧縮しながら緩衝するので、上型6が下型5に衝突する際のタッチ音を低減することができるとともに、ブレークスルー近傍で、緩衝用油室25の油圧を前記所定圧A2に近い略一定圧に維持することができ、その一定圧A2付近の油圧を介して適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。しかも、油温が変動して所定圧に達するタイミングが多少変化しても、ブレークスルー時における緩衝用油室25の油圧を前記所定圧に近い略一定圧に維持できるので、プレスの加圧能力を低下させることなく、適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。
【0034】
また、油圧タンク51と緩衝用油室25とを接続する絞り作用のある油路58,59及び可変絞り弁60により、緩衝用油室25の油圧が急速昇圧された際に、緩衝用油室25の油圧をタンク51にリリーフさせ、緩衝用油室25の油圧が所定圧A2以上になる荷重入力用ピストン部材15の移動ストロークL2を設定可能に構成することもできる。
緩衝用油室25と圧縮ガス室26とはプレス1の構成部材とは別体のケーシング11に形成し、このケーシング11に、荷重入力用ピストン部材15とピストン部材20とを組み込んだので、緩衝装置本体8の製作が容易になるとともに、衝撃緩衝装置7を既存のプレスに取付けて適用可能になる。
【0035】
更に、上型6が下型5又はワークにタッチする直前から、スライド4から作用する荷重を荷重入力用ピストン部材15に作用せるように、荷重入力タイミングを調節可能なタイミング調節部材10を設けたので、プレス1に取付けられる種々の大きさの金型に対応させて、スライド4から荷重入力タイミングを調節可能になる。
また、荷重入力用ピストン部材15は、緩衝用油室25の油圧を受圧するピストン部16と、このピストン部16からケーシング11外まで一体的に延びる荷重入力部17とを有するので、スライド4から作用する荷重を荷重入力部17で確実に入力できるとともに、緩衝用油室25の油圧を受圧するピストン部16により、緩衝用油室25の作動油を確実に圧縮することができる。
【0036】
次に、前記実施形態を部分的に変更した変更態様について説明する。
前記実施形態では、プレス1に衝撃緩衝装置7を4組配設したが、例えば、2組配設したり、大型のプレスにおいては4組以上配設してもよい。プレス1の緩衝装置本体8をスライド4側に固定し、タイミング調節部材10を基台2側に固定して配設してもよい。緩衝装置本体9を基台2又は下型5内や、スライド4又は上型6内にに組込んで構成してもよい。圧縮ガスに窒素ガスを適用したが、加圧エア等を適用してもよい。尚、初期状態において、緩衝用油室25及び圧縮ガス室26に供給される油圧及び圧縮ガスの圧力を調節することで、ブレークスルーに対応する荷重入力用ピストン部材15のストロークに応じて、適正なストローク・油圧特性を設定可能である。
【0037】
【発明の効果】
請求項1のプレスの衝撃緩衝方法によれば、スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前から緩衝用油室の油圧を急速昇圧させて緩衝し、ブレークスルー近傍で緩衝用油室の油圧が所定圧以上になってからは、緩衝用圧縮ガス室に封入した圧縮ガスを圧縮しながら緩衝するので、上型が下型に衝突する際のタッチ音を極力低減することができ、緩衝用油室の油圧を前記所定圧に近い略一定圧に維持することができ、その一定圧付近の油圧を介して適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。しかも、油温が変動して所定圧に達するタイミングが多少変化しても、ブレークスルー時における緩衝用油室の油圧を前記所定圧に近い略一定圧に維持でき、プレスの加圧能力を低下させることなく、適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。
【0038】
請求項2のプレスの衝撃緩衝装置によれば、緩衝用油室と、荷重入力用ピストン部材と、圧縮ガス室と、ピストン部材等を設けて、上型が下型又はワークにタッチする直前から緩衝用油室の油圧を急速昇圧させて緩衝し、ブレークスルー近傍で緩衝用油室の油圧が所定圧以上になってからは、緩衝用圧縮ガス室に封入した圧縮ガスを圧縮しながら緩衝するので、上型が下型に衝突する際のタッチ音を極力低減することができ、緩衝用油室の油圧を前記所定圧に近い略一定圧に維持することができ、その一定圧付近の油圧を介して適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。しかも、油温が変動して所定圧に達するタイミングが多少変化しても、ブレークスルー時における緩衝用油室の油圧を前記所定圧に近い略一定圧に維持でき、プレスの加圧能力を低下させることなく、適正な緩衝力でブレークスルーに伴う除荷衝撃を緩衝することができる。
【0039】
請求項3のプレスの衝撃緩衝装置によれば、請求項2と同様の効果を奏するが、前記タンクと緩衝用油室とを接続する絞り作用のある油路に絞り弁が設けられているので、絞り弁により緩衝用油室作動油のタンクへのリリーフ量を調節して、緩衝用油室の油圧が所定圧以上になる荷重入力用ピストン部材の移動ストロークを設定可能に構成することができる。
【0040】
請求項4のプレスの衝撃緩衝装置によれば、請求項2又は請求項3と同様の効果を奏するが、前記緩衝用油室と圧縮ガス室とはプレスの構成部材とは別体のケーシングに形成し、このケーシングに、荷重入力用ピストン部材とピストン部材とを組み込んだので、緩衝装置の製作が容易になるとともに、緩衝装置を既存のプレスに取付けて適用可能になる。
【0041】
請求項5のプレスの衝撃緩衝装置によれば、請求項4と同様の効果を奏するが、前記スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前から、スライドから作用する荷重を荷重入力用ピストン部材に受けさせるように、荷重入力タイミングを調節可能なタイミング調節部材を備えたので、プレスに取付けられる種々の大きさの金型に対応して、スライドからの荷重入力タイミングを調節可能になる。
【0042】
請求項6のプレスの衝撃緩衝装置によれば、請求項5と同様の効果を奏するが、前記荷重入力用ピストン部材は、緩衝用油室の油圧を受圧するピストン部と、このピストン部からケーシング外まで一体的に延びる荷重入力部とを有するので、スライドから作用する荷重を荷重入力部で確実に入力できるとともに、緩衝用油室の油圧を受圧するピストン部により、緩衝用油室の作動油を確実に圧縮することができる。
【図面の簡単な説明】
【図1】本実施形態に係るプレス1の正面図である。
【図2】図2のII−II線断面図である。
【図3】プレスの衝撃緩衝装置の正面図である。
【図4】緩衝装置本体(初期状態)の拡大縦断面図である。
【図5】緩衝装置本体(作動状態)の拡大縦断面図である。
【図6】4組のプレス衝撃緩衝装置に作動させる回路図である。
【図7】プレスの衝撃緩衝装置において緩衝入力用ピストン部材の移動ストロークに対する緩衝力を示した図である。
【符号の説明】
1 プレス
2 基台
4 スライド
5 下型
6 上型
7 プレスの衝撃緩衝装置
10 タイミング調節部材
11 ケーシング
15 荷重入力用ピストン部材
16 ピストン部
17 荷重入力部
20 ピストン部材
21 第1ピストン
22 第2ピストン
25 緩衝用油室
26 圧縮ガス室
50 油圧供給源
51 油圧タンク
60 可変絞り弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impact buffering method and an impact buffering device for a press that cushions an impact in the vicinity of a breakthrough. In particular, the hydraulic pressure of an oil chamber for buffering is rapidly increased and buffered immediately before an upper mold touches a lower mold or a workpiece. Further, the present invention relates to a buffer that compresses the compressed gas in the buffering compressed gas chamber after the hydraulic pressure exceeds a predetermined pressure near the breakthrough.
[0002]
[Prior art]
In general, in press work accompanied by breakage such as cutting, punching, and punching of workpieces, noise is roughly classified into load impact sound and unload impact sound. The load impact sound is a touch sound generated by a collision with the lower mold of the upper mold or the work. On the other hand, the unloading impact sound is a very loud sound that accompanies the unloading impact when the workpiece breaks (breakthrough), and the large load acting on the movable body including the upper die and the press body is instantaneous when the workpiece breaks. Occurs because they are removed. Conventionally, various buffer devices that reduce unloading impact sound by suppressing a sudden drop in load acting on the movable body, that is, buffering the unloading impact at the time of breakthrough have been put into practical use. Yes.
[0003]
For example, the shock absorber disclosed in Japanese Utility Model Publication No. 4-94197 has a buffer oil chamber formed in a lower mold and connected to a tank via a variable throttle valve, and a pressing member fixed to the upper mold. By pressing the piston member of the buffering oil chamber with the pressing member, the hydraulic pressure in the buffering oil chamber is increased while the pressure is released from the variable throttle valve, and the unloading impact is buffered by applying a load to the upper die.
[0004]
In the shock absorber disclosed in Japanese Utility Model Laid-Open No. 3-126298, a shock absorber having a shock absorber cylinder disposed between the base and the slide, and a variable throttle valve and a tank connected to the shock absorber cylinder via an electromagnetic direction switching valve. A breakthrough occurrence time is calculated by comparing the slide motion when there is no load and when the load is applied. The unloading impact accompanying the through is configured to be buffered.
[0005]
In the shock absorber and the shock absorbing method disclosed in Japanese Patent Laid-Open No. 6-79500, the timing adjustment includes a buffer oil chamber formed in the lower mold, a pressing member fixed to the upper mold, and a tank connected to the buffer oil chamber. As in the above publication, the pressure of the hydraulic oil in the buffering oil chamber is raised from the variable throttle valve by pressing the piston member of the buffering oil chamber with the pressing member. The timing adjustment piston built in the tank is driven and controlled so that the upper limit position of the piston member of the buffer oil chamber is determined, that is, the hydraulic pressure is increased after adjusting the timing to start increasing the hydraulic pressure. The unloading shock is buffered by applying a load to the upper die.
[0006]
In conventional hydraulic shock buffering technology, the piston member is lowered using the descending slide or the pressing force of the upper mold, and the hydraulic pressure in the buffer oil chamber is increased while the pressure is released from the throttle valve, so that the slide or upper mold The unloading shock is reduced by generating a load applied to the load to reduce the unloading impact sound. To reduce the unloading impact sound as much as possible without reducing the pressurizing capacity of the press, breakthrough is required. Immediately before, it is necessary to rapidly increase the hydraulic pressure and buffer the unloading impact with an appropriate buffering force. That is, if the unloading shock is buffered with a load greater than the appropriate buffering force, the pressurizing ability of the press is reduced.
[0007]
[Problems to be solved by the invention]
However, in the hydraulic shock absorbing technology that does not include a control device such as that disclosed in Japanese Utility Model Publication No. 4-94197, the hydraulic pressure is rapidly increased immediately before the breakthrough by adjusting the throttle amount of the variable throttle valve. Although the unloading shock is sometimes buffered with an appropriate buffering force, the oil temperature rises significantly due to the resistance action of the throttle valve. The oil temperature also changes depending on the temperature and press operating time. When the oil temperature increases, the viscosity of the oil decreases, so that the oil pressure in the buffer oil chamber at the time of breakthrough does not reach a predetermined pressure, and the unloading impact sound cannot be sufficiently reduced. Also, as the oil temperature decreases, the oil viscosity increases, so the oil pressure in the buffer oil chamber during breakthrough exceeds the specified level, and the unloading shock is buffered with a load greater than the appropriate buffer force. There is a problem that the pressurization capacity of the press is lowered.
[0008]
On the other hand, in the hydraulic shock absorbing technology such as Japanese Utility Model Laid-Open No. 3-126298 and Japanese Utility Model Laid-Open No. 3-126298, the hydraulic pressure is freely increased by the electromagnetic direction switching valve, or the timing at which the hydraulic pressure starts to be increased is adjusted. By doing so, the unloading impact can be buffered with an appropriate buffering force and the unloading impact noise can be reduced.However, because of the provision of sensors and control devices, the manufacturing cost becomes very high and the oil temperature Precise control is very difficult due to the influence and delay of oil response.
[0009]
In the shock absorber disclosed in the above publication, the upper die touches the lower die or the workpiece, and at the same time, the piston member is pressed by the pressing member to pressurize the oil chamber so that the upper die collides with the lower die or the workpiece. The touch sound at the time cannot be reduced.
In the shock absorbers of Japanese Utility Model Laid-Open No. 4-94197 and Japanese Utility Model Laid-Open No. 3-126298, since the buffer oil chamber is formed in the lower mold, it becomes difficult to manufacture the shock absorber, and it is applied to an existing press. Becomes impossible.
[0010]
The purpose of the present invention is to cushion the unloading impact with an appropriate cushioning force without being substantially affected by fluctuations in the oil temperature, to reduce the touch sound when the upper die collides with the lower die or the workpiece, Making it applicable to existing presses, etc.
[0011]
[Means for Solving the Problems]
The press shock absorbing method according to claim 1 is provided between the press base and the slide. And a buffer oil chamber and a buffer compressed gas chamber. Buffer shocks near breakthroughs Shock is shock-absorbed using a shock absorber In the buffering method, immediately before the upper mold fixed on the slide touches the work on the lower mold or the lower mold fixed on the base, the hydraulic pressure in the buffering oil chamber is quickly increased to buffer, and in the vicinity of the breakthrough After the oil pressure in the buffer oil chamber becomes equal to or higher than a predetermined pressure, the compressed gas sealed in the buffer compressed gas chamber is buffered while being compressed.
[0012]
That is, immediately after the upper mold touches the work on the lower mold or the lower mold, the oil pressure in the buffer oil chamber is rapidly increased, so that when the upper mold collides with the lower mold or the work due to the contraction due to the rapid pressure increase. It is possible to reduce the touch sound by buffering the impact. In particular, since the compressed gas enclosed in the buffering compressed gas chamber is buffered while being compressed after the oil pressure in the buffering oil chamber becomes equal to or higher than a predetermined pressure in the vicinity of the breakthrough, the oil pressure in the buffering oil chamber is reduced to the predetermined pressure. It is possible to maintain a substantially constant pressure close to, and to buffer the unloading impact accompanying the breakthrough with an appropriate buffering force through the oil pressure near the constant pressure. Moreover, even if the oil temperature fluctuates and the timing to reach the predetermined pressure changes slightly, the oil pressure in the buffer oil chamber at the time of breakthrough can be maintained at a substantially constant pressure close to the predetermined pressure, reducing the pressurizing capacity of the press. Therefore, the unloading impact accompanying breakthrough can be buffered with an appropriate buffering force.
[0013]
The impact shock absorber of the press according to claim 2 is connected to a hydraulic pressure supply source for supplying a predetermined low pressure oil pressure in the shock absorber disposed between the press base and the slide and buffering an impact near the breakthrough. The shock absorbing oil chamber connected to the tank through the oil passage with a squeezing action, and immediately before the upper die fixed to the slide touches the lower die fixed on the base or the workpiece on the lower die. A load input piston member that receives the load acting from the slide and compresses the hydraulic oil in the buffer oil chamber; For the buffer oil chamber On the opposite side of the load input piston member Separate the piston member A compressed gas chamber formed in series with the buffer oil chamber and filled with a compressed gas of a predetermined pressure; A first piston that faces the buffer oil chamber is provided at one end of the piston member, and a second piston that faces the compressed gas chamber is provided at the other end, and a breakthrough is achieved by a piston member that receives the hydraulic pressure of the buffer oil chamber. It was configured to compress the compressed gas in the compressed gas chamber after the oil pressure in the buffering oil chamber exceeded the set pressure in the vicinity. Is.
[0014]
That is, immediately before the upper mold touches the lower mold, the load acting from the slide is input to the load input piston member, and the load input piston member moves to rapidly boost the hydraulic oil in the buffer oil chamber. By the contraction of the hydraulic oil by rapid pressure increase, the collision of the upper mold with the lower mold or the workpiece is buffered, and the touch sound can be reduced. When the hydraulic pressure in the buffer oil chamber becomes equal to or higher than the predetermined pressure near the breakthrough, the compressed gas sealed in the buffer compressed gas chamber is buffered while being compressed by the piston member. It can be maintained at a substantially constant pressure close to the pressure, and the unloading impact accompanying the breakthrough can be buffered via the oil pressure near the constant pressure. Moreover, even if the oil temperature fluctuates and the timing to reach the predetermined pressure changes slightly, the oil pressure in the buffer oil chamber at the time of breakthrough can be maintained at a substantially constant pressure close to the predetermined pressure, reducing the pressurizing capacity of the press. Therefore, the unloading impact accompanying breakthrough can be buffered with an appropriate buffering force.
[0015]
According to a third aspect of the present invention, there is provided a press shock absorber according to the second aspect of the present invention, wherein a throttle valve is provided in an oil passage having a throttling function for connecting the tank and the buffer oil chamber. That is, the movement stroke of the load input piston member at which the hydraulic pressure in the buffer oil chamber becomes equal to or higher than a predetermined pressure can be configured by adjusting the relief amount of the hydraulic oil in the buffer oil chamber to the tank by the throttle valve.
[0016]
According to a fourth aspect of the present invention, there is provided the press shock absorber according to the second or third aspect, wherein the buffer oil chamber and the compressed gas chamber are formed in a casing separate from the press components. The load input piston member and the piston member are incorporated. That is, the shock absorber can be easily manufactured and can be applied to an existing press.
[0017]
The impact shock absorber of the press according to claim 5 is the invention according to claim 4, A timing adjusting member fixed to the slide, Immediately before the upper die fixed to the slide touches the lower die or the lower die workpiece fixed on the base, the load acting from the slide is applied to the load input piston member. Ruta An imming adjustment member is provided. That is, it is possible to adjust the load input timing from the slide in accordance with various sized molds attached to the press.
[0018]
According to a sixth aspect of the present invention, in the invention, the load input piston member integrally extends from the piston portion to the outside of the casing. The piston portion receives the hydraulic pressure of the buffer oil chamber. It has a load input part. That is, the oil pressure of the buffering oil chamber can be reliably received by the piston portion, and the load acting from the slide can be reliably input to the load input piston member by the load input portion.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
The present embodiment is an example in the case where the present invention is applied to an impact buffering method and an impact buffering device for buffering an impact in the vicinity of a breakthrough during press working. Is included.
As shown in FIGS. 1 and 2, the press 1 includes a base 2, four columnar uprights 3 erected on the base 2, and a crank guided by the upright 3 via a guide member 3 a. The lower mold 5 is fixed on the base 2 and the upper mold 6 is fixed to the lower surface side of the slide 4.
[0020]
Between the base 2 and the slide 4 of the press 1, four sets of impact buffering devices 7 are arranged for buffering an impact in the vicinity of a breakthrough during press working.
As shown in FIG. 3, each shock absorber 7 includes a shock absorber main body 8, a base member 9, and a timing adjusting member 10. The base member 9 is erected on the base 2 in the vicinity of the inside of the upright 3 by fixing the flange portion 50 a with a plurality of bolts 50 b, and the shock absorber main body 8 has a base end portion of the base member 9. The upper end is fixed to the upright 3 with a plurality of bolts 11 a, and the upper end is connected to the upright 3 with a connection fitting 9 a and fixed on the base member 9. The timing adjusting member 10 is formed by connecting a pair of shaft members 55 and 56, is opposed to the shock absorber main body 8, and is fixed near the guide portion 4a of the slide 4 (see FIG. 2).
[0021]
As shown in FIGS. 4 and 5, the shock absorber main body 8 includes a component 11 of the press 1 and a separate casing 11, and a predetermined low pressure A0 (for example, A0 = 5 kgf / cm). 2 G) is connected to a hydraulic supply source 50 that supplies hydraulic pressure and is connected to a hydraulic tank 51 via oil passages 58 and 59 having a throttle action, and an upper mold 6 is a lower mold 5 or Immediately before touching the workpiece on the lower mold 5, a load input piston member 15 that receives the load acting from the slide 4 and compresses the hydraulic oil in the buffer oil chamber 25, and a buffer below the load input piston member 15. A predetermined pressure B0 (for example, B0 = 66 kgf / cm) formed in series with the oil chamber 25. 2 G) a compressed gas chamber 26 in which a compressed gas (for example, compressed nitrogen gas) is sealed, and a first piston 21 facing the buffer oil chamber 25 at one end and a second piston 22 facing the compressed gas chamber 26. The piston member 20 is provided at the other end.
[0022]
The casing 11 includes a tubular member 12, a lid member 13 having a hole portion 13 a and fitted and fixed to a distal end portion of the tubular member 12, and a recessed portion 14 a and being fitted to a proximal end portion of the tubular member 12. It consists of a fixed bottom lid 14, and inside the cylindrical member 12, a tip side hole portion 12 a having a larger diameter than the hole portion 13 a of the lid member 13, a hole portion 12 b having a smaller diameter than the hole portion 12 a, and a hole portion 12 b. A slightly larger diameter hole 12c and a hole 12d having the same diameter as the hole 12a are formed in series from the tip side. The lid member 13 is provided with an injection port 13b for a lubricant (for example, Albania grease) to be injected between the piston portion 17 of the load input piston member 15 and the hole portion 13a.
[0023]
The load input piston member 15 is slid into the hole portion 12a through the seal member 16a and passes through the hole portion 13a of the lid member 13 from the piston portion 16 to receive the hydraulic pressure of the buffer oil chamber 25. The load input unit 17 extends integrally to the outside of the casing 11, the disk-like quenching block 18 fixed to the tip of the load input unit 17, and the urethane pad 19 surrounding the quenching block 18. In addition, an air vent valve 17a for venting air at the time of oil filling is also formed.
[0024]
The piston member 20 includes a first piston 21 that slides into the hole 12c through the seal member 21a, a second piston 22 that slides into the hole 12d through the seal member 22a, and the first piston 21 and the second piston 21. The piston member 20 includes a connecting shaft portion 23 that connects the piston 22, and a hole 20 a is formed in the piston member 20 from the lower end surface side of the second piston 22.
The buffer oil chamber 25 is formed in the holes 12a and 12b between the piston 16 of the load input piston member 15 and the first piston 21 of the piston member 20, and the compressed gas chamber 26 is formed in the hole 12d. It is formed between the lower side of the second piston 22 of the piston member 20 and the recess 14 a of the bottom cover 14.
[0025]
Hydraulic fluid passages 30, 31, 32 formed in the cylindrical member 12 communicate with the buffer oil chamber 25, and the hydraulic fluid passage 30 is connected to a hydraulic pressure supply source 50 via a check valve 33. The oil pressure in the buffer oil chamber 25 is set to a predetermined pressure (for example, 250 kgf / cm 2 G) Connected to the hydraulic pressure supply source 50 through a relief valve 34 for holding below, and the hydraulic passage 32 is connected to a tank 51 through a variable throttle valve 60 and a temperature compensation valve 61 (see FIG. 6). ).
[0026]
Gas passages 35, 36 formed in the bottom lid 14 communicate with the compressed gas chamber 26, the gas passage 35 is connected to a compressed gas supply source 65, and the compressed gas in the compressed gas chamber 26 is connected to the gas passage 36. A predetermined pressure (for example, 120 kgf / cm 2 G) A relief valve 37 for holding the following is connected. The relief valve 37 can be omitted. The base member 9 includes a cylindrical member 50 and a plate-like member 51 fixed to the upper end thereof, and a hole 51 a is formed in the plate-like member 51 in order to dispose the relief valve 37.
[0027]
An air chamber 40 is formed above the piston portion 16 in the hole 12 a of the cylindrical member 12. The air chamber 40 is connected to a silencer 42 through an air passage 41 formed in the lid member 13. An air chamber 43 is also formed above the second piston 22 in the hole 12d. The air chamber 43 is connected to the silencer 42 through an air passage 44 formed in the tubular member 12.
[0028]
Next, a fluid pressure circuit having a hydraulic pressure supply source 50 and a compressed gas supply source 65 for operating the four sets of shock absorber main bodies 8 will be described with reference to FIG.
The hydraulic supply source 50 includes a hydraulic tank 51 that stores hydraulic oil and generates hydraulic pressure, and a pressurized air supply source 52, and pressurized air of a predetermined pressure is supplied from the pressurized air supply source 52 via the air regulator 53. The hydraulic pressure is supplied to the hydraulic tank 51 and a hydraulic pressure of a predetermined pressure A0 is generated from the hydraulic tank 51. The hydraulic tank 51 is connected to the hydraulic passage 30 of the buffering oil chamber 25 of each shock absorber body 8 via an oil passage 54 in which a filter 55 is interposed and an oil passage 56 in which a check valve 33 is interposed. ing.
[0029]
The relief oil passage 57 extending from the hydraulic passage 31 of each buffer oil chamber 25 is connected to the hydraulic supply source 50 side from the check valve 33 of the oil passage 56 via the relief valve 34. The hydraulic passage 32 of each buffer oil chamber 25 is connected to the hydraulic tank 51 via an oil passage 58 and a common oil passage 59 in which a variable throttle valve 60 and a temperature compensation valve 61 are interposed. . However, when the hydraulic pressure in the buffer oil chamber 25 is rapidly increased, the hydraulic pressure in the buffer oil chamber 25 is increased almost without relief to the tank 51 by the oil passages 58 and 59 and the variable throttle valve 60 having a throttle action. I will do it.
A compressed gas supply source 65 for generating a compressed gas having a predetermined pressure B0 is connected to the compressed gas chamber 26 of each buffer device body 8 through an oil passage 66 and an oil passage 67 to which a pressure switch 68 is attached.
[0030]
Next, press shock-absorbing technology will be described with reference to FIGS.
FIG. 4 shows an initial state where the shock absorber 7 is not in operation. The buffer oil chamber 25 is supplied with a hydraulic pressure at a predetermined pressure A0, and the compressed gas chamber 26 is supplied with a compressed gas at a gas pressure B0. It is enclosed. That is, the load input piston member 15 receives the hydraulic pressure of the buffer oil chamber 25 by the piston portion 16 and is moved to the upper limit position.
On the other hand, in the piston member 20, the pressure receiving area of the first piston 21 is about ½ of the pressure receiving area of the second piston 22, but since A0 <B0 × 2 in the initial state, the piston member 20 is also in the upper limit position. It is in the state moved to.
[0031]
When the slide 4 is driven downward, immediately before the upper die 6 touches the lower die 5 or the workpiece on the lower die 5, first, the lower surface of the timing adjustment member 10 is connected to the load input portion 17 via the urethane pad 19. Then, the piston member 20 is brought into contact with the quenching block 18, receives the load acting from the slide 4, and the piston member 20 is pushed down, so that the hydraulic pressure in the buffer oil chamber 25 is rapidly increased. As shown in FIG. 7, when the lowering stroke of the load input piston member 15 is L1 (for example, 1 mm), when the upper die 6 collides with the lower die 5 or the workpiece on the lower die 5, the buffer oil chamber 25 is provided. Hydraulic pressure is A1 (for example, A1 = 32 kgf / cm 2 G), but the impact caused by the upper mold 6 colliding with the lower mold 5 or the workpiece is buffered by the contraction due to the rapid pressure increase of the hydraulic pressure and the contraction of the urethane pad 19 at the time of collision, thereby reducing the touch sound. it can.
[0032]
Thereafter, in the vicinity of the breakthrough, the downward stroke of the load input piston member 15 becomes L2 (for example, 4 mm), and the hydraulic pressure in the buffer oil chamber 25 is set to a predetermined pressure A2 (for example, A2 = 132 kgf / cm). 2 G) After the above, when the piston member 20 descends together with the load input piston member 15 and the descending stroke of the load input piston member 15 exceeds L2, the compressed gas enclosed in the compressed gas chamber 26 is compressed. Therefore, the pressure increase speed of the hydraulic pressure in the buffer oil chamber 25 is significantly reduced. Therefore, even if the slope of the pressure increase characteristic line a in FIG. 7 slightly changes due to the influence of the oil temperature, the oil pressure at the time of breakthrough becomes a value substantially equal to the predetermined pressure A2, so that it accompanies breakthrough with an appropriate buffering force. Unloading impact can be reduced. The stroke of the load input piston member 15 corresponding to the lowest point of the slide 4 is L3 (for example, L3 = 20 mm), and the oil pressure in the buffer oil chamber 25 is A3 (for example, A3 = 193 kgf / cm). 2 G).
[0033]
In other words, according to this shock buffering method and shock load device 1, the hydraulic pressure in the buffer oil chamber 25 is rapidly increased immediately before the upper mold 6 touches the lower mold 5 or the workpiece, and buffered near the breakthrough. After the oil pressure in the oil chamber 25 becomes equal to or higher than the predetermined pressure A2, the compressed gas sealed in the compressed gas chamber 26 is buffered while being compressed, so that the touch sound when the upper mold 6 collides with the lower mold 5 is reduced. In addition, the oil pressure in the buffering oil chamber 25 can be maintained at a substantially constant pressure close to the predetermined pressure A2 in the vicinity of the breakthrough, and a break can be generated with an appropriate buffering force via the oil pressure in the vicinity of the constant pressure A2. Unloading impact associated with through can be buffered. In addition, even if the timing at which the oil temperature fluctuates and reaches a predetermined pressure changes slightly, the hydraulic pressure of the buffer oil chamber 25 at the time of breakthrough can be maintained at a substantially constant pressure close to the predetermined pressure. The unloading impact accompanying the breakthrough can be buffered with an appropriate buffering force without lowering.
[0034]
Further, when the oil pressure in the buffer oil chamber 25 is rapidly increased by the oil passages 58 and 59 having a throttle action and the variable throttle valve 60 connecting the hydraulic tank 51 and the buffer oil chamber 25, the buffer oil chamber It is also possible to relieve the hydraulic pressure of 25 to the tank 51 so that the movement stroke L2 of the load input piston member 15 at which the hydraulic pressure of the buffering oil chamber 25 becomes equal to or higher than a predetermined pressure A2 can be set.
The buffer oil chamber 25 and the compressed gas chamber 26 are formed in a casing 11 that is separate from the components of the press 1, and the load input piston member 15 and the piston member 20 are incorporated in the casing 11. The device body 8 can be easily manufactured, and the shock absorbing device 7 can be applied to an existing press.
[0035]
Further, a timing adjusting member 10 capable of adjusting the load input timing is provided so that the load applied from the slide 4 can be applied to the load input piston member 15 immediately before the upper die 6 touches the lower die 5 or the workpiece. Therefore, the load input timing can be adjusted from the slide 4 in correspondence with the molds of various sizes attached to the press 1.
The load input piston member 15 includes a piston portion 16 that receives the hydraulic pressure of the buffer oil chamber 25 and a load input portion 17 that integrally extends from the piston portion 16 to the outside of the casing 11. The acting load can be reliably input by the load input unit 17, and the hydraulic oil in the buffering oil chamber 25 can be reliably compressed by the piston unit 16 that receives the hydraulic pressure of the buffering oil chamber 25.
[0036]
Next, a modified aspect in which the embodiment is partially changed will be described.
In the embodiment described above, four sets of the shock absorbing device 7 are arranged in the press 1, but for example, two sets may be arranged, or four or more sets may be arranged in a large press. The shock absorber main body 8 of the press 1 may be fixed to the slide 4 side, and the timing adjusting member 10 may be fixed to the base 2 side. The shock absorber main body 9 may be incorporated in the base 2 or the lower mold 5, or in the slide 4 or the upper mold 6. Although nitrogen gas is applied to the compressed gas, pressurized air or the like may be applied. In the initial state, the hydraulic pressure supplied to the buffer oil chamber 25 and the compressed gas chamber 26 and the pressure of the compressed gas are adjusted, so that it is appropriate according to the stroke of the load input piston member 15 corresponding to the breakthrough. It is possible to set various stroke / hydraulic characteristics.
[0037]
【The invention's effect】
According to the shock buffering method of the press according to claim 1, the hydraulic pressure in the buffer oil chamber is rapidly increased immediately before the upper die fixed to the slide touches the lower die fixed on the base or the workpiece on the lower die. The upper mold collides with the lower mold because the compressed gas enclosed in the buffer compressed gas chamber is buffered while being compressed after the oil pressure in the buffer oil chamber exceeds the predetermined pressure near the breakthrough. Touch noise during the operation can be reduced as much as possible, the oil pressure in the buffering oil chamber can be maintained at a substantially constant pressure close to the predetermined pressure, and a break can be made with an appropriate buffering force via the oil pressure near the constant pressure. Unloading impact associated with through can be buffered. Moreover, even if the oil temperature fluctuates and the timing to reach the predetermined pressure changes slightly, the oil pressure in the buffer oil chamber at the time of breakthrough can be maintained at a substantially constant pressure close to the predetermined pressure, reducing the pressurizing capacity of the press. Therefore, the unloading impact accompanying breakthrough can be buffered with an appropriate buffering force.
[0038]
According to the impact shock absorber of the press according to claim 2, the shock absorbing oil chamber, the load input piston member, the compressed gas chamber, the piston member and the like are provided, and immediately before the upper die touches the lower die or the workpiece. The oil pressure in the buffer oil chamber is rapidly increased to buffer the oil pressure, and after the oil pressure in the buffer oil chamber exceeds a predetermined pressure near the breakthrough, the compressed gas enclosed in the buffer gas chamber is compressed and compressed. Therefore, the touch sound when the upper mold collides with the lower mold can be reduced as much as possible, the hydraulic pressure of the buffer oil chamber can be maintained at a substantially constant pressure close to the predetermined pressure, and the hydraulic pressure near the constant pressure can be maintained. The unloading impact accompanying the breakthrough can be buffered with an appropriate buffering force through the. Moreover, even if the oil temperature fluctuates and the timing to reach the predetermined pressure changes slightly, the oil pressure in the buffer oil chamber at the time of breakthrough can be maintained at a substantially constant pressure close to the predetermined pressure, reducing the pressurizing capacity of the press. Therefore, the unloading impact accompanying breakthrough can be buffered with an appropriate buffering force.
[0039]
According to the impact shock absorber of the press according to the third aspect, the same effect as in the second aspect is obtained, but the throttle valve is provided in the oil passage having a throttling function that connects the tank and the buffer oil chamber. By adjusting the relief amount of the buffer oil chamber hydraulic oil to the tank by the throttle valve, it is possible to configure the movement stroke of the load input piston member at which the oil pressure of the buffer oil chamber becomes equal to or higher than a predetermined pressure. .
[0040]
According to the impact shock absorber of the press according to claim 4, the same effect as in claim 2 or claim 3 is achieved, but the buffer oil chamber and the compressed gas chamber are separate casings from the press components. Since the load input piston member and the piston member are incorporated in the casing, the shock absorber can be easily manufactured, and the shock absorber can be applied to an existing press.
[0041]
According to the impact shock absorber of the press of claim 5, the same effect as that of claim 4 is obtained, but the upper die fixed to the slide touches the lower die fixed on the base or the work on the lower die. Immediately before starting, the load input piston member receives the load acting from the slide, so it has a timing adjustment member that can adjust the load input timing, so it can be used for various sizes of dies attached to the press. The load input timing from the slide can be adjusted.
[0042]
According to the shock absorbing device for a press according to claim 6, the same effect as in claim 5 is obtained. However, the load input piston member includes a piston portion that receives the hydraulic pressure of the buffer oil chamber, and a casing from the piston portion. Since the load input portion that extends integrally to the outside is provided, the load acting on the slide can be reliably input by the load input portion, and the hydraulic oil in the buffer oil chamber is received by the piston portion that receives the hydraulic pressure of the buffer oil chamber. Can be reliably compressed.
[Brief description of the drawings]
FIG. 1 is a front view of a press 1 according to an embodiment.
2 is a cross-sectional view taken along line II-II in FIG.
FIG. 3 is a front view of an impact buffer device of a press.
FIG. 4 is an enlarged vertical sectional view of the shock absorber main body (initial state).
FIG. 5 is an enlarged longitudinal sectional view of the shock absorber main body (operating state).
FIG. 6 is a circuit diagram for operating four sets of press shock absorbers.
FIG. 7 is a diagram showing a buffering force with respect to a movement stroke of a buffering input piston member in an impact buffering device of a press.
[Explanation of symbols]
1 Press
2 base
4 slides
5 Lower mold
6 Upper mold
7 Shock absorber for press
10 Timing adjustment member
11 Casing
15 Piston member for load input
16 Piston part
17 Load input section
20 Piston member
21 First piston
22 Second piston
25 Oil chamber for buffer
26 Compressed gas chamber
50 Hydraulic supply source
51 Hydraulic tank
60 Variable throttle valve

Claims (6)

プレスの基台とスライドとの間に配設され且つ緩衝用油室と緩衝用圧縮ガス室とを有しブレークスルー付近における衝撃を緩衝する緩衝装置を用いて衝撃を緩衝する緩衝方法において、
スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前から緩衝用油室の油圧を急速昇圧させて緩衝し、
ブレークスルー近傍で緩衝用油室の油圧が所定圧以上になってからは、緩衝用圧縮ガス室に封入した圧縮ガスを圧縮しながら緩衝することを特徴とするプレスの衝撃緩衝方法。
In a buffering method for buffering an impact using a buffer device disposed between a base of a press and a slide and buffering an impact in the vicinity of a breakthrough having a buffer oil chamber and a buffer compressed gas chamber ,
Immediately before the upper mold fixed on the slide touches the work on the lower mold or the lower mold fixed on the base, the hydraulic pressure in the buffering oil chamber is rapidly increased to buffer the work,
An impact buffering method for a press, comprising: compressing a compressed gas enclosed in a buffering compressed gas chamber while compressing it after the oil pressure in the buffering oil chamber exceeds a predetermined pressure in the vicinity of the breakthrough.
プレスの基台とスライドとの間に配設されブレークスルー付近における衝撃を緩衝する緩衝装置において、
所定の低圧の油圧を供給する油圧供給源に接続されるとともに絞り作用のある油路を介してタンクに接続された緩衝用油室と、
スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前から、スライドから作用する荷重を受けて緩衝用油室の作動油を圧縮する荷重入力用ピストン部材と、
前記緩衝用油室に対して前記荷重入力用ピストン部材と反対側に、ピストン部材を隔てて緩衝用油室と直列状に形成され所定圧の圧縮ガスが封入された圧縮ガス室とを備え
前記ピストン部材の一端部に緩衝用油室に臨む第1ピストンを設けると共に他端部に圧縮ガス室に臨む第2ピストンを設け、前記緩衝用油室の油圧を受圧するピストン部材により、ブレークスルー付近で緩衝用油室の油圧が設定圧以上になってから前記圧縮ガス室の圧縮ガスを圧縮するように構成した、
ことを特徴とするプレスの衝撃緩衝装置。
In the shock absorber that is disposed between the base of the press and the slide and cushions an impact near the breakthrough,
A buffering oil chamber connected to a hydraulic pressure supply source for supplying a predetermined low pressure oil pressure and connected to a tank via an oil passage having a throttle action;
For load input that compresses the hydraulic oil in the buffer oil chamber under the load applied from the slide immediately before the upper mold fixed on the slide touches the lower mold or work on the lower mold fixed on the base A piston member;
On the opposite side of the buffer oil chamber to the load oil piston member, a compressed gas chamber formed in series with the buffer oil chamber with a piston member therebetween and filled with a compressed gas of a predetermined pressure is provided .
A first piston that faces the buffer oil chamber is provided at one end of the piston member, and a second piston that faces the compressed gas chamber is provided at the other end, and a breakthrough is achieved by a piston member that receives the hydraulic pressure of the buffer oil chamber. It was configured to compress the compressed gas in the compressed gas chamber after the oil pressure in the buffer oil chamber became equal to or higher than the set pressure in the vicinity.
An impact shock absorber for a press.
前記タンクと緩衝用油室とを接続する絞り作用のある油路に絞り弁が設けられたことを特徴とする請求項2に記載のプレスの衝撃緩衝装置。  The impact buffering device for a press according to claim 2, wherein a throttle valve is provided in an oil passage having a throttle action for connecting the tank and the buffering oil chamber. 前記緩衝用油室と圧縮ガス室とはプレスの構成部材とは別体のケーシングに形成し、このケーシングに、荷重入力用ピストン部材とピストン部材とを組み込んだことを特徴とする請求項2又は請求項3に記載のプレスの衝撃緩衝装置。  3. The shock absorbing oil chamber and the compressed gas chamber are formed in a casing separate from a constituent member of the press, and a load input piston member and a piston member are incorporated in the casing. The impact shock absorber of the press according to claim 3. 前記スライドに固定されたタイミング調節部材であって、前記スライドに固定された上型が基台上に固定された下型又は下型上のワークにタッチする直前から、スライドから作用する荷重を荷重入力用ピストン部材に作用させるタイミング調節部材を備えたことを特徴とする請求項4に記載のプレスの衝撃緩衝装置。 A timing adjusting member fixed to the slide , wherein a load acting from the slide is loaded immediately before the upper mold fixed to the slide touches the lower mold or the work on the lower mold fixed on the base. press the shock absorbing device according to claim 4, characterized in that it comprises a filter timing adjustment member to act on the input piston member. 前記荷重入力用ピストン部材は、緩衝用油室の油圧を受圧するピストン部と、このピストン部からケーシング外まで一体的に延びる荷重入力部とを有すること特徴とする請求項5に記載のプレスの衝撃緩衝装置。  6. The press according to claim 5, wherein the load input piston member has a piston portion that receives the hydraulic pressure of the buffer oil chamber, and a load input portion that integrally extends from the piston portion to the outside of the casing. Shock absorber.
JP09320296A 1996-03-22 1996-03-22 Press shock absorbing method and press shock absorbing device Expired - Fee Related JP3792292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09320296A JP3792292B2 (en) 1996-03-22 1996-03-22 Press shock absorbing method and press shock absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09320296A JP3792292B2 (en) 1996-03-22 1996-03-22 Press shock absorbing method and press shock absorbing device

Publications (2)

Publication Number Publication Date
JPH09253898A JPH09253898A (en) 1997-09-30
JP3792292B2 true JP3792292B2 (en) 2006-07-05

Family

ID=14075994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09320296A Expired - Fee Related JP3792292B2 (en) 1996-03-22 1996-03-22 Press shock absorbing method and press shock absorbing device

Country Status (1)

Country Link
JP (1) JP3792292B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2334239T3 (en) * 2005-04-01 2010-03-08 Morphic Technologies Aktiebolag (Publ) SHOCK ABSORBER FOR MOBILE TOOLS.
CN103089743B (en) * 2013-01-24 2015-10-14 中国工程物理研究院化工材料研究所 The automatic exhaust device of isostatic pressed clutch release slave cylinder

Also Published As

Publication number Publication date
JPH09253898A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP2897999B2 (en) Pneumatic shock absorber
JP3837393B2 (en) Die cushion device and surge pressure reducing method for die cushion device
KR20030091682A (en) Buffer device for elevator
JPH03226320A (en) Press assembly and operation thereof
JPS5945448B2 (en) Press impact attenuation device
EP2126403B1 (en) Method for adjusting damping characteristics in a shock absorber
US3487736A (en) Apparatus and process for suppressing shock in a mechanical press or the like
JP3792292B2 (en) Press shock absorbing method and press shock absorbing device
US4431172A (en) Device for absorbing punching shock in a press
US4233872A (en) Hydraulic shock absorption in punch or cutting presses
KR101888873B1 (en) Non-Powered Hydraulic metallic mold lifting system of plastic working device and Plastic working device containing the same
US5913956A (en) Apparatus and method for progressive fracture of work pieces in mechanical presses
CA1063925A (en) Shock dampening systems for presses
JPS6330120B2 (en)
JP2007010160A (en) Hydraulic damper
JPS63281800A (en) Controlling method for soft touch of metallic mold in press machine
JPS6153159B2 (en)
JPH0217717Y2 (en)
JPH03265729A (en) Viscous damper
EP1863605B1 (en) Shock absorber for movable tools
JP3225678B2 (en) Impact force control device
CN1077680A (en) Punch buffer for press
JPH0355174A (en) Impact motion device
JPH09257086A (en) Hydraulic buffering device
KR200435601Y1 (en) Press mold device using block of urethane series

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees