JP3791991B2 - Discharge method of sediment in the dam reservoir - Google Patents

Discharge method of sediment in the dam reservoir Download PDF

Info

Publication number
JP3791991B2
JP3791991B2 JP33469496A JP33469496A JP3791991B2 JP 3791991 B2 JP3791991 B2 JP 3791991B2 JP 33469496 A JP33469496 A JP 33469496A JP 33469496 A JP33469496 A JP 33469496A JP 3791991 B2 JP3791991 B2 JP 3791991B2
Authority
JP
Japan
Prior art keywords
sediment
dam reservoir
dam
discharge pipe
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33469496A
Other languages
Japanese (ja)
Other versions
JPH10159065A (en
Inventor
道夫 後藤
忠臣 藤咲
秀浩 杉
勝敏 倉谷
光男 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP33469496A priority Critical patent/JP3791991B2/en
Publication of JPH10159065A publication Critical patent/JPH10159065A/en
Application granted granted Critical
Publication of JP3791991B2 publication Critical patent/JP3791991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はダム貯水池の底に堆積する土砂の排出方法に関する。
【0002】
【従来の技術】
ダム貯水池の底に堆積する土砂は、ダムの貯水量を減少させ、ダムの治水利水機能を低下させるだけではなく、ダム貯水池上流の河床の上昇や、ダム下流での河床の低下などを引き起こす恐れがあり、河川にも悪影響を与える。
そこで、ダム貯水池の底に堆積する土砂を排出するため、従来、ダム貯水池の水位を下げ、ダム貯水池の底を露出させて作業車により堆積土砂を掘削したり、あるいは、渇水等で水位が下がった時に露出するダム貯水池の底を作業車により掘削し、ダム貯水池外に排出するようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、ダム貯水池の水位を下げ底を露出させてに堆積土砂を排出する方法では、ダム貯水池の貯水量や、各時期における水使用量等との関係からいつでも堆積土砂を排出できるとは限らず、また、渇水の場合に堆積土砂を排出する方法では、満水の状態が続くと堆積土砂を排出できない。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、ダム貯水池の貯水量や、水使用量等とは無関係にいつでも堆積土砂を排出できるダム貯水池の堆積土砂の排出方法を提供することにある。
【0004】
【課題を解決するための手段】
前記目的を達成するため本発明は、ダム貯水池の底に堆積する土砂を排出する方法であって、ダム貯水池に筒体を、その下端をダム貯水池の堆積土砂中に打ち込むと共にその上端を水面の上方に突出させて立設し、前記筒体が堆積土砂中に打ち込まれた部分に複数の土砂取り入れ口を設け、前記堆積土砂の下方でかつ前記筒体の下方のダム貯水池の底部分に機械室を埋設し、前記機械室に前記筒体に接続する撹拌室を設け、前記撹拌室と、ダム貯水池外の土砂排出箇所とを連通する土砂排出管を設け、前記土砂取り入れ口を開放し、前記土砂取り入れ口から堆積土砂を筒体の内部に流出させ、この堆積土砂を前記撹拌室に収容して撹拌し、次に、この撹拌された堆積土砂を、前記機械室のポンプにより前記土砂排出管内で土砂排出箇所に向けて吐出し、更に、前記土砂排出管内で前記土砂排出箇所へ向けて圧縮空気を供給し、前記ポンプの吐出圧力と圧縮空気により堆積土砂を土砂排出管内で前記土砂排出箇所へ向けて圧送するようにしたことを特徴とする。また、本発明は、前記筒体がダム堤体の近傍に立設されることを特徴とする。また、本発明は、前記筒体、機械室が複数組み設けられ、これら複数組みの各撹拌室は、単一の土砂排出管に連結され、堆積土砂の排出は各組み毎に行なわれ、一つの組みの筒体、機械室で堆積土砂の排出が行なわれている時には、他の組みの機械室の撹拌室と土砂排出管は開閉弁により遮断されていることを特徴とする。
【0005】
本発明では、土砂取り入れ口を開放して堆積土砂を筒体内に流し込み、撹拌室に収容させる。
そして、適宜量の堆積土砂が収容されたならば、土砂取り入れ口を閉じ、堆積土砂が土砂排出管内を円滑に流動できるように、撹拌室で堆積土砂を撹拌する。次に、機械室のポンプの吐出圧力と圧縮空気とにより、堆積土砂を土砂排出管内で土砂排出箇所に圧送する。
【0006】
【発明の実施の形態】
次に本発明の実施例について説明する。
図1は本発明方法が実施されるダム貯水池の断面側面図、図2は同平面図を示す。
2はダム貯水池、4は堤体、6は堤体4に設けられた放流口、8はダム貯水池2の上流側の周囲箇所に設けられた土砂処理設備を示す。
本発明による堆積土砂の排出方法では、3本の筒体12と、三つの機械室14と、1本の土砂排出管16と、1本のエアー供給管18等が用いられる。
前記筒体12は堤体4の近傍で堤体4の延在方向に間隔をおいて鉛直に立設され、前記機械室14は、ダム貯水池2の底に堆積した堆積土砂(シルト層)20の下方の岩着部Aでかつこの筒体12の下方に対応して埋設されている。
前記土砂排出管16は、3本の筒体12の列設方向に沿ってほぼ水平に延在する第1直線部1601と、第1直線部1601の端部から土砂処理設備8側にほぼ水平に延在する第2直線部1602と、第2直線部1602の端部から鉛直に起立する第3直線部1603と、第3直線部1603の上端から土砂処理設備8側に延在する第4直線部1604を備え、前記第1及び第2直線部1601、1602はダム貯水池2の底の下方に埋設され、第3直線部1603はダム貯水池2の外側において起立し、その上端と第4直線部1604が地面から露出している。
【0007】
前記筒体12として、例えば、鋼管が用いられ、前記筒体12の下部は、ダム貯水池2の底に堆積した堆積土砂20(シルト層)中に打ち込まれ、更に上端は水面上に突出している。
前記筒体12が堆積土砂20中に埋設された部分およびその近傍部分には複数の土砂取り入れ口22が周方向及び上下方向に間隔をおいて複数設けられ、各土砂取り入れ口22は、筒体12の内周面或は外周面に配設された蓋板(不図示)により開閉可能である。
【0008】
前記各機械室14は、前記筒体12の下端の下方に位置して該下端に連通する上方に開放状の撹拌室24を備え、撹拌室24と前記第1直線部1601が枝管1610により連結されている。なお、撹拌室24と筒体12の下部は一体に形成してもよい。
前記撹拌室24には撹拌羽根26が設けられ、撹拌羽根26は、撹拌室24に隣接する第1の部屋28に設置されたモータ等の動力源30により回転駆動される。
前記枝管1610は、前記撹拌室24を挟んで前記第1の部屋28とは反対側の第2の部屋32にその一部が配設されている。
前記枝管1610は、撹拌室24の側壁の中央から水平に延在する水平部1612と、この水平部1612の端部から第1屈曲部1614を介してほぼ鉛直に起立し第2屈曲部1616を介して前記第1直線部1601に連結される起立部1618で構成され、水平部1612には、水平部1612内を開閉する第1開閉弁34が設けられ、起立部1618には、起立部1618内を開閉する第2開閉弁36が設けられ、起立部1618の上部は第2の部屋32を上方に貫通してダム貯水池2の底の岩着部Aに埋設されている。
前記第2の部屋32には加圧ポンプ40が配設され、加圧ポンプ40の羽根4002が前記第1屈曲部1614に配設され、加圧ポンプ40の駆動により、堆積土砂20が水平部1612から起立部1618へ、起立部1618から第1直線部1601、第2直線部1602、第3直線部1603、第4直線部1604へと圧送されるように構成されている。
更に、第2直線部1602の長手方向の中間部に、第3直線部1603側に向けてエアー供給管18が連結され、このエアー供給管18から第2直線部1602に圧縮空気が供給される。前記圧縮空気は、例えば、機械室14に配設されたコンプレッサから供給される。
【0009】
次に、上述のような筒体12と、機械室14と、土砂排出管16と、エアー供給管18等を用いて、ダム貯水池2の底に堆積した土砂を排出する手順について説明する。
まず、第1開閉弁34を閉じ、堆積土砂20中に位置する土砂取り入れ口22を開放させる。
これにより、堆積土砂20が土砂取り入れ口22から筒体12内に流れ込み、撹拌室24に落下し収容される。
撹拌室24に適宜量の堆積土砂20が収容されたならば、土砂取り入れ口22を閉じ、動力源30により撹拌羽根26を回転駆動する。
この撹拌羽根26の回転駆動により、堆積土砂20の固まりは小さく砕かれ、これにより、次の行程における土砂排出管16内での堆積土砂20の移送が円滑になされる。
【0010】
次に、三つの機械室14のうちの一つの機械室14において、第1開閉弁34と第2開閉弁36を開き、加圧ポンプ40を駆動する。なお、他の機械室14の第1開閉弁34と第2開閉弁36は閉じておく。
これにより撹拌室24で撹拌された堆積土砂20は、枝管1610から第1乃至第4直線部1601、1602、1603、1604へと圧送され、この加圧ポンプ40の吐出圧力と、第2直線部1602の長手方向の中間部に供給された圧縮空気とにより、堆積土砂20は確実に土砂処理設備8に圧送される。
そしてこのような手順を、各筒体12、機械室14毎に繰り返すことで堆積土砂20を土砂処理設備8に排出する。
なお、土砂処理設備8では、移送された堆積土砂20が水と土砂に分離され、浄化された水はダム貯水池2の上流箇所に放流される。
【0011】
従って、本実施例によれば、筒体12と、機械室14と、土砂排出管16と、エアー供給管18等を用いてダム貯水池2の底に堆積した土砂を排出するので、ダム貯水池22の貯水量や、水使用量等とは無関係に、いつでも堆積土砂20を確実に排出することが可能となる。
そして、堆積土砂20を排出するための筒体12、機械室14と、土砂排出管16と、エアー供給管18等からなる設備は、ダムの新設時に設置してもよく、或は、既存のダムにも設置することが可能で、新設、既存を問わずに全てのダムに広く適用可能である。
【0012】
【発明の効果】
以上の説明で明らかなように本発明は、ダム貯水池の底に堆積する土砂を排出する方法であって、ダム貯水池に筒体を、その下端をダム貯水池の堆積土砂中に打ち込むと共にその上端を水面の上方に突出させて立設し、前記筒体が堆積土砂中に打ち込まれた部分に複数の土砂取り入れ口を設け、前記堆積土砂の下方でかつ前記筒体の下方のダム貯水池の底部分に機械室を埋設し、前記機械室に前記筒体に接続する撹拌室を設け、前記撹拌室と、ダム貯水池外の土砂排出箇所とを連通する土砂排出管を設け、前記土砂取り入れ口を開放し、前記土砂取り入れ口から堆積土砂を筒体の内部に流出させ、この堆積土砂を前記撹拌室に収容して撹拌し、次に、この撹拌された堆積土砂を、前記機械室のポンプにより前記土砂排出管内で土砂排出箇所に向けて吐出し、更に、前記土砂排出管内で前記土砂排出箇所へ向けて圧縮空気を供給し、前記ポンプの吐出圧力と圧縮空気により堆積土砂を土砂排出管内で前記土砂排出箇所へ向けて圧送するようにした。
そのため、ダム貯水池の貯水量や、水使用量等とは無関係に、いつでも堆積土砂を確実に排出することができ、また、筒体、機械室、土砂排出管、エアー供給等を用いて堆積土砂を排出するので、堆積土砂排出のための設備は、ダムの新設時に設置してもよく、或は、既存のダムにも設置することが可能で、全てのダムに広く適用可能である。
【図面の簡単な説明】
【図1】本発明方法が実施されるダム貯水池の断面側面図である。
【図2】本発明方法が実施されるダム貯水池の平面図である。
【符号の説明】
2 ダム貯水池
4 堤体
8 土砂処理設備
12 筒体
14 機械室
16 土砂排出管
18 エアー供給管
20 堆積土砂
22 土砂取り入れ口
24 撹拌室
40 加圧ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for discharging sediment deposited on the bottom of a dam reservoir.
[0002]
[Prior art]
The sediment deposited at the bottom of the dam reservoir not only reduces the amount of water stored in the dam and lowers the water control function of the dam, but also may cause an increase in the river bed upstream of the dam reservoir and a decrease in the river bed downstream of the dam reservoir. There is also an adverse effect on rivers.
Therefore, in order to discharge the sediment deposited on the bottom of the dam reservoir, conventionally, the water level of the dam reservoir is lowered, the bottom of the dam reservoir is exposed and the sediment is excavated with a work vehicle, or the water level is lowered by drought, etc. The bottom of the dam reservoir exposed at the time is excavated with a work vehicle and discharged outside the dam reservoir.
[0003]
[Problems to be solved by the invention]
However, the method of discharging sedimentary sediment by lowering the water level of the dam reservoir and exposing the bottom may not always discharge sedimentary sediment due to the amount of water stored in the dam reservoir and the amount of water used in each period. Moreover, in the method of discharging sedimentary sediment in the case of drought, sedimentary sediment cannot be discharged if the state of full water continues.
The present invention has been devised in view of the above circumstances, and the object of the present invention is to discharge sediment sediment in a dam reservoir that can discharge sediment sediment at any time regardless of the amount of water stored in the dam reservoir, the amount of water used, etc. It is to provide a method.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a method for discharging sediment deposited on the bottom of a dam reservoir, wherein a cylinder is placed in the dam reservoir, its lower end is driven into the sediment of the dam reservoir, and its upper end is A plurality of earth and sand intakes are provided at the portion where the cylinder is driven into the sediment, and a machine is provided below the sediment and at the bottom of the dam reservoir below the cylinder. A chamber is embedded, a stirring chamber connected to the cylinder body is provided in the machine chamber, a sediment discharge pipe that communicates the stirring chamber and a sediment discharge site outside the dam reservoir is provided, and the sediment intake is opened, The sediment is discharged from the sediment intake into the cylinder, and the sediment is stored in the agitation chamber and agitated, and then the agitated sediment is discharged by the pump of the machine room. Toward the sediment discharge point in the pipe Further, the compressed air is supplied to the sediment discharge location in the sediment discharge pipe, and the sedimentary sediment is pumped to the sediment discharge location in the sediment discharge pipe by the discharge pressure and compressed air of the pump. It is characterized by that. Further, the present invention is characterized in that the cylindrical body is erected in the vicinity of a dam dam body. In the present invention, a plurality of sets of the cylindrical body and the machine room are provided, and each of the plurality of sets of stirring chambers is connected to a single earth and sand discharge pipe, and the sediment is discharged for each group. When sedimentary sediment is discharged in one set of cylinders and machine rooms, the stirring chambers and sediment discharge pipes of the other sets of machine rooms are shut off by an on-off valve.
[0005]
In the present invention, the earth and sand intake is opened, the sedimentary earth and sand are poured into the cylindrical body, and are accommodated in the stirring chamber.
When an appropriate amount of sediment is received, the sediment intake is closed, and the sediment is stirred in the stirring chamber so that the sediment can smoothly flow in the sediment discharge pipe. Next, the sedimentary sediment is pumped to the sediment discharge location in the sediment discharge pipe by the discharge pressure of the pump in the machine room and the compressed air.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples of the present invention will be described.
FIG. 1 is a sectional side view of a dam reservoir in which the method of the present invention is carried out, and FIG. 2 is a plan view thereof.
Reference numeral 2 is a dam reservoir, 4 is a dam body, 6 is a discharge port provided in the dam body 4, and 8 is an earth and sand treatment facility provided in the surrounding area on the upstream side of the dam reservoir 2.
In the method for discharging sedimentary sediment according to the present invention, three cylinders 12, three machine chambers 14, one sediment discharge pipe 16, one air supply pipe 18 and the like are used.
The cylindrical body 12 is erected vertically in the vicinity of the dam body 4 at intervals in the extending direction of the dam body 4, and the machine room 14 is deposited sediment (silt layer) 20 deposited on the bottom of the dam reservoir 2. Are buried corresponding to the lower part of the cylindrical body 12.
The earth and sand discharge pipe 16 has a first straight part 1601 extending substantially horizontally along the direction in which the three cylinders 12 are arranged, and substantially horizontal from the end of the first straight part 1601 to the earth and sand treatment facility 8 side. A second straight portion 1602 extending vertically, a third straight portion 1603 rising vertically from an end of the second straight portion 1602, and a fourth extending from the upper end of the third straight portion 1603 to the earth and sand treatment facility 8 side. The first and second straight portions 1601 and 1602 are embedded below the bottom of the dam reservoir 2, and the third straight portion 1603 stands outside the dam reservoir 2, and the upper end and the fourth straight line are provided. A portion 1604 is exposed from the ground.
[0007]
For example, a steel pipe is used as the cylindrical body 12, and the lower part of the cylindrical body 12 is driven into sedimentary earth and sand 20 (silt layer) deposited on the bottom of the dam reservoir 2, and the upper end protrudes above the water surface. .
A plurality of earth and sand intakes 22 are provided at intervals in the circumferential direction and the vertical direction at a portion where the cylindrical body 12 is embedded in the sedimentary earth and sand 20 and the vicinity thereof. 12 can be opened and closed by a cover plate (not shown) disposed on the inner peripheral surface or the outer peripheral surface.
[0008]
Each of the machine chambers 14 includes an open stirring chamber 24 that is positioned below the lower end of the cylindrical body 12 and communicates with the lower end. The stirring chamber 24 and the first straight portion 1601 are connected by a branch pipe 1610. It is connected. The stirring chamber 24 and the lower part of the cylindrical body 12 may be integrally formed.
The stirring chamber 24 is provided with a stirring blade 26, and the stirring blade 26 is rotationally driven by a power source 30 such as a motor installed in a first chamber 28 adjacent to the stirring chamber 24.
A part of the branch pipe 1610 is disposed in a second chamber 32 opposite to the first chamber 28 with the stirring chamber 24 interposed therebetween.
The branch pipe 1610 stands substantially vertically through a first bent portion 1614 from a horizontal portion 1612 extending horizontally from the center of the side wall of the stirring chamber 24, and a second bent portion 1616. The horizontal portion 1612 is provided with a first on-off valve 34 that opens and closes the inside of the horizontal portion 1612, and the standing portion 1618 has a standing portion. A second opening / closing valve 36 for opening and closing the interior of the interior 1616 is provided, and the upper portion of the upright portion 1618 penetrates the second chamber 32 upward and is embedded in the rock formation A at the bottom of the dam reservoir 2.
A pressurizing pump 40 is disposed in the second chamber 32, a blade 4002 of the pressurizing pump 40 is disposed in the first bent portion 1614, and the sedimentary sediment 20 is moved horizontally by driving the pressurizing pump 40. It is configured to be pumped from the standing part 1618 to the standing part 1618 and from the standing part 1618 to the first straight part 1601, the second straight part 1602, the third straight part 1603, and the fourth straight part 1604.
Further, an air supply pipe 18 is connected to the middle part of the second straight part 1602 in the longitudinal direction toward the third straight part 1603, and compressed air is supplied from the air supply pipe 18 to the second straight part 1602. . The compressed air is supplied from, for example, a compressor disposed in the machine room 14.
[0009]
Next, a procedure for discharging the sediment deposited on the bottom of the dam reservoir 2 using the cylinder 12, the machine room 14, the sediment discharge pipe 16, the air supply pipe 18 and the like as described above will be described.
First, the first on-off valve 34 is closed, and the earth and sand intake port 22 located in the sedimentary earth and sand 20 is opened.
As a result, the accumulated earth and sand 20 flows into the cylinder 12 from the earth and sand intake 22 and falls into the agitating chamber 24 and is stored.
When an appropriate amount of the sediment 20 is stored in the stirring chamber 24, the earth intake 22 is closed, and the stirring blade 26 is driven to rotate by the power source 30.
Due to the rotational drive of the stirring blades 26, the lump of the accumulated sediment 20 is crushed into small pieces, whereby the sediment 20 is smoothly transferred in the sediment discharge pipe 16 in the next stroke.
[0010]
Next, in one of the three machine chambers 14, the first on-off valve 34 and the second on-off valve 36 are opened, and the pressurizing pump 40 is driven. The first opening / closing valve 34 and the second opening / closing valve 36 of the other machine room 14 are closed.
Thus, the sediment 20 stirred in the stirring chamber 24 is pumped from the branch pipe 1610 to the first to fourth straight portions 1601, 1602, 1603, 1604, and the discharge pressure of the pressurizing pump 40 and the second straight line. The sediment 20 is reliably pumped to the sediment treatment facility 8 by the compressed air supplied to the intermediate portion in the longitudinal direction of the section 1602.
Then, by repeating such a procedure for each cylinder 12 and each machine room 14, the accumulated earth and sand 20 is discharged to the earth and sand treatment facility 8.
In the earth and sand treatment facility 8, the transferred accumulated earth and sand 20 is separated into water and earth and sand, and the purified water is discharged to the upstream portion of the dam reservoir 2.
[0011]
Therefore, according to the present embodiment, since the sediment deposited on the bottom of the dam reservoir 2 is discharged using the cylinder 12, the machine room 14, the earth and sand discharge pipe 16, the air supply pipe 18 and the like, the dam reservoir 22 Regardless of the amount of stored water, the amount of water used, etc., the sediment 20 can be reliably discharged at any time.
Then, the equipment including the cylinder 12, the machine room 14, the earth and sand discharge pipe 16, the air supply pipe 18 and the like for discharging the accumulated earth and sand 20 may be installed at the time of newly installing a dam, or an existing one. It can also be installed in dams, and can be widely applied to all dams, whether new or existing.
[0012]
【The invention's effect】
As is apparent from the above description, the present invention is a method for discharging sediment deposited on the bottom of a dam reservoir, in which a cylinder is placed in the dam reservoir, its lower end is driven into the sediment sediment of the dam reservoir and its upper end is Protruding above the water surface, and providing a plurality of earth and sand intakes in the portion where the cylinder is driven into the sediment, and the bottom part of the dam reservoir below the sediment and below the cylinder A mechanical chamber is embedded in the mechanical chamber, a stirring chamber connected to the cylinder is provided in the mechanical chamber, a sediment discharge pipe is provided to communicate the stirring chamber and a sediment discharge location outside the dam reservoir, and the sediment intake is opened. Then, the sediment is discharged from the sediment intake into the cylinder, and the sediment is stored in the agitation chamber and agitated. In the sediment discharge pipe In addition, compressed air is supplied to the sediment discharge location in the sediment discharge pipe, and sedimentary sediment is pumped to the sediment discharge location in the sediment discharge pipe by the discharge pressure and compressed air of the pump. I did it.
Therefore, it is possible to reliably discharge sedimentary sediment at any time regardless of the amount of water stored in the dam reservoir, the amount of water used, etc., and sedimentary sediment can be obtained using a cylinder, machine room, sediment discharge pipe, air supply, etc. Therefore, facilities for discharging sediment sediment may be installed at the time of new dam construction, or can be installed in existing dams, and can be widely applied to all dams.
[Brief description of the drawings]
FIG. 1 is a cross-sectional side view of a dam reservoir in which the method of the present invention is implemented.
FIG. 2 is a plan view of a dam reservoir in which the method of the present invention is implemented.
[Explanation of symbols]
2 Dam Reservoir 4 Embankment 8 Sediment Processing Equipment 12 Tube 14 Machine Room 16 Sediment Discharge Pipe 18 Air Supply Pipe 20 Accumulated Sediment 22 Sediment Intake Port 24 Stirring Chamber 40 Pressure Pump

Claims (3)

ダム貯水池の底に堆積する土砂を排出する方法であって、
ダム貯水池に筒体を、その下端をダム貯水池の堆積土砂中に打ち込むと共にその上端を水面の上方に突出させて立設し、
前記筒体が堆積土砂中に打ち込まれた部分に複数の土砂取り入れ口を設け、
前記堆積土砂の下方でかつ前記筒体の下方のダム貯水池の底部分に機械室を埋設し、
前記機械室に前記筒体に接続する撹拌室を設け、
前記撹拌室と、ダム貯水池外の土砂排出箇所とを連通する土砂排出管を設け、前記土砂取り入れ口を開放し、前記土砂取り入れ口から堆積土砂を筒体の内部に流出させ、この堆積土砂を前記撹拌室に収容して撹拌し、
次に、この撹拌された堆積土砂を、前記機械室のポンプにより前記土砂排出管内で土砂排出箇所に向けて吐出し、
更に、前記土砂排出管内で前記土砂排出箇所へ向けて圧縮空気を供給し、
前記ポンプの吐出圧力と圧縮空気により堆積土砂を土砂排出管内で前記土砂排出箇所へ向けて圧送するようにした、
ことを特徴とするダム貯水池の堆積土砂の排出方法。
A method for discharging sediment deposited on the bottom of a dam reservoir,
Put the cylinder into the dam reservoir, and erected the lower end of the cylinder into the sediment of the dam reservoir and project the upper end above the water surface.
A plurality of earth and sand intakes are provided in the portion where the cylinder is driven into the sediment,
A machine room is embedded in the bottom portion of the dam reservoir below the sediment and below the cylinder,
A stirring chamber connected to the cylindrical body is provided in the machine chamber,
A sediment discharge pipe that communicates the agitating chamber and a sediment discharge site outside the dam reservoir is provided, the sediment intake is opened, and the sediment is discharged from the sediment intake into the cylinder. Contained in the stirring chamber and stirred,
Next, the agitated sedimentary sediment is discharged toward the sediment discharge location in the sediment discharge pipe by the pump of the machine room,
Further, compressed air is supplied toward the sediment discharge location in the sediment discharge pipe,
The pumping pressure and compressed air of the pump was used to pressure-feed sedimentary sediment in the sediment discharge pipe toward the sediment discharge location.
A method for discharging sedimentary sediment from a dam reservoir.
前記筒体は、ダム堤体の近傍に立設される請求項1記載のダム貯水池の堆積土砂の排出方法。The method for discharging sediment sediment in a dam reservoir according to claim 1, wherein the cylindrical body is erected in the vicinity of a dam bank body. 前記筒体、機械室は複数組み設けられ、これら複数組みの各撹拌室は単一の土砂排出管に連結され、堆積土砂の排出は各組み毎に行なわれ、一つの組みの筒体、機械室で堆積土砂の排出が行なわれている時には、他の組みの機械室の撹拌室と土砂排出管は開閉弁により遮断されている請求項1記載のダム貯水池の堆積土砂の排出方法。A plurality of sets of cylinders and machine rooms are provided, and each of the plurality of sets of stirring chambers is connected to a single earth and sand discharge pipe, and the sediment is discharged for each group. 2. The method for discharging sediment in the dam reservoir according to claim 1, wherein when the sediment is discharged in the chamber, the stirring chamber and the sediment discharge pipe of another set of machine rooms are shut off by an on-off valve.
JP33469496A 1996-11-28 1996-11-28 Discharge method of sediment in the dam reservoir Expired - Fee Related JP3791991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33469496A JP3791991B2 (en) 1996-11-28 1996-11-28 Discharge method of sediment in the dam reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33469496A JP3791991B2 (en) 1996-11-28 1996-11-28 Discharge method of sediment in the dam reservoir

Publications (2)

Publication Number Publication Date
JPH10159065A JPH10159065A (en) 1998-06-16
JP3791991B2 true JP3791991B2 (en) 2006-06-28

Family

ID=18280182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33469496A Expired - Fee Related JP3791991B2 (en) 1996-11-28 1996-11-28 Discharge method of sediment in the dam reservoir

Country Status (1)

Country Link
JP (1) JP3791991B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665002B1 (en) 2006-08-31 2007-01-10 주식회사 도화종합기술공사 Deposit sewage remove apparatus of sink-hole
CN103882838B (en) * 2014-02-27 2015-12-02 黄河水利委员会黄河水利科学研究院 A kind of sand discharge method of low water head river channel hinge powerplant intakes
CN108036969B (en) * 2017-11-21 2022-02-01 贵州理工学院 Method for extracting tailing sand sample from tailing reservoir area

Also Published As

Publication number Publication date
JPH10159065A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
CN206706792U (en) Deep foundation pit precipitation well construction
JP2869431B2 (en) Underground dam
CN105804047A (en) Water drainage device and method for increasing water drainage and consolidation speed of filled sludge
JP3791991B2 (en) Discharge method of sediment in the dam reservoir
JP3307729B2 (en) Stratified pumping system and well with the same
CN208072434U (en) Subway foundation pit dewatering well vacuum system
WO1999047756A1 (en) Consolidation method for soil layers with low permeability
CN113235629A (en) Basement well point dewatering device and construction method
CN112227395A (en) Well sealing device and method for large-water-pressure-drop well in building raft
CN219413056U (en) Water flushing system and flushing device of open caisson type heading machine
CN217204091U (en) Foundation pit embedded type double-liquid grouting plugging structure
CN216475130U (en) Basement well point dewatering device
KR102370426B1 (en) Water diverting apparatus and method for sewage intercepting pipe
CN210975852U (en) Drainage device for hydraulic engineering
JP2582373B2 (en) Underground storage facility for river water
CN210421104U (en) Water collecting device for ultra-deep foundation pit
CN208121950U (en) A kind of vertical-type axial-flow pump moist chamber type pump house combined with pressure water case
JP2601763B2 (en) Floating type selective water intake device
JP2847354B2 (en) Dredging device and dredging method
JP3888547B2 (en) Groundwater passing pneumatic caisson
JPH04127B2 (en)
JPH0619152B2 (en) Levee lateral over-pumping device with horizontal submersible motor pump
JP3502771B2 (en) Drainage apparatus and method
JPS61211415A (en) Reduction well construction method
CN110700374A (en) Ecological water bank with river-following pollution self-control function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees