JP3791747B2 - Thermoplastic resin extruded foam manufacturing method and thermoplastic resin extruded foam - Google Patents

Thermoplastic resin extruded foam manufacturing method and thermoplastic resin extruded foam Download PDF

Info

Publication number
JP3791747B2
JP3791747B2 JP27827599A JP27827599A JP3791747B2 JP 3791747 B2 JP3791747 B2 JP 3791747B2 JP 27827599 A JP27827599 A JP 27827599A JP 27827599 A JP27827599 A JP 27827599A JP 3791747 B2 JP3791747 B2 JP 3791747B2
Authority
JP
Japan
Prior art keywords
weight
thermoplastic resin
foam
parts
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27827599A
Other languages
Japanese (ja)
Other versions
JP2001096602A (en
Inventor
秀育 高木
章 田中
敦之 北川
良成 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP27827599A priority Critical patent/JP3791747B2/en
Publication of JP2001096602A publication Critical patent/JP2001096602A/en
Application granted granted Critical
Publication of JP3791747B2 publication Critical patent/JP3791747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂押出発泡体の製造方法及び熱可塑性樹脂押出発泡体に関する。
【0002】
【従来の技術】
ポリスチレン、ポリエチレン、ポリプロピレン等の熱可塑性樹脂を押出機内で溶融混練し、次いでブタン等の物理発泡剤を圧入して溶融混練し、発泡に適した温度に冷却した後、押出機先端のダイスから溶融混練物を押出して発泡させる押出発泡方法は周知である。また、その押出発泡に際して、タルク等の無機物粉体からなる気泡調整剤を更に押出機内に添加し、得られる発泡体の気泡径の大きさを調整することも周知である。また、予め気泡調整剤を熱可塑性樹脂と溶融混練して得られた気泡調整剤マスターバッチと、そのような気泡調整剤を含有しない熱可塑性樹脂とを混合して押出機内に供給して溶融混練し、次いでブタン等の物理発泡剤を圧入して更に溶融混練してから発泡に適した温度にまで冷却し、押出機先端のダイスから溶融混練物を押出して発泡体を製造する方法も周知である。
【0003】
【発明が解決しようとする課題】
ところで、無機物粉体を気泡調整剤として使用すると、得られる押出発泡体の表面には気泡調整剤の凝集物が生成しやすくなり、許容できない程に大きな気泡調整剤の凝集物が生成すると、発泡体の外観を悪化させるという問題があった。また、許容できない程に大きな気泡調整剤の凝集物が生成したシート状発泡体を熱成形すると、亀裂が発生するという問題もあった。特に、発泡体が最終的に食品の包装用として利用される場合には、表面に気泡調整剤の大きな凝集物が生成した発泡体の出荷はできる限り避けなければならない。そのため、大きな気泡調整剤の凝集物が発生した発泡体は、通常は発見され次第スクラップとされるので製品ロスとなってしまう。特に、熱成形に使用される見掛密度0.05〜0.5g/cm3及び厚み0.3〜5mmのポリスチレン系樹脂発泡シートで代表される熱可塑性樹脂発泡シートの場合、通常はシート幅が60cmを越え、時には1mを越えることもあり、長さは100mを越え、時には400mを超えることもあり、これがロール状に巻かれている。このようなロール状に巻かれた長尺なシート中に、1箇所にでも気泡調整剤の大きな凝集が存在すると、そのロールは出荷できなくなる。また、発泡シート製造時に、気泡調整剤の大きな凝集の存在が見過ごされて出荷され、シートを熱成形している途中で気泡調整剤の大きな凝集の存在が発見された場合、その時点でそのロールと、気泡調整剤の大きな凝集の存在が発見されるまでの間、そのロールから成形された熱成形品は全て廃棄されることになり、その場合にはロールの無駄のみならず、ロールの搬送に要したコスト、破棄されることとなった成形品の成形に要した熱成形エネルギー等が更に無駄になってしまう。
【0004】
従来技術の方法においても、上記した気泡調整剤マスターバッチを使用する方法では、気泡調整剤の分散性が高まるため、気泡調整剤の大きな凝集物は生成しにくいものの、依然として気泡調整剤の大きな凝集物による不良品が発生していた。そのため、そのような凝集物による不良品発生率をいっそう低下させる技術の開発が当業界では必要と考えられている。
【0005】
本発明の目的は、熱可塑性樹脂を物理発泡剤と、無機物粉体からなる気泡調整剤を使用して押出発泡させる技術において、気泡調整剤の凝集物による不良品発生率を更に低下させる方法を提供することにある。
【0006】
本発明者等は、前記課題を解決するために鋭意研究した結果、押出機内から押出して発泡させる、発泡剤を含有する溶融熱可塑性樹脂中に、無機物粉体からなる気泡調整剤とともに、ポリグリセリン脂肪酸エステルを存在せしめると、気泡調整剤が凝集しにくくなることを見い出し本発明を完成するに至った。
【0007】
【課題を解決するための手段】
即ち、本発明は、
(1)無機物粉体からなる気泡調整剤と物理発泡剤とを含有する溶融熱可塑性樹脂を、押出機から低圧領域ヘ押出して発泡体を製造する方法において、上記溶融熱可塑性樹脂100重量部当りポリグリセリン脂肪酸エステルを0.0005重量部以上、0.01重量部未満の割合で含有させること特徴とする熱可塑性樹脂押出発泡体の製造方法、
)溶融熱可塑性樹脂中に高級脂肪酸の金属塩を更に含有させることを特徴とする上記(1)記載の熱可塑性樹脂押出発泡体の製造方法
を要旨とする。
【0008】
【発明の実施の形態】
本発明において熱可塑性樹脂としては、プロピレン単独重合体、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、プロピレン−ブテンランダム共重合体、プロピレン−エチレン−ブテンランダム共重合体等のプロピレン系樹脂、スチレンモノマーやアクリル系モノマー等の単量体を含浸重合させた改質ポリプロピレン、或いは高密度ポリエチレンや、エチレンとα−オレフィンとの共重合体である直鎖状低密度ポリエチレンや、エチレン−酢酸ビニル共重合体等のエチレン系共重合体等のポリオレフィン系樹脂、ポリスチレン樹脂、スチレン−ブタジエン共重合体、スチレン−ブタジエン−アクリロニトリル共重合体、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体、スチレン−無水マレイン酸共重合体等のポリスチレン系樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等の熱可塑性芳香族ポリエステル樹脂、芳香族ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、あるいは上記樹脂及び上記共重合体から選択された2以上の混合物、さらには上記樹脂又は上記共重合体又は上記混合物を主成分(50重量%以上)とする他の樹脂やエラストマーとの混合物等が例示される。本発明においては、熱可塑性樹脂として特にポリスチレン系樹脂の使用が好ましい。ポリスチレン系樹脂は押出発泡に際して無機物粉体の少量の添加で、微細な気泡を形成させやすいという利点を有している。
【0009】
本発明で使用されるポリグリセリン脂肪酸エステルは下記一般式で示される。
【0010】
【化1】

Figure 0003791747
ただし、式中のmは0〜18の整数であり、Rは水素原子又は炭素数8〜24の脂肪酸の残基であり、Rの少なくとも一つは炭素数8〜24の脂肪酸の残基である。
【0011】
中でも特に本件発明の目的を容易に達成しうるものは、上記式中のmが1〜15のものであり、且つ脂肪酸の残基が炭素数12〜24の直鎖状の飽和脂肪酸の残基であることが好ましい。上記式中のmが15を超えるものは工業的に低コストで製造することが困難なのでそれから製造されるポリグリセリン脂肪酸エステルは必然的に高価なものとなるので好ましくない。また、式中のmが1未満のポリグリセリン脂肪酸エステルの場合には少量の添加では本発明の効果は達成されにくい(式中のmが1以上のポリグリセリン脂肪酸エステルでは、少量の添加でも本発明の効果が達成できる。)。また、脂肪酸の残基が炭素数12未満の直鎖飽和脂肪酸の残基の場合(Rがラウリン酸より炭素数が少ない脂肪酸の残基の場合)には、耐水性に劣るようになり又は耐熱性も悪化するので好ましくない。また、脂肪酸の残基が炭素数24を超える直鎖飽和脂肪酸の残基の場合(Rがリグノセリン酸より炭素数の大きい脂肪酸の残基の場合)には、そのような脂肪酸は工業的に低コストで製造することが困難なので、そのような脂肪酸から製造されるポリグリセリン脂肪酸エステルは必然的に高価なものとなるので好ましくない。特に、本発明で使用されるポリグリセリン脂肪酸エステルは、数平均分子量が500〜7000のものが好ましい。また、ポリグリセリン脂肪酸エステル原料である脂肪酸は、炭素数が18以上の脂肪酸(ステアリン酸又はそれより炭素数が多いもの)が、常温(20℃)、常圧下でロウ状または固体状であるため取り扱いやすい。本発明で使用されるポリグリセリン脂肪酸エステルは白色又は淡黄白色又は淡黄色であることが好ましく、そのような色であるとこれを添加して製造される押出発泡体の色をほとんど変化させないで済む。また、ポリグリセリン脂肪酸エステルにおける脂肪酸残基の数は1以上であるが、通常は1乃至m+3(mは上記式中のmの値)である。
【0012】
本発明方法において、ポリグリセリン脂肪酸エステルは、少量の添加では本発明の効果が不充分となり、多量の添加では得られる発泡体の表面がべとついたり汚れやすくなったりする。従って、本発明のポリグリセリン脂肪酸エステルの添加量は、熱可塑性樹脂押出発泡体を構成する熱可塑性樹脂100重量部当り、0.0001重量部乃至1.0重量部が好ましく、0.0005重量部以上、0.01重量部未満がより好ましい。
【0013】
本発明において気泡調整剤として用いる無機物粉体としては、タルク、カオリン、マイカ、シリカ、炭酸カルシウム、硫酸バリウム、酸化チタン、クレー、酸化アルミニウム、ベントナイト、ケイソウ土等が例示される。これら無機物粉体は、通常は単独で使用されるが2種以上を組み合わせて用いてもよい。また、これら無機物粉体は粒子径が小さいほど、少量の使用でも発泡体の気泡径を小さくする効果が高い。そのような観点から無機物粉末の平均粒子径(遠心沈降法)は30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることが更に好ましい。ただし、あまりにも平均粒子径が小さ無機物粉体は、その加工のために価格が高くなり、また発泡体中に凝集物が生成しやすくなるので、その平均粒子径は0.1μmを下限とすることが好ましく、0.5μmを下限とすることがより好ましい。上記無機物粉体の中でも特にタルクは、気泡の微細化に有効であると共に安価であるので最も好ましい。上記無機物粉体からなる気泡調整剤は、熱可塑性樹脂押出発泡体100重量%中に0.1〜5.0重量%の割合で含有されるように添加する。気泡調整剤の押出発泡体中における含有量が0.1重量%を下回るような量を添加すると、得られる発泡体に微細な気泡を形成させにくくなり、逆に含有量が5.0重量%を上回るような量を添加しても、得られる発泡体の気泡の微細化は頭打ちとなる。また、発泡体中における気泡調整剤の含有量が多くなるにつれて、得られる発泡体に気泡調整剤の大きな凝集物が生成しやすくなるので、そのような観点からも気泡調整剤の含有量が5.0重量%以下となるように添加した方がよい。
【0014】
ポリグリセリン脂肪酸エステルと無機物粉体とは、タンブラーミキサーやリボンブレンダー等の混合装置を使用して熱可塑性樹脂のペレットと所定の混合割合になるように混合してから、押出発泡体を製造する押出機内に投入してもよい。しかし、ポリグリセリン脂肪酸エステルと無機物粉体とを、二軸押出機やバンバリーミキサー等の溶融混練機を使用して熱可塑性樹脂と溶融混練し、次いでペレット化することにより両成分が高濃度に含まれたマスターバッチを予め製造し、このマスターバッチと、ポリグリセリン脂肪酸エステルと無機物粉体を実質的に含有しない熱可塑性樹脂とを所望の割合で、押出発泡体を製造するための押出機に投入して溶融混練した方が、ポリグリセリン脂肪酸エステルと無機物粉体の取り扱い性及び作業性にすぐれると共に、押出機周辺の作業環境が汚れにくいので好ましい。また、上記マスターバッチを使用した方が気泡調整剤の大きな凝集物の生成を抑制しやすいので好ましい。
【0015】
ポリグリセリン脂肪酸エステルを熱可塑性樹脂に混合するに先立ち、或いは上記マスターバッチを製造するに先立ち、ヘンシェルミキサー、V型ミキサー等の高速撹拌可能なミキサーの中で、ポリグリセリン脂肪酸エステルと気泡調整剤とを撹拌し、気泡調整剤の表面にポリグリセリン脂肪酸エステルを付着させておくことができる。ただし、この撹拌は、ポリグリセリン脂肪酸エステルが流動性を持つとともに、分解しない温度下で行われる。このようにポリグリセリン脂肪酸エステルの特定量が予め付着した気泡調整剤を使用すれば、気泡調整剤の大きな凝集物の生成をよりいっそう抑制しやすくなるので好ましい。
【0016】
熱可塑性樹脂と、ポリグリセリン脂肪酸エステル及び無機物粉体、又は熱可塑性樹脂と上記マスターバッチとを押出機内に投入し、押出機内で熱可塑性樹脂(又は熱可塑性樹脂とマスターバッチと)を溶融する共に混練しつつ、押出機の途中から物理発泡剤を溶融樹脂中に圧入し、一緒に混練する。続いて溶融熱可塑性樹脂を、押出発泡に適した温度に冷却しながらダイス側へ移送し、ダイスのスリットを通して大気圧下等の低圧領域に押出すことにより、押出発泡体が得られる。押出発泡体の形状は、ダイスのスリット形状に応じた、板状、シート状、棒状、チューブ状、パイプ状等を有する。
【0017】
上記物理発泡剤としては、不活性ガス等の無機発泡剤、飽和脂肪族炭化水素、飽和脂環族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、エーテル、ケトン等の有機発泡剤が用いられ、これらの具体例としては、たとえばメタン、エタン、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、2−メチルペンタン、3−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、メチルシクロプロパン、1,1−ジメチルシクロプロパン、シクロヘキサン、メチルシクロペンタン、エチルシクロブタン、1,1,2−トリメチルシクロプロパン、ベンゼン、塩化メチル、1−クロロ−1,1−ジフロロエタン、1−クロロ−2,2,2−トリフロロエタン、1,1,1,2−テトラフロロエタン、1,1−ジフロロエタン、ジメチルエーテル、2−エトキシエタノール、アセトン、エチルメチルケトン、アセチルアセトン、二酸化炭素、窒素、空気等が挙げられる。
【0018】
物理発泡剤の使用量は、ダイスの種類、使用される発泡剤の種類、使用される熱可塑性樹脂の種類、得ようとする発泡体の発泡倍率や厚みなどに応じて異なるが、通常は、押出機に投入される熱可塑性樹脂の総和100重量部当たり0.2〜30重量部程度の割合となる。一例を挙げると、サーキュラーダイスを使用し、ブタン発泡剤を使用して見掛密度0.05〜0.5g/cm3及び厚み0.3〜5mmのポリスチレン系樹脂発泡シートを製造する場合、ブタンの使用量は、通常、ポリスチレン系樹脂100重量部当たり0.3〜6重量部である。
尚、本発明の方法で製造される熱可塑性樹脂発泡体は、通常、見掛密度0.01〜0.7g/cm3及び厚み0.2〜300mmである。
【0019】
また、本発明の方法においては、樹脂が滞留しにくい構造の押出機を使用することが好ましい。なぜならばタルク等の無機物粉体を含有する溶融熱可塑性樹脂が押出機内で滞留するほど、製品にタルク等の無機物粉体の凝集物が生成しやすくなるからである。押出機のスクリューに切り欠きが多いほど、スクリューとバレルとの間の隙間が大きいほど、押出機内において溶融樹脂が滞留しやすくなるので、こういった点を注意してタルク等を含有する樹脂を押出機内で滞留しにくくする工夫が必要である。
【0020】
本発明の熱可塑性樹脂発泡体の製造方法においては、溶融熱可塑性樹脂中に高級脂肪酸の金属塩を更に含有させることが好ましい。高級脂肪酸の金属塩を更に添加すると、無機物粉体からなる気泡調整剤の溶融熱可塑性樹脂中での分散効果がいっそう高まって、得られる発泡体の表面に、気泡調整剤の大きな凝集物が生成するのを更に効果的に抑制することができるので好ましい。また、高級脂肪酸の金属塩は、上記マスターバッチを製造する際に熱可塑性樹脂に添加しておくと、溶融混練中に混練機壁面への溶融樹脂の付着が抑制されるので、マスターバッチの製造が容易となる。上記高級脂肪酸の金属塩としては、炭素数12〜22の高級脂肪酸、例えばカプリン酸、ステアリン酸、パルミチン酸等の高級脂肪酸のリチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、亜鉛等の金属塩が挙げられ、特にステアリン酸マグネシウム、ステアリン酸亜鉛及びステアリン酸カルシウムが好適である。上記高級脂肪酸の金属塩は、通常、発泡体中に0.001〜1重量%の割合で含有されるように添加することが好ましい。
【0021】
気泡調整剤の大きな凝集物は、発泡体表面に常に生成するというわけではなく、スポット的に生成する傾向がある。特に、熱成形に好適に使用される見掛密度0.05〜0.5g/cm3及び厚み0.3〜5mmのポリスチレン系樹脂発泡シートで代表される熱可塑性樹脂発泡シートは、通常は幅が60cmを越え、時には1mを越えることもあり、長さが100mを越え、時には400mを超えることもあり、これがロール状に巻かれている。このような大きなロール状に巻かれている長尺名発泡シートの中の1箇所にでも気泡調整剤の大きな凝集物が存在すると、そのロールは出荷できなくなる。また、発泡シート製造時にそれが見過ごされて出荷されても、熱成形の途中で発見されると、その時点でそのロールとそのロールから得られた熱成形品は廃棄されることになるが、その場合には搬送費、熱成形エネルギー等が更に無駄になってしまう。従って、本発明の方法は、発泡体表面に存在する気泡調整剤の大きな凝集物の生成が極めて抑制さるから、1製品当たりの長さが非常に長い発泡体製品を製造する場合に非常に効果が高いといえる。
【0022】
上記のようにして得られる本発明の押出発泡体は、その表面に無機物粉体からなる気泡調整剤の0.5mm以上の凝集物は存在しない。気泡調整剤の0.5mm以上の凝集物とは、気泡調整剤の凝集物で、長さ又は直径が0.5mm以上となったものであり、長さや直径が0.5mm以上の気泡調整剤の凝集物が発泡体表面に存在すると外観低下をきたすばかりか、発泡体を成形した際に表面にピンホールが形成されたり、亀裂が形成されやすくなる。
【0023】
また上記押出発泡体が、見掛密度0.05〜0.5g/cm3及び厚み0.3〜5mmのポリスチレン系樹脂発泡シートの場合、熱成形性に優れるため好ましい。厚みが5mmを超えたり又は見かけ密度が0.05g/cm3未満であると熱成形体に亀裂が生じやすくなるので好ましくない。また、見掛密度が0.5g/cm3を超えたり又は厚みが0.3mmよりも薄くなると、断熱性、緩衝性、あるいは軽量性に劣るようになる。
【0024】
また、ポリスチレン系樹脂発泡シートの熱成形性を悪化させないためには、熱成形時においてポリスチレン系樹脂発泡シート1kg中に、ブタン等の有機発泡剤が0.03モル以上含有されていることが好ましく、0.05モル以上含有されていることがより好ましい。尚、熱成形時に大きな二次発泡力が必要な絞り比(容器の開口部の面積と同じ直径を持つ円の直径に対する容器の高さの比)が0.3以上の容器を製造する場合には、熱成形時においてポリスチレン系樹脂発泡シート1kg中に、ブタン等の有機発泡剤が0.2モル以上含有されていることが好ましい。ただし、有機発泡剤が成形品中に多く含まれていると成形品が熱変形しやすくなるので、より高い耐熱性が必要となる場合には成形品1kg中に残存する有機発泡剤の量を0.3モル以下に減少させておくことが好ましく、0.2モル以下に減少させておくことがより好ましい。
【0025】
熱成形用ポリスチレン系樹脂発泡シートは、単層のものであっても、ポリスチレン系樹脂発泡シート同士を2層以上積層したものであっても構わない。あるいは、熱成形用ポリスチレン系樹脂発泡シートは、そういった単層シート又は積層シートに、更に無発泡の熱可塑性樹脂シートを積層したものであっても構わない。絞り比が0.3以上で、丼状の容器を得るための最も好ましい熱成形用ポリスチレン系樹脂発泡シートは、密度0.08〜0.025g/cm3、厚み1.5〜3.0mmのポリスチレン系樹脂発泡シートの片面に、厚み50〜300μmの無発泡ポリスチレン系樹脂(ゴム成分により耐衝撃性が付与されていると更に好ましい)シート又はフィルムが積層されたもので、且つポリスチレン系樹脂発泡シート1kg中に残存する有機発泡剤の量が0.2〜0.8モルのものである(有機発泡剤の残存量の計算は、無発泡ポリスチレン系樹脂シート又はフィルムを除いた発泡シートのみの部分を対象とする)。尚、無発泡ポリスチレン系樹脂シートは、2層以上の無発泡ポリスチレン系樹脂シート又はフィルムを積層したものであっても構わない。この場合、最も外側(発泡シートとは反対側)に位置する無発泡ポリスチレン系樹脂シート又はフィルムは、厚みが10〜50μmであって、発泡シート側(内面側)に模様等が印刷されたフィルムであることが好ましい。
【0026】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0027】
実施例において使用した気泡調整剤マスターバッチA〜Eを以下のようにして調製した。
【0028】
マスターバッチA:平均粒子径3μmのタルク30重量部に対し、ポリグリセリン脂肪酸エステルである味の素ファインテクノ株式会社製の商品名「プレンライザーMK−600」を0.1重量部、及びMFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂69.9重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチAとした。
【0029】
マスターバッチB:平均粒子径7μmのタルク30重量部に対し、上記「プレンライザーMK−600」を0.1重量部、及びMFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂69.9重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチBとした。
【0030】
マスターバッチC:平均粒子径10μmのタルク30重量部に対し、上記「プレンライザーMK−600」を0.2重量部、MFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂68.8重量部、及び高級脂肪酸の金属塩としてステアリン酸亜鉛1.0重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチCとした。
【0031】
マスターバッチD:平均粒子径7μmのタルク30重量部に対し、上記「プレンライザーMK−600」を0.3重量部、MFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂67.7重量部、及び高級脂肪酸の金属塩としてステアリン酸亜鉛2.0重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチDとした。
【0032】
マスターバッチE:平均粒子径7μmのタルク30重量部に対し、上記「プレンライザーMK−600」を0.1重量部、MFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂66.9重量部、及び高級脂肪酸の金属塩としてステアリン酸マグネシウム3.0重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチEとした。
【0033】
また比較例において使用した気泡調整剤マスターバッチF〜Iを以下のようにして調製した。
【0034】
マスターバッチF:平均粒子径3μmのタルク30重量部当たり、MFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂70重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチFとした。
【0035】
マスターバッチG:平均粒子径7μmのタルク30重量部当たり、MFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂69重量部及び滑剤としてステアリン酸アミド1.0重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチGとした。
【0036】
マスターバッチH:平均粒子径10μmのタルク30重量部当たり、MFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂69重量部及び滑剤としてステアリン酸亜鉛1.0重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチHとした。
【0037】
マスターバッチI:平均粒子径3μmのタルク30重量部当たり、MFR(200℃/5kg荷重)=10g/10分のポリスチレン樹脂69重量部及び滑剤としてステアリン酸アミド1.0重量部とをバンバリーミキサーで溶融混練し、次いでペレット化してマスターバッチIとした。
【0038】
実施例1
MFR(200℃/5kg荷重)=2.1g/10分のポリスチレン樹脂93.7重量部当たり、マスターバッチAを2.8重量部の割合で60mm径の押出機に投入して加熱した後、イソブタン55重量%とノルマルブタン45重量%からなる混合ブタン発泡剤を、ポリスチレン樹脂とマスターバッチAと混合ブタン発泡剤との総和が100重量%となる量(3.5重量部)を押出機内の溶融ポリスチレン樹脂に圧入して溶融混練した。次いで上記押出機と接続された90mm径の押出機内で上記溶融混練物を約157℃まで冷却した後、同温度で環状ダイスから押出してチューブ状に発泡させると共にその直径を拡大させつつ表面を冷却し、更に発泡体の内側を冷却ドラムに接するようにして移送しながら更に冷却した後、冷却ドラム上に固定された1つのカッターナイフにより押出方向に沿って切断し、次いでその切断部から押し広げることによりシート状にして連続的にロール状に巻取った。尚、得られた発泡シートは幅が1040mm、厚みが2.3mm〜2.4mm、見かけ密度が0.11g/cm3であった。この発泡シートは、長さ300mをもって1ロールとした。発泡シートの製造の途中でシート化されてから巻取るまでの間に発泡シートの上が表面(上記チューブ状発泡体の外側表面に相当)を対象にしてタルクの0.5mm以上の凝集物が存在するロールの割合(製品ロス率)を調べた。ただし、連続して製造された500ロールを対象に調べた。その結果、タルクの0.5mm以上の凝集物が存在するロールは2つであったため製品ロス率は0.4%であった。
【0039】
実施例2
マスターバッチAをマスターバッチBに変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は0%であった。
【0040】
実施例3
マスターバッチAをマスターバッチCに変更し、更にマスターバッチの使用量を2.8重量部から3.0重量部に変更するとともに、MFR=2.1g/10分のポリスチレン樹脂の使用量を93.7重量部から93.5重量部に変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は0%であった。
【0041】
実施例4
マスターバッチAをマスターバッチDに変更し、マスターバッチの使用量を2.8重量部から3.0重量部に変更するとともに、MFR=2.1g/10分のポリスチレン樹脂の使用量を93.7重量部から93.5重量部に変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は0%であった。
【0042】
実施例5
マスターバッチAをマスターバッチEに変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は0%であった。
【0043】
比較例1
マスターバッチAをマスターバッチFに変更し、更にマスターバッチの使用量を2.8重量部から3.0重量部に変更するとともに、MFR=2.1g/10分のポリスチレン樹脂の使用量を93.7重量部から93.5重量部に変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は3%であった。
【0044】
比較例2
マスターバッチAをマスターバッチGに変更し、マスターバッチの使用量を2.8重量部から3.0重量部に変更するとともに、MFR=2.1g/10分のポリスチレン樹脂の使用量を93.7重量部から93.5重量部に変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は2%であった。
【0045】
比較例3
マスターバッチAをマスターバッチHに変更し、マスターバッチの使用量を2.8重量部から3.3重量部に変更するとともに、MFR=2.1g/10分のポリスチレン樹脂の使用量を93.7重量部から93.2重量部に変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は1.2%であった。
【0046】
比較例4
マスターバッチAをマスターバッチIに変更し、マスターバッチの使用量を2.8重量部から3.0重量部に変更するとともに、MFR=2.1g/10分のポリスチレン樹脂の使用量を93.7重量部から93.5重量部に変更した以外は実施例1と同様にして発泡シートを得たところ、製品ロス率は3%であった。
【0047】
実施例及び比較例の結果から、熱可塑性樹脂をタルク等の無機物粉体からなる気泡調整剤と物理発泡剤気泡調整剤を使用して押出発泡させるに当り、更にポリグリセリン脂肪酸エステルを熱可塑性樹脂中に添加する本発明では、得られる発泡体の表面に気泡調整剤による0.5mm以上の凝集物の発生が極端に抑えられていることが分かる。
【0048】
【発明の効果】
以上説明したように、熱可塑性樹脂をタルク等の無機物粉体からなる気泡調整剤と物理発泡剤気泡調整剤を使用して押出発泡させるに当り、ポリグリセリン脂肪酸エステルを、熱可塑性樹脂100重量部当たり、0.0005重量部以上、0.01重量部未満含有させる本発明方法では、得られる発泡体の表面に気泡調整剤による0.5mm以上の凝集物の発生が極端に抑えられるため、外観に優れた熱可塑性樹脂押出発泡体を安定して製造することができ、また、べとつきや汚れの付着等の悪影響がほとんどない優れた発泡体を得ることができる。更に、押出発泡に際して高級脂肪酸の金属塩を併用すると、気泡調整剤の熱可塑性樹脂中での分散効果がいっそう優れ、得られる発泡体表面における気泡調整剤の大きな凝集物の生成をより効果的に防止することができる。
【0049】
本発明の押出発泡体は表面に気泡調整剤による0.5mm以上の凝集物が存在しない極めて外観の優れた発泡体である。特に押出発泡体がポリスチレン系樹脂発泡シートの場合、発泡シート表面に気泡調整剤の0.5mm以上の凝集物が存在すると、外観を悪くするだけではなく、発泡シートを熱成形すると、成形品に亀裂が形成されやすくなるが、本発明の発泡体は表面に気泡調整剤の0.5mm以上の凝集物が存在しないので、熱成形を行った場合でも成形品に亀裂が発生するのを抑制できる等の効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thermoplastic resin extruded foam and a thermoplastic resin extruded foam.
[0002]
[Prior art]
A thermoplastic resin such as polystyrene, polyethylene, or polypropylene is melt-kneaded in the extruder, then a physical foaming agent such as butane is pressed into the melt, kneaded, cooled to a temperature suitable for foaming, and then melted from a die at the tip of the extruder. An extrusion foaming method in which a kneaded product is extruded and foamed is well known. It is also well known that, during the extrusion foaming, a bubble regulator made of an inorganic powder such as talc is further added to the extruder to adjust the bubble diameter of the resulting foam. In addition, a foam control agent master batch obtained by previously melt-kneading a foam regulator with a thermoplastic resin and a thermoplastic resin that does not contain such a foam regulator are mixed and supplied to the extruder for melt-kneading. Next, a method of producing a foam by press-fitting a physical foaming agent such as butane, further melt-kneading, cooling to a temperature suitable for foaming, and extruding the melt-kneaded material from a die at the tip of the extruder is also well known. is there.
[0003]
[Problems to be solved by the invention]
By the way, when an inorganic powder is used as a bubble adjusting agent, it becomes easy to generate an aggregate of the bubble adjusting agent on the surface of the obtained extruded foam, and if an unacceptably large aggregate of the bubble adjusting agent is generated, foaming is caused. There was a problem of deteriorating the appearance of the body. In addition, there is a problem that cracking occurs when a sheet-like foam having an unacceptably large aggregate of bubble regulators is thermoformed. In particular, when the foam is finally used for food packaging, it is necessary to avoid shipping the foam having a large aggregate of the air conditioner formed on the surface as much as possible. For this reason, a foam in which large aggregates of air bubble regulators are generated is usually scrapped as soon as it is discovered, resulting in a product loss. In particular, the apparent density used for thermoforming 0.05-0.5 g / cmThreeIn the case of a thermoplastic resin foam sheet represented by a polystyrene resin foam sheet having a thickness of 0.3 to 5 mm, the sheet width usually exceeds 60 cm, sometimes exceeds 1 m, and the length exceeds 100 m, sometimes It may be over 400m and is rolled up. In such a long sheet wound in a roll shape, if there is a large aggregation of the air conditioner even at one location, the roll cannot be shipped. In addition, when foam sheets are manufactured, the presence of large agglomerates of the air conditioner is overlooked and shipped, and when the presence of large agglomerates of the air conditioner is discovered during the thermoforming of the sheet, the roll is Until the presence of large coagulation of the air conditioner is found, all the thermoformed products formed from the roll are discarded. In that case, not only the waste of the roll but also the conveyance of the roll Further, the cost required for molding, the thermoforming energy required for molding the molded product that has been discarded, and the like are further wasted.
[0004]
Even in the prior art method, in the method using the above-described bubble regulator master batch, the dispersibility of the bubble regulator is increased, so that a large aggregate of the bubble regulator is difficult to form, but still a large agglomeration of the bubble regulator. Defective products were generated due to things. For this reason, it is considered necessary in the art to develop a technique for further reducing the incidence of defective products due to such aggregates.
[0005]
An object of the present invention is to provide a method for further reducing the occurrence rate of defective products due to agglomerates of bubble regulators in a technique of extrusion foaming a thermoplastic resin using a physical foaming agent and a bubble regulator made of inorganic powder. It is to provide.
[0006]
As a result of diligent research to solve the above-mentioned problems, the present inventors have made polyglycerin together with a bubble regulator made of an inorganic powder in a molten thermoplastic resin containing a foaming agent that is extruded and foamed from within an extruder. It has been found that the presence of a fatty acid ester makes it difficult for the air conditioner to aggregate, and the present invention has been completed.
[0007]
[Means for Solving the Problems]
  That is, the present invention
(1) In the method of producing a foam by extruding a molten thermoplastic resin containing an air conditioner made of an inorganic powder and a physical foaming agent into a low pressure region from an extruder, the molten thermoplastic resin described abovePer 100 parts by weightPolyglycerol fatty acid ester0.0005 parts by weight or more and less than 0.01 parts by weightA process for producing a thermoplastic resin extruded foam characterized by containing,
(2The above-mentioned, wherein the molten thermoplastic resin further contains a metal salt of a higher fatty acid(1)Process for producing extruded thermoplastic resin foam,
Is the gist.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the thermoplastic resin includes propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, propylene-ethylene-butene random copolymer, and the like. Resin, modified polypropylene impregnated with monomers such as styrene monomer and acrylic monomer, high density polyethylene, linear low density polyethylene which is a copolymer of ethylene and α-olefin, ethylene -Polyolefin resin such as ethylene copolymer such as vinyl acetate copolymer, polystyrene resin, styrene-butadiene copolymer, styrene-butadiene-acrylonitrile copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid Copolymer, styrene-anhydrous polymer Polystyrene resins such as inic acid copolymers, polyethylene terephthalate resins, polybutylene terephthalate resins, thermoplastic aromatic polyester resins such as polyethylene naphthalate resins, aromatic polycarbonate resins, polyphenylene ether resins, or the above resins and copolymers And a mixture of two or more selected from the above resins, copolymers or other resins or elastomers containing the above mixture as a main component (50% by weight or more). In the present invention, it is particularly preferable to use a polystyrene resin as the thermoplastic resin. Polystyrene resins have the advantage that fine bubbles are easily formed by adding a small amount of inorganic powder during extrusion foaming.
[0009]
The polyglycerol fatty acid ester used in the present invention is represented by the following general formula.
[0010]
[Chemical 1]
Figure 0003791747
However, m in the formula is an integer of 0 to 18, R is a hydrogen atom or a residue of a fatty acid having 8 to 24 carbon atoms, and at least one of R is a residue of a fatty acid having 8 to 24 carbon atoms. is there.
[0011]
In particular, the object of the present invention that can easily achieve the object of the present invention is one in which m in the above formula is 1 to 15 and the residue of a linear saturated fatty acid having a fatty acid residue of 12 to 24 carbon atoms. It is preferable that When m exceeds 15 in the above formula, it is difficult to produce industrially at low cost, so the polyglycerin fatty acid ester produced therefrom is inevitably expensive and is not preferable. In addition, in the case of a polyglycerol fatty acid ester in which m in the formula is less than 1, the effect of the present invention is difficult to be achieved with a small amount of addition. The effect of the invention can be achieved.) In addition, when the fatty acid residue is a linear saturated fatty acid residue having less than 12 carbon atoms (when R is a fatty acid residue having fewer carbon atoms than lauric acid), the water resistance becomes poor or heat resistant. It is not preferable because the property deteriorates. In addition, when the fatty acid residue is a linear saturated fatty acid residue having more than 24 carbon atoms (when R is a fatty acid residue having a larger number of carbon atoms than lignoceric acid), such fatty acids are industrially low. Since it is difficult to produce at a cost, polyglycerin fatty acid esters produced from such fatty acids are inevitably expensive and are not preferred. In particular, the polyglycerol fatty acid ester used in the present invention preferably has a number average molecular weight of 500 to 7000. Moreover, since the fatty acid which is a raw material of polyglycerin fatty acid ester is a fatty acid having 18 or more carbon atoms (stearic acid or one having a higher carbon number) is waxy or solid at normal temperature (20 ° C.) and normal pressure. Easy to handle. The polyglycerin fatty acid ester used in the present invention is preferably white, pale yellowish white, or pale yellow, and such a color hardly changes the color of the extruded foam produced by adding this. That's it. The number of fatty acid residues in the polyglycerin fatty acid ester is 1 or more, but is usually 1 to m + 3 (m is the value of m in the above formula).
[0012]
In the method of the present invention, if the polyglycerin fatty acid ester is added in a small amount, the effect of the present invention becomes insufficient, and if it is added in a large amount, the surface of the resulting foam becomes sticky or dirty. Therefore, the addition amount of the polyglycerin fatty acid ester of the present invention is preferably 0.0001 parts by weight to 1.0 parts by weight, and 0.0005 parts by weight per 100 parts by weight of the thermoplastic resin constituting the thermoplastic resin extruded foam. As mentioned above, less than 0.01 weight part is more preferable.
[0013]
Examples of the inorganic powder used as the bubble adjusting agent in the present invention include talc, kaolin, mica, silica, calcium carbonate, barium sulfate, titanium oxide, clay, aluminum oxide, bentonite, and diatomaceous earth. These inorganic powders are usually used alone, but two or more kinds may be used in combination. In addition, the smaller the particle diameter of these inorganic powders, the higher the effect of reducing the cell diameter of the foam even when used in a small amount. From such a viewpoint, the average particle diameter (centrifugal sedimentation method) of the inorganic powder is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 15 μm or less. However, an inorganic powder having an average particle size that is too small is expensive due to its processing, and aggregates are easily generated in the foam, so the average particle size is 0.1 μm as the lower limit. The lower limit is more preferably 0.5 μm. Among the above inorganic powders, talc is most preferable because it is effective in reducing bubbles and is inexpensive. The cell regulator made of the inorganic powder is added so as to be contained at a ratio of 0.1 to 5.0% by weight in 100% by weight of the extruded thermoplastic resin foam. When the amount of the foam regulator in the extruded foam is less than 0.1% by weight, it becomes difficult to form fine bubbles in the resulting foam, and conversely the content is 5.0% by weight. Even if an amount exceeding the above is added, the foaming of the foam obtained will reach its peak. In addition, as the content of the air conditioner in the foam increases, a large aggregate of the air conditioner is likely to be generated in the obtained foam. From this viewpoint, the content of the air conditioner is 5 It is better to add so that it may become 0.0 weight% or less.
[0014]
The polyglycerin fatty acid ester and the inorganic powder are mixed with the thermoplastic resin pellets using a mixing device such as a tumbler mixer or ribbon blender so as to have a predetermined mixing ratio, and then extruded to produce an extruded foam. You may throw it into the plane. However, polyglycerin fatty acid ester and inorganic powder are melt kneaded with a thermoplastic resin using a melt kneader such as a twin screw extruder or a Banbury mixer, and then both components are contained in a high concentration by pelletizing. The master batch is pre-manufactured, and this master batch and a thermoplastic resin substantially free of polyglycerin fatty acid ester and inorganic powder are fed into an extruder for producing an extruded foam in a desired ratio. Then, melt kneading is preferable because the handling and workability of the polyglycerin fatty acid ester and the inorganic powder are excellent, and the working environment around the extruder is less likely to become dirty. In addition, it is preferable to use the masterbatch because it is easy to suppress the formation of large aggregates of the air conditioner.
[0015]
Prior to mixing the polyglycerin fatty acid ester with the thermoplastic resin, or prior to the production of the masterbatch, in a mixer capable of high-speed stirring such as a Henschel mixer or a V-type mixer, the polyglycerin fatty acid ester and the foam regulator The polyglycerin fatty acid ester can be adhered to the surface of the cell regulator. However, this stirring is performed at a temperature at which the polyglycerol fatty acid ester has fluidity and does not decompose. Thus, it is preferable to use a foam regulator in which a specific amount of polyglycerin fatty acid ester is attached in advance, because it becomes easier to further suppress the formation of large aggregates of the foam regulator.
[0016]
The thermoplastic resin, polyglycerin fatty acid ester and inorganic powder, or thermoplastic resin and the masterbatch are charged into the extruder, and the thermoplastic resin (or thermoplastic resin and masterbatch) is melted in the extruder. While kneading, a physical foaming agent is pressed into the molten resin from the middle of the extruder and kneaded together. Subsequently, the molten thermoplastic resin is transferred to the die side while being cooled to a temperature suitable for extrusion foaming, and extruded into a low pressure region such as under atmospheric pressure through a slit of the die to obtain an extruded foam. The shape of the extruded foam has a plate shape, a sheet shape, a rod shape, a tube shape, a pipe shape, or the like according to the slit shape of the die.
[0017]
As the physical foaming agent, inorganic foaming agents such as inert gas, organic foaming agents such as saturated aliphatic hydrocarbons, saturated alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers and ketones are used. Specific examples of these include, for example, methane, ethane, propane, normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, methylcyclopropane, 1,1-dimethylcyclopropane, cyclohexane, methylcyclopentane, ethylcyclobutane, 1,1,2-trimethylcyclopropane, benzene, methyl chloride, 1-chloro-1,1 -Difluoroethane, 1-chloro-2,2,2-trifluoroethane 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether, 2-ethoxyethanol, acetone, ethyl methyl ketone, acetylacetone, carbon dioxide, nitrogen, air and the like.
[0018]
The amount of physical foaming agent used varies depending on the type of die, the type of foaming agent used, the type of thermoplastic resin used, the foaming magnification and thickness of the foam to be obtained, etc. It becomes a ratio of about 0.2 to 30 parts by weight per 100 parts by weight of the total thermoplastic resin charged into the extruder. For example, using a circular die and using a butane foaming agent, an apparent density of 0.05 to 0.5 g / cm.ThreeWhen a polystyrene resin foam sheet having a thickness of 0.3 to 5 mm is produced, the amount of butane used is usually 0.3 to 6 parts by weight per 100 parts by weight of the polystyrene resin.
The thermoplastic resin foam produced by the method of the present invention usually has an apparent density of 0.01 to 0.7 g / cm.ThreeAnd a thickness of 0.2 to 300 mm.
[0019]
In the method of the present invention, it is preferable to use an extruder having a structure in which the resin does not easily stay. This is because the more the molten thermoplastic resin containing an inorganic powder such as talc stays in the extruder, the more easily an aggregate of inorganic powder such as talc is generated in the product. The more the notch in the screw of the extruder, the larger the gap between the screw and the barrel, the more likely the molten resin will stay in the extruder. A device that makes it difficult to stay in the extruder is required.
[0020]
In the method for producing a thermoplastic resin foam of the present invention, it is preferable to further contain a metal salt of a higher fatty acid in the molten thermoplastic resin. When a metal salt of a higher fatty acid is further added, the effect of dispersing the air conditioner made of inorganic powder in the molten thermoplastic resin is further increased, and a large aggregate of the air conditioner is formed on the surface of the obtained foam. This is preferable because it can be more effectively suppressed. In addition, when a metal salt of a higher fatty acid is added to the thermoplastic resin when the masterbatch is produced, the adhesion of the molten resin to the wall surface of the kneader is suppressed during the melt-kneading. Becomes easy. Examples of the metal salt of the higher fatty acid include higher fatty acids having 12 to 22 carbon atoms, such as lithium, sodium, magnesium, aluminum, potassium, calcium, and zinc of higher fatty acids such as capric acid, stearic acid, and palmitic acid. In particular, magnesium stearate, zinc stearate and calcium stearate are suitable. The higher fatty acid metal salt is usually preferably added so as to be contained in the foam in a proportion of 0.001 to 1% by weight.
[0021]
Large agglomerates of the air conditioner do not always form on the surface of the foam, but tend to form in spots. In particular, an apparent density of 0.05 to 0.5 g / cm suitable for use in thermoformingThreeThe thermoplastic resin foam sheet represented by a polystyrene resin foam sheet having a thickness of 0.3 to 5 mm usually has a width exceeding 60 cm, sometimes exceeding 1 m, and a length exceeding 100 m, sometimes exceeding 400 m. Sometimes, it is rolled up. If a large aggregate of the air conditioner is present even at one location in the long name foam sheet wound in such a large roll, the roll cannot be shipped. In addition, even if it is overlooked at the time of foam sheet production and shipped, if found in the middle of thermoforming, that roll and the thermoformed product obtained from that roll will be discarded at that time, In that case, conveyance cost, thermoforming energy, etc. are further wasted. Therefore, the method of the present invention is extremely effective in producing a foam product having a very long length per product because the formation of large agglomerates of the air conditioner existing on the foam surface is extremely suppressed. Can be said to be expensive.
[0022]
The extruded foam of the present invention obtained as described above does not have an aggregate of 0.5 mm or more of the cell regulator made of inorganic powder on the surface. The agglomerate of 0.5 mm or more of the bubble regulator is an agglomerate of a bubble regulator having a length or diameter of 0.5 mm or more, and a bubble regulator having a length or diameter of 0.5 mm or more. When the agglomerates are present on the surface of the foam, not only the appearance is deteriorated, but also when the foam is molded, pinholes are formed on the surface or cracks are easily formed.
[0023]
The extruded foam has an apparent density of 0.05 to 0.5 g / cm.ThreeIn the case of a polystyrene resin foam sheet having a thickness of 0.3 to 5 mm, it is preferable because of excellent thermoformability. Thickness exceeds 5mm or apparent density is 0.05g / cmThreeIf it is less than this, cracks are likely to occur in the thermoformed product, which is not preferable. The apparent density is 0.5 g / cmThreeIf the thickness exceeds or the thickness is thinner than 0.3 mm, the heat insulating property, the buffer property, or the light weight is inferior.
[0024]
In order not to deteriorate the thermoformability of the polystyrene resin foam sheet, it is preferable that 0.03 mol or more of an organic foaming agent such as butane is contained in 1 kg of the polystyrene resin foam sheet at the time of thermoforming. More preferably 0.05 mol or more. When manufacturing a container having a drawing ratio (ratio of container height to diameter of a circle having the same diameter as the opening area of the container) that requires a large secondary foaming force during thermoforming of 0.3 or more It is preferable that 0.2 mol or more of an organic foaming agent such as butane is contained in 1 kg of the polystyrene-based resin foam sheet at the time of thermoforming. However, when the organic foaming agent is contained in a large amount in the molded product, the molded product is likely to be thermally deformed. Therefore, when higher heat resistance is required, the amount of the organic foaming agent remaining in 1 kg of the molded product is determined. It is preferable to reduce it to 0.3 mol or less, and it is more preferable to reduce it to 0.2 mol or less.
[0025]
The polystyrene resin foam sheet for thermoforming may be a single layer or may be a laminate of two or more polystyrene resin foam sheets. Or the polystyrene-type resin foam sheet for thermoforming may be obtained by further laminating a non-foamed thermoplastic resin sheet on such a single layer sheet or a laminated sheet. The most preferred polystyrene resin foam sheet for thermoforming for obtaining a bowl-shaped container having a drawing ratio of 0.3 or more has a density of 0.08 to 0.025 g / cm.ThreeFurther, a non-foamed polystyrene resin having a thickness of 50 to 300 μm (preferably provided with impact resistance by a rubber component) is laminated on one surface of a polystyrene resin foam sheet having a thickness of 1.5 to 3.0 mm. The amount of the organic foaming agent remaining in 1 kg of the polystyrene-based resin foamed sheet is 0.2 to 0.8 mol (calculation of the remaining amount of the organic foaming agent is the non-foamed polystyrene-based resin. (Only the part of the foam sheet excluding the sheet or film is targeted). The non-foamed polystyrene resin sheet may be a laminate of two or more non-foamed polystyrene resin sheets or films. In this case, the non-foamed polystyrene resin sheet or film located on the outermost side (the side opposite to the foamed sheet) has a thickness of 10 to 50 μm, and has a pattern printed on the foamed sheet side (inner side). It is preferable that
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0027]
The air-conditioning agent master batches A to E used in the examples were prepared as follows.
[0028]
Master batch A: For 30 parts by weight of talc with an average particle diameter of 3 μm, 0.1 part by weight of a trade name “Pleniser MK-600” manufactured by Ajinomoto Fine Techno Co., Ltd., which is a polyglycerin fatty acid ester, and MFR (200 ° C. / 5 kg load) = 69.9 parts by weight of polystyrene resin of 10 g / 10 min was melt-kneaded with a Banbury mixer, and then pelletized to obtain a master batch A.
[0029]
Masterbatch B: Polystyrene resin 69. 0.1 parts by weight of the above-mentioned “Planelizer MK-600” and MFR (200 ° C./5 kg load) = 10 g / 10 min with respect to 30 parts by weight of talc having an average particle diameter of 7 μm. 9 parts by weight was melt-kneaded with a Banbury mixer and then pelletized to obtain a master batch B.
[0030]
Masterbatch C: 0.2 parts by weight of the above-mentioned “Plenizer MK-600” and MFR (200 ° C./5 kg load) = 10 g / 10 min polystyrene resin 68.8 with respect to 30 parts by weight of talc having an average particle size of 10 μm. Part by weight and 1.0 part by weight of zinc stearate as a metal salt of a higher fatty acid were melt-kneaded with a Banbury mixer, and then pelletized to obtain a master batch C.
[0031]
Masterbatch D: 0.3 parts by weight of the above-mentioned “Planelizer MK-600” and MFR (200 ° C./5 kg load) = 10 g / 10 min polystyrene resin 67.7 with respect to 30 parts by weight of talc having an average particle diameter of 7 μm. Part by weight and 2.0 parts by weight of zinc stearate as a metal salt of a higher fatty acid were melt-kneaded with a Banbury mixer, and then pelletized to obtain a master batch D.
[0032]
Master batch E: Polystyrene resin 66.9 with 0.1 parts by weight of the above-mentioned “Planelizer MK-600” and MFR (200 ° C./5 kg load) = 10 g / 10 min with respect to 30 parts by weight of talc having an average particle diameter of 7 μm. Part by weight and 3.0 parts by weight of magnesium stearate as a metal salt of a higher fatty acid were melt-kneaded with a Banbury mixer, and then pelletized to obtain a master batch E.
[0033]
Moreover, the bubble regulator masterbatch FI used in the comparative example was prepared as follows.
[0034]
Master batch F: per 30 parts by weight of talc with an average particle diameter of 3 μm, MFR (200 ° C./5 kg load) = 70 g of polystyrene resin of 10 g / 10 min was melt-kneaded with a Banbury mixer, and then pelletized to obtain master batch F It was.
[0035]
Master batch G: per 30 parts by weight of talc having an average particle diameter of 7 μm, MFR (200 ° C./5 kg load) = 69 g of polystyrene resin 69 parts by weight and 1.0 part by weight of stearamide as a lubricant by a Banbury mixer The mixture was melt-kneaded and then pelletized to obtain a master batch G.
[0036]
Master batch H: per 30 parts by weight of talc having an average particle size of 10 μm, MFR (200 ° C./5 kg load) = 69 g of polystyrene resin 69 parts by weight and 1.0 part by weight of zinc stearate as a lubricant using a Banbury mixer The mixture was melt-kneaded and then pelletized to obtain a master batch H.
[0037]
Master batch I: per 30 parts by weight of talc having an average particle diameter of 3 μm, MFR (200 ° C./5 kg load) = 69 g of polystyrene resin 69 parts by weight and 1.0 part by weight of stearamide as a lubricant by a Banbury mixer It was melt-kneaded and then pelletized to make a master batch I.
[0038]
Example 1
MFR (200 ° C./5 kg load) = 2.1 g / 10 min of polystyrene resin 93.7 parts by weight After feeding master batch A into a 60 mm diameter extruder at a rate of 2.8 parts by weight, A mixed butane foaming agent consisting of 55% by weight of isobutane and 45% by weight of normal butane, and an amount (3.5 parts by weight) in which the total of the polystyrene resin, the masterbatch A and the mixed butane blowing agent is 100% by weight is placed in the extruder. It was press-fitted into a molten polystyrene resin and melt-kneaded. Next, after the melt-kneaded product is cooled to about 157 ° C. in an 90 mm diameter extruder connected to the extruder, it is extruded from an annular die at the same temperature to foam into a tube shape, and the surface is cooled while expanding the diameter. Further, the inside of the foam is further cooled while being transferred so as to be in contact with the cooling drum, then cut along the extrusion direction by one cutter knife fixed on the cooling drum, and then spread from the cut portion. Thus, it was made into a sheet shape and continuously wound into a roll. The obtained foamed sheet has a width of 1040 mm, a thickness of 2.3 mm to 2.4 mm, and an apparent density of 0.11 g / cm.ThreeMet. This foamed sheet had a length of 300 m and one roll. In the course of the production of the foam sheet, there is an aggregate of 0.5 mm or more of talc on the surface of the foam sheet (corresponding to the outer surface of the tubular foam) from the time the sheet is formed until it is wound. The ratio of rolls present (product loss rate) was examined. However, 500 rolls manufactured continuously were examined. As a result, since there were two rolls in which aggregates of 0.5 mm or more of talc existed, the product loss rate was 0.4%.
[0039]
Example 2
When a foamed sheet was obtained in the same manner as in Example 1 except that the master batch A was changed to the master batch B, the product loss rate was 0%.
[0040]
Example 3
The master batch A was changed to the master batch C, and the usage amount of the master batch was changed from 2.8 parts by weight to 3.0 parts by weight, and the usage amount of polystyrene resin with MFR = 2.1 g / 10 minutes was changed to 93 parts. A foamed sheet was obtained in the same manner as in Example 1 except that the amount was changed from 7 parts by weight to 93.5 parts by weight. The product loss rate was 0%.
[0041]
Example 4
The master batch A was changed to the master batch D, the usage amount of the master batch was changed from 2.8 parts by weight to 3.0 parts by weight, and the usage amount of polystyrene resin with MFR = 2.1 g / 10 minutes was changed to 93. A foamed sheet was obtained in the same manner as in Example 1 except that the amount was changed from 7 parts by weight to 93.5 parts by weight. The product loss rate was 0%.
[0042]
Example 5
When a foamed sheet was obtained in the same manner as in Example 1 except that the master batch A was changed to the master batch E, the product loss rate was 0%.
[0043]
Comparative Example 1
The master batch A was changed to the master batch F, and the usage amount of the master batch was changed from 2.8 parts by weight to 3.0 parts by weight, and the usage amount of polystyrene resin with MFR = 2.1 g / 10 minutes was changed to 93 parts. When a foamed sheet was obtained in the same manner as in Example 1 except that the amount was changed from 7 parts by weight to 93.5 parts by weight, the product loss rate was 3%.
[0044]
Comparative Example 2
The master batch A was changed to the master batch G, the usage amount of the master batch was changed from 2.8 parts by weight to 3.0 parts by weight, and the usage amount of polystyrene resin with MFR = 2.1 g / 10 minutes was changed to 93. A foamed sheet was obtained in the same manner as in Example 1 except that the amount was changed from 7 parts by weight to 93.5 parts by weight. The product loss rate was 2%.
[0045]
Comparative Example 3
The master batch A was changed to the master batch H, the usage amount of the master batch was changed from 2.8 parts by weight to 3.3 parts by weight, and the usage amount of polystyrene resin with MFR = 2.1 g / 10 minutes was changed to 93. A foamed sheet was obtained in the same manner as in Example 1 except that the amount was changed from 7 parts by weight to 93.2 parts by weight. The product loss rate was 1.2%.
[0046]
Comparative Example 4
Master batch A was changed to master batch I, the amount of master batch used was changed from 2.8 parts by weight to 3.0 parts by weight, and the amount of polystyrene resin used was MFR = 2.1 g / 10 min. A foamed sheet was obtained in the same manner as in Example 1 except that the amount was changed from 7 parts by weight to 93.5 parts by weight. The product loss rate was 3%.
[0047]
From the results of the examples and comparative examples, it was found that when the thermoplastic resin was subjected to extrusion foaming using a foam regulator made of an inorganic powder such as talc and a physical foaming agent, a foam regulator, polyglycerin fatty acid ester was further added to the thermoplastic resin. In the present invention added to the inside, it can be seen that the generation of aggregates of 0.5 mm or more due to the cell regulator is extremely suppressed on the surface of the obtained foam.
[0048]
【The invention's effect】
  As described above, when the thermoplastic resin is subjected to extrusion foaming using a foam regulator made of an inorganic powder such as talc and a physical foaming agent, the polyglycerin fatty acid ester is used., 0.0005 parts by weight or more and less than 0.01 parts by weight per 100 parts by weight of the thermoplastic resinIn the method of the present invention to be contained, since the generation of aggregates of 0.5 mm or more due to the air conditioner is extremely suppressed on the surface of the obtained foam,outstandingStable production of extruded thermoplastic resin foamCan alsoAn excellent foam having almost no adverse effects such as stickiness and adhesion of dirt can be obtained. Furthermore, when a metal salt of a higher fatty acid is used in combination with extrusion foaming, the effect of dispersing the air conditioner in the thermoplastic resin is even better, and the formation of large aggregates of the air conditioner on the surface of the resulting foam is more effective. Can be prevented.
[0049]
The extruded foam of the present invention is a foam having an extremely excellent appearance, on the surface of which no aggregate of 0.5 mm or more is present due to a cell regulator. In particular, when the extruded foam is a polystyrene-based resin foam sheet, the presence of an aggregate of 0.5 mm or more of the air conditioner on the foam sheet surface not only deteriorates the appearance, but when the foam sheet is thermoformed, Although cracks are likely to be formed, since the foam of the present invention does not have aggregates of 0.5 mm or more of the cell regulator on the surface, it is possible to suppress the occurrence of cracks in the molded product even when thermoforming is performed. There are effects such as.

Claims (2)

無機物粉体からなる気泡調整剤と物理発泡剤とを含有する溶融熱可塑性樹脂を、押出機から低圧領域ヘ押出して発泡体を製造する方法において、上記溶融熱可塑性樹脂100重量部当りポリグリセリン脂肪酸エステルを0.0005重量部以上、0.01重量部未満の割合で含有させること特徴とする熱可塑性樹脂押出発泡体の製造方法。In a method for producing a foam by extruding a molten thermoplastic resin containing an air conditioner composed of an inorganic powder and a physical foaming agent into a low pressure region from an extruder, a polyglycerin fatty acid per 100 parts by weight of the molten thermoplastic resin. The manufacturing method of the thermoplastic resin extrusion foam characterized by including ester in the ratio of 0.0005 weight part or more and less than 0.01 weight part . 溶融熱可塑性樹脂中に、高級脂肪酸の金属塩を更に含有させることを特徴とする請求項記載の熱可塑性樹脂押出発泡体の製造方法。Into the molten thermoplastic resin, the manufacturing method of the thermoplastic resin extruded foams according to claim 1, characterized in that further contains a metal salt of a higher fatty acid.
JP27827599A 1999-09-30 1999-09-30 Thermoplastic resin extruded foam manufacturing method and thermoplastic resin extruded foam Expired - Fee Related JP3791747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27827599A JP3791747B2 (en) 1999-09-30 1999-09-30 Thermoplastic resin extruded foam manufacturing method and thermoplastic resin extruded foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27827599A JP3791747B2 (en) 1999-09-30 1999-09-30 Thermoplastic resin extruded foam manufacturing method and thermoplastic resin extruded foam

Publications (2)

Publication Number Publication Date
JP2001096602A JP2001096602A (en) 2001-04-10
JP3791747B2 true JP3791747B2 (en) 2006-06-28

Family

ID=17595089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27827599A Expired - Fee Related JP3791747B2 (en) 1999-09-30 1999-09-30 Thermoplastic resin extruded foam manufacturing method and thermoplastic resin extruded foam

Country Status (1)

Country Link
JP (1) JP3791747B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011000399A1 (en) 2011-01-28 2012-08-02 Benecke-Kaliko Ag Process for producing a multilayer plastic film
DE102014222958A1 (en) 2014-11-11 2016-05-12 Benecke-Kaliko Aktiengesellschaft Process for producing a foam film laminate and its use
JP7074568B2 (en) * 2018-05-31 2022-05-24 株式会社ジェイエスピー Method for manufacturing polystyrene resin foam sheet, polystyrene resin foam sheet, polystyrene resin foam sheet roll, and microwave oven heating container

Also Published As

Publication number Publication date
JP2001096602A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP2010270228A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
US20070293593A1 (en) Low density polylactic acid polymeric foam and articles made thereof
JPS6245254B2 (en)
JP5792950B2 (en) Polystyrene resin laminated foam sheet
JP3791747B2 (en) Thermoplastic resin extruded foam manufacturing method and thermoplastic resin extruded foam
WO2011013718A1 (en) Process for producing foamed polyolefin resin sheet and foamed polyolefin resin sheet
JP6093795B2 (en) Method for producing polypropylene resin foam sheet
JP4959396B2 (en) Water-absorbing polystyrene resin foam board
JP5466858B2 (en) Insulating sheet and method for producing the insulating sheet
JP4756957B2 (en) Extruded foam
JP4535376B2 (en) Styrenic resin laminated foam sheet, method for producing the same, and molded product thereof
JPH1180262A (en) Polypropylene-based resin for extrusion foaming
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP3888944B2 (en) Method for producing styrene resin foam sheet
JP2013199532A (en) Resin foam molded body, and method of manufacturing resin foam molded body
JP5220058B2 (en) Polyolefin resin foam molding
WO2019198790A1 (en) Expandable thermoplastic resin particles
JP2008120979A (en) Polypropylenic resin foam sheet and formed article comprising the same
JP6837820B2 (en) Expandable polystyrene resin particles and their manufacturing method
JP4188664B2 (en) Polystyrene resin foam sheet and polystyrene resin laminated foam sheet
JPH07330935A (en) Crystalline polyolefin foam
JP2012006356A (en) Thermoplastic resin laminate foamed sheet and container
JP2006077218A (en) Thermoplastic resin extruded foam and method for producing the same
JPH07165969A (en) Production of styrenic resin expanded sheet
JP2010196054A (en) Polyolefin resin expanded molded product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees