JP3791384B2 - Multiple cell for optical analysis - Google Patents

Multiple cell for optical analysis Download PDF

Info

Publication number
JP3791384B2
JP3791384B2 JP2001313469A JP2001313469A JP3791384B2 JP 3791384 B2 JP3791384 B2 JP 3791384B2 JP 2001313469 A JP2001313469 A JP 2001313469A JP 2001313469 A JP2001313469 A JP 2001313469A JP 3791384 B2 JP3791384 B2 JP 3791384B2
Authority
JP
Japan
Prior art keywords
sample
cell
temperature
measurement
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001313469A
Other languages
Japanese (ja)
Other versions
JP2003121344A (en
JP2003121344A5 (en
Inventor
康之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001313469A priority Critical patent/JP3791384B2/en
Publication of JP2003121344A publication Critical patent/JP2003121344A/en
Publication of JP2003121344A5 publication Critical patent/JP2003121344A5/ja
Application granted granted Critical
Publication of JP3791384B2 publication Critical patent/JP3791384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紫外可視分光光度計などの光分析装置において測定対象である試料溶液を加熱しつつ吸光度や透過率などを測定する際に用いられ、複数種類の試料溶液を順次測定するために複数の小型セルを直線状に並べて配置した多連装セルに関する。
【0002】
【従来の技術】
近年、人間やそのほかの生物のDNA(デオキシリボ核酸)の構造解析が各種の研究機関で非常に盛んに行われている。一般に、DNAは、2本のDNA分子の間でアデニンとチミン、又はグアニンとシトシンとが相補的塩基対を形成した2本鎖構造を有している。このような2本鎖構造は、DNAを溶解させたDNA溶液の温度を上昇させてゆくことによって徐々に解れてゆき、高温溶液中では完全に解れて1本鎖構造になる。
【0003】
こうしたDNAの2重鎖構造の安定性を示す指標値である融解温度(以下「Tm値」という)の測定は、一般に次のような手順で行われる。DNAが2本鎖から1本鎖に変化すると、波長260nm付近の紫外光の吸光度が上昇する。そこで、DNA溶液を低温度から徐々に加温しつつ、又は逆に高温度から徐々に冷却しつつ所定の紫外波長での吸光度を紫外可視分光光度計を用いて繰り返し測定し、横軸を温度、縦軸を吸光度とした図4に示すような熱融解曲線を作成する。そして、その熱融解曲線に基づいて(通常、吸光度上昇の中点をとって)Tm値を求める。
【0004】
【発明が解決しようとする課題】
上記測定では試料溶液を最高で約100℃近くまで加熱する必要があるが、加熱によって試料溶液中の溶媒が蒸発してしまうと溶液中のDNA濃度が上昇し、正確な測定に支障をきたす。そこで、試料溶液を収容する試料容器(一般にセルと呼ばれる)として、従来、フッ素樹脂(例えばデュポン社のテフロン)製の密栓を有する石英製のセルが利用されている。しかしながら、こうした従来のセルでは、特に100℃付近の高温では密栓による密閉性が低下し、揮発した試料溶液がセル外部へと漏出し易いという問題がある。
【0005】
ところで、複数種類のDNAのTm値を並行して測定するなど効率的な測定を行うためには、マルチセルと呼ばれる複数の小型セルを連装した多連装セルを利用すると便利である。このようなマルチセルを使用したTm値測定では、マルチセルのうちの1個乃至複数個のセルに溶媒のみのブランク試料溶液を収容し、残りのセルに分析対象の測定試料溶液を収容した状態で、これら全体を予め作成された温度プログラムに従って加温又は冷却しつつ、設定された温度間隔毎に各セルの吸光度を測定する。そして、各温度における測定試料溶液による吸光度からブランク試料溶液による吸光度を差し引くことによって、溶媒の影響を排除したDNAによる吸光度を求めることができる。
【0006】
しかしながら、このようなマルチセルを使用した測定では、隣接するセルに収容された試料溶液が互いに混じらないように充分な配慮を行っておかないと、測定の信頼性を確保することができない。また、一般にこのような測定対象の試料は非常に貴重であることが多いため、Tm値の測定が終了した試料を廃棄するのではなく、他の測定に再使用したいという要望が強い。したがって、測定終了後であっても試料溶液の混合の可能性を極力小さくしておくことが望ましい。上記のような加温時の揮発試料のセルからの漏出は、こうした試料の混入の一因となり得る。また、試料溶液を再利用しようとする場合に、成分濃度が変化していると好ましくない場合が多い。
【0007】
本発明はこのような課題に鑑みて成されたものであり、その主たる目的とするところは、上記のような多連装セルにおいて、各セルの気密性を高めることによって試料の揮散を確実に防止することができるとともに、複数のセルの間での試料の混合を防止することができる光分析用多連装セルを提供することにある。
【0008】
【課題を解決するための手段、及び効果】
上記課題を解決するために成された本発明は、試料溶液を加熱しつつ吸光度や透過率を測定する光分析装置に用いられる試料容器であって、複数種類の試料溶液を順次測定するために複数の小型セルが直線状に連なって配置された光分析用多連装セルにおいて、
前記小型セルは、立方体形状であって対向する両側面に光透過部を有する溶液収容部と、該溶液収容部の上部に連通した逆円錐台形状の試料注入穴とを有し、各小型セルの試料注入穴に独立に、逆円錐台形状のシリコーンゴム製の密栓を着脱自在に設けたことを特徴としている。
【0009】
本発明に係る多連装セルでは、試料注入穴と密栓とが共に密栓の挿入方向に径が徐々に小さくなる構造となっているため、各小型セルの試料注入穴に対して密栓を押し入れるほど密栓と試料注入穴との密着面の密着性が向上する。更に、密栓はシリコーンゴム製であって弾性力が大きいため、熱収縮や熱膨張などによって密着面に隙間が生じようとしても、密栓の膨張によって気密性が維持される。したがって、加温しつつ測定を行う間にセルに収容された試料溶液が気化しても、セルの外部へは漏出せず、試料溶液中の成分濃度が大きく変動することを防止することができる。これにより、吸光度や透過率などを精度よく求めることができ、例えば、その結果からDNAのTm値を算出する場合にはTm値の精度が向上する。また、試料溶液がセル内に留まるので、貴重な試料を失うことがなく、またその成分濃度も変化しないので、他の測定に再使用するにも有利である。更にまた、密栓は適度な弾性力を有しているために、嵌挿された密栓がきつすぎて外しにくいということもなく、取扱いが容易である。
【0010】
さらに、本発明に係る多連装セルにおいては、各小型セル毎に独立に密栓を設けた構成であるため、他の小型セルを密栓で密閉した状態で1つの小型セルの密栓を抜き、該小型セル内に収容されている試料溶液を吸引することができる。したがって、密栓を抜く際に該密栓の下面に付着している液滴が周囲に飛散した場合でも、他の小型セルに収容されている試料溶液に混じることがなく、上述のような試料溶液の再使用に有効である。
【0011】
【発明の実施の形態】
以下、本発明の一実施例である多連装セル(本実施例中では「マルチセル」という)について図面を参照して説明する。図1は本実施例のマルチセルを利用したTm値測定装置の全体構成図である。
【0012】
この装置は、主要部として、いわゆるダブルビーム方式の紫外・可視分光光度計の測光部1と、各種の演算処理や制御処理を行うパーソナルコンピュータ(PC)20と、マルチセル32を備えた試料ユニット30とを含む。パーソナルコンピュータ20には所定の制御プログラムが搭載されており、この制御プログラムを実行することにより後述するような各種の処理が実行される。
【0013】
測光部1にあっては、光源2から発した光は分光器3に入射され、ここで所望の波長を有する単色光が取り出される。ここで波長としては、230〜280nm位の範囲内の紫外光が利用されることが多い。この単色光は反射鏡4によりセクタ鏡5に送られ、セクタ鏡5により試料側光束Sと対照側光束Rの2光束に分割される。また、セクタ鏡5には光の遮蔽部が設けられており、試料側光束S及び対照側光束Rの発生期間と交互に遮光期間が発生するようにしている。試料側光束Sは反射鏡6を介して、試料ユニット30に備えられたマルチセル32のうちの1つのセルに照射され、そのセルを通過した光は反射鏡8、10を介して光検出器11の受光面に送られる。他方、対照側光束Rは反射鏡7を介して試料ユニット30内のアパーチャ板31に照射され、アパーチャ板31を通過することによって試料側と光束径が揃えられ、その光が反射鏡9を介して同じく光検出器11の受光面に送られる。なお、アパーチャ板31の代わりにダミーのセルを配置してもよい。
【0014】
光検出器11の出力信号は、サンプルホールド回路やアナログ−デジタル変換器などを含むインタフェイス部(I/F)12を介してパーソナルコンピュータ20によって具現化される吸光度算出部22に入力され、ここで例えば吸光度を算出するための各種の演算処理が実行される。その演算結果である吸光度はTm値算出部23に与えられ、ここで図4に示すような熱融解曲線が作成されるとともに、この曲線に基づいてTm値が計算される。中央制御部21は、測光部1や試料ユニット30内の各部の動作を制御する機能を有する。また、パーソナルコンピュータ20に接続された操作部24は例えばキーボードやポインティングデバイスなどであり、測定に関連する各種パラメータの設定や各種測定、処理の指示を行うためのものである。更にまた、表示部25は操作のための補助的情報や測定結果等を画面に表示するものである。
【0015】
図2は本実施例のマルチセル32の側面外観図(a)及び上面外観図(b)である。1個のセル40は容量100μLの石英製のセルであり、光の透過方向に細長い立方体形状であって両側に光透過窓を備えた溶液収容部41と、溶液収容部41の上部に連通した逆円錐台形状の試料注入穴42とを有している。このセル40が一直線状に8個連なった一体物としてマルチセル32が構成されている。各セル40の試料注入穴42には、それぞれ独立した密栓43が上から嵌挿されるようになっており、各密栓43は試料注入穴42よりもやや大きなサイズの逆円錐台形状の嵌挿部431とその上部に一体に設けられた押え部432とを有している。この密栓43はシリコーン樹脂から形成され、硬度が比較的高く、且つ適度な弾力性を有している。
【0016】
図3はマルチセル32を保持するセルホルダ50の概略構成図である。セルホルダ50にあっては、マルチセル32の各セル40の試料注入穴42にそれぞれ密栓43が嵌挿された状態で、恒温ブロック33の上にセットされる。恒温ブロック33の下面にはペルチエ素子34が配置され、その下にはペルチエ素子34を冷却するための水冷式の冷却ブロック51が設けられている。また、これら全体がモータやリニアガイドなどを含むスライド駆動部37により試料側光束Sと略直交する方向に往復直線運動可能となっている。恒温ブロック33の上部には、各セル40の光透過窓を除いてマルチセル32を覆う蓋体52が取り付けられる。蓋体52の内側にはポリエチレンフォーム、ウレタンフォームなどのスポンジ体53が設けられており、蓋体52を恒温ブロック33に装着してネジ54を締め付けると、スポンジ体53が密栓43の押え部432の上面を適度な力で押圧し、密栓43と試料注入穴42との密着性が一層増す。
【0017】
恒温ブロック33には3個の温度センサ36が埋設されており、それによる検出温度は図1に示すように温度制御部35に与えられている。温度制御部35は中央制御部21より温度の制御目標値Tcを受け取り、検出温度がその制御目標値Tcになるように、つまりその差がゼロになるようにペルチエ素子34に供給する電力を制御する。恒温ブロック33はペルチエ素子34により略均一に加温又は冷却され、マルチセル32は恒温ブロック33からの熱伝導によってほぼ同一温度となる。したがって、本装置では、制御目標値Tcを適宜に設定することにより、所定の温度範囲で任意の温度における試料の吸光度の測定が可能である。
【0018】
次に、上記装置によるTm値測定の動作を概略的に説明する。マルチセル32の8個のセル40のうち、1乃至複数(但し7個以下)のセル40には溶媒のみのブランク試料溶液が収容され、他のセル40には分析対象のDNAを上記溶媒に溶解した測定試料溶液が収容され、上述したようにそれぞれ密栓43で密封された後にセルホルダ50にセットされる。また、操作部24より温度プログラムを含む各種の測定条件が入力設定され、その後、測定の開始が指示される。
【0019】
測定が開始されると、中央制御部21は設定された温度プログラムに従って温度の制御目標値Tcを温度制御部35へと送る。温度制御部35はこれに応じて温度センサ36による検出温度が制御目標値Tcと一致するようにペルチエ素子34への供給電力を制御する。所定の目的温度において、中央制御部21による制御の下に、スライド駆動部37は各セル40に順番に試料側光束Sが照射されるようにマルチセル32を順次移動させ、測光部1は各セル40に対して紫外光を照射し、セル40を通過した光の強度を光検出器11で検出するとともに、セクタ鏡5の回転に同期して交互に対照側光束Rの光の強度も光検出器11で検出する。いま、対照側光束Rの光量に対して光検出器11で得られる電気信号がr、試料側光束Sの光量に対して光検出器11で得られる電気信号がsであり、更に、セクタ鏡5による光の断続的な遮蔽によって、対照側光束Rに対応したゼロ信号がz、試料側光束Sに対応したゼロ信号がzとしてそれぞれ得られるとき、対照側光束Rと試料側光束Sの信号比Wは、W=(s−z)/(r−z)として得られる。これにより、光源2の光量変動などの影響を除去することができる。
【0020】
好ましくは、各セル40の通過光量の測定を順次行う間、恒温ブロック33の温度は一定に維持される。吸光度算出部22では、光検出器11からの検出信号を受けて、或る温度における測定試料溶液による測定結果とブランク試料溶液による測定結果から、溶媒の影響を除外したDNAによる吸光度を算出することができる。このような測定を、予め定められた温度間隔毎に1巡ずつ実行すると、Tm値算出部23では、温度と吸光度との関係から各測定試料溶液に対する、図4に示すような熱溶融曲線が作成できる。そこで、この熱溶融曲線に基づいてTm値を算出する。
【0021】
本実施例では、上述したような特徴的なマルチセル32の構成に加えてスポンジ体53で密栓43を押さえ付けることにより、上記のような測定によってマルチセル32の温度が0〜100℃程度の範囲で変化しても、各セル40は一貫して高い気密性を保ち、セル40に収容された試料溶液の気化溶媒はセル40から漏出しない。そのため、セル40に収容された試料溶液の成分濃度が大きく変化することを防止することができる。また、各セル40にはそれぞれ独立に密栓43が設けられているため、或るセル40の密栓43を抜く際に他のセル40の密栓43を閉鎖した状態にすることができる。測定終了後には密栓43の下面に結露した試料溶液が付着しており、密栓43を抜く際にこれが周囲に飛散する可能性があるが、他のセル40の密栓43を閉鎖しておくことによって、飛散した溶液が他のセル40に入ることを防止することができる。これによって、試料溶液同士の混合を生じることがないので、測定の終了した試料溶液を安心して他の測定に再利用することができる。
【0022】
上記実施例におけるマルチセル32の効果を実証するため、次のような実験を行った。
〔実験1〕
上記構成のTm測定装置において、0〜100℃の間で1℃/分の緩やかな速度でもって昇温及び降温を約4時間継続させ、そのときの溶液の蒸発量を測定した。上記実施例のシリコーン樹脂製の密栓43を用いた場合には、蒸発量は1〜2μLとごく少量であった。これに対し、同形状でフッ素樹脂製の密栓を用いた場合には、蒸発量は約10μLであった。このように本実施例の構成ではセル40からの蒸発をきわめて少なくできることがわかる。
【0023】
〔実験2〕
上記構成のTm測定装置を用い、マルチセル32の各セル40にはそれぞれ同一のDNAでその濃度を変えた複数の試料溶液を収容し、それぞれの熱融解曲線を測定した。その熱融解曲線を図5に示す。但し、濃度によって吸光度は相違するため、比較可能であるように縦軸については正規化している。同一のDNAであってもその濃度が変わると融解温度もシフトする、ということが理論的に知られている。図5の結果を見れば、熱融解曲線のカーブが濃度の相違によって横軸方向にシフトしていることから、上記理論上の現象がこの結果に正しく反映されていることがわかる。すなわち、濃度の相違するDNA溶液のTm値をそれぞれ正確に求めることができる。
【0024】
なお、上記実施例は、本発明によるマルチセルを、紫外可視分光光度計を用いたTm値測定装置に適用した例であるが、本発明の適用範囲はこれに限るものではない。すなわち、試料溶液を加温しながら、特に高温に加温しながら、該試料溶液の吸光度や透過率などを測定する光分析装置全般に適用することができる。また、上記実施例は単に一例であるから、本発明の趣旨の範囲で適宜に変更や修正を行えることは明らかである。
【図面の簡単な説明】
【図1】 本発明の一実施形態によるマルチセルを利用して測定を行う紫外可視分光光度計を用いたTm値測定装置の全体構成図。
【図2】 本実施例のマルチセルの側面外観図(a)及び上面外観図(b)。
【図3】 本実施例のマルチセルを保持するセルホルダの概略構成図。
【図4】 熱融解曲線の一例を示す図。
【図5】 図1のTm値測定装置を用い、同一DNAで濃度の相違する複数の試料に対して得られた熱融解曲線を示す図。
【符号の説明】
1…測光部
20…パーソナルコンピュータ
21…中央制御部
22…吸光度算出部
23…Tm値算出部
24…操作部
25…表示部
30…試料ユニット
31…アパーチャ板
32…マルチセル
33…恒温ブロック
34…ペルチエ素子
35…温度制御部
36…温度センサ
37…スライド駆動部
40…セル
41…溶液収容部
42…試料注入穴
43…密栓
431…嵌挿部
432…押え部
50…セルホルダ
51…冷却ブロック
52…蓋体
53…スポンジ体
54…ネジ
[0001]
BACKGROUND OF THE INVENTION
The present invention is used to measure absorbance, transmittance, etc. while heating a sample solution to be measured in an optical analyzer such as an ultraviolet-visible spectrophotometer, and in order to sequentially measure a plurality of types of sample solutions. The present invention relates to a multi-continuous cell in which small cells are arranged in a straight line.
[0002]
[Prior art]
In recent years, structural analysis of DNA (deoxyribonucleic acid) of humans and other living organisms has been very active in various research institutions. In general, DNA has a double-stranded structure in which adenine and thymine or guanine and cytosine form complementary base pairs between two DNA molecules. Such a double-stranded structure is gradually released by increasing the temperature of the DNA solution in which DNA is dissolved, and is completely released in a high-temperature solution to become a single-stranded structure.
[0003]
The measurement of the melting temperature (hereinafter referred to as “Tm value”), which is an index value indicating the stability of the double-stranded structure of DNA, is generally performed by the following procedure. When DNA changes from a double strand to a single strand, the absorbance of ultraviolet light near a wavelength of 260 nm increases. Therefore, while gradually heating the DNA solution from a low temperature, or conversely cooling from a high temperature, the absorbance at a predetermined ultraviolet wavelength is repeatedly measured using an ultraviolet-visible spectrophotometer, and the horizontal axis is the temperature. Then, a thermal melting curve as shown in FIG. Then, based on the thermal melting curve (usually taking the midpoint of the increase in absorbance), the Tm value is obtained.
[0004]
[Problems to be solved by the invention]
In the above measurement, it is necessary to heat the sample solution up to about 100 ° C. at the maximum. However, if the solvent in the sample solution evaporates due to heating, the DNA concentration in the solution increases, which hinders accurate measurement. Accordingly, a quartz cell having a sealing plug made of a fluororesin (for example, Teflon manufactured by DuPont) has been conventionally used as a sample container (generally called a cell) for containing a sample solution. However, such a conventional cell has a problem that the sealing performance by the sealing plug is lowered particularly at a high temperature around 100 ° C., and the volatilized sample solution easily leaks to the outside of the cell.
[0005]
By the way, in order to perform efficient measurement such as measuring Tm values of a plurality of types of DNA in parallel, it is convenient to use a multi-continuous cell called a multi-cell in which a plurality of small cells are connected. In Tm value measurement using such a multicell, a blank sample solution containing only a solvent is accommodated in one or a plurality of cells of the multicell, and a measurement sample solution to be analyzed is accommodated in the remaining cells. While heating or cooling the whole according to a temperature program created in advance, the absorbance of each cell is measured at each set temperature interval. Then, by subtracting the absorbance due to the blank sample solution from the absorbance due to the measurement sample solution at each temperature, it is possible to obtain the absorbance due to the DNA excluding the influence of the solvent.
[0006]
However, in such a measurement using a multicell, the reliability of the measurement cannot be ensured unless sufficient consideration is given so that sample solutions contained in adjacent cells are not mixed with each other. In general, since the sample to be measured is often very valuable, there is a strong demand for reusing the sample for which the measurement of the Tm value has been completed rather than discarding it. Therefore, it is desirable to minimize the possibility of mixing the sample solution even after the measurement is completed. Leakage of the volatile sample from the cell during heating as described above can contribute to contamination of the sample. In addition, when trying to reuse the sample solution, it is often not preferable if the component concentration is changed.
[0007]
The present invention has been made in view of such problems, and the main object of the present invention is to prevent volatilization of the sample by increasing the airtightness of each cell in the above-described multi-cells. Another object of the present invention is to provide an optical analysis multi-continuous cell capable of preventing the mixing of a sample among a plurality of cells.
[0008]
[Means for solving the problems and effects]
In order to solve the above-mentioned problems, the present invention is a sample container used for an optical analyzer for measuring absorbance and transmittance while heating a sample solution, and for sequentially measuring a plurality of types of sample solutions. In a multi-connected cell for optical analysis in which a plurality of small cells are arranged in a straight line,
Each of the small cells has a cubic shape and has a solution containing portion having light transmitting portions on opposite side surfaces and an inverted frustoconical sample injection hole communicating with an upper portion of the solution containing portion. In this sample injection hole, an inverted frustoconical silicone rubber seal stopper is provided detachably.
[0009]
In the multi-connected cell according to the present invention, both the sample injection hole and the sealing plug have a structure in which the diameter gradually decreases in the insertion direction of the sealing plug, so that the sealing plug is pushed into the sample injection hole of each small cell. The adhesion of the close contact surface between the sealing plug and the sample injection hole is improved. Furthermore, since the sealing plug is made of silicone rubber and has a large elastic force, even if a gap is formed on the contact surface due to thermal contraction or thermal expansion, the hermeticity is maintained by the expansion of the sealing plug. Therefore, even if the sample solution stored in the cell is vaporized during the measurement while heating, it does not leak to the outside of the cell, and the concentration of components in the sample solution can be prevented from greatly fluctuating. . As a result, absorbance, transmittance, and the like can be obtained with high accuracy. For example, when calculating the Tm value of DNA from the results, the accuracy of the Tm value is improved. Further, since the sample solution stays in the cell, the valuable sample is not lost, and the concentration of the component does not change, which is advantageous for reuse in other measurements. Furthermore, since the sealing plug has an appropriate elastic force, it is easy to handle without the inserted sealing plug being too tight and difficult to remove.
[0010]
Furthermore, since the multi-continuous cell according to the present invention has a structure in which a hermetic plug is provided independently for each small cell, the small cell is unsealed with another small cell sealed with the hermetic plug, The sample solution accommodated in the cell can be aspirated. Therefore, even when droplets adhering to the lower surface of the hermetic bottle are scattered around when the hermetic bottle is pulled out, it does not mix with the sample solution contained in other small cells, and Effective for reuse.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a multi-connected cell (referred to as “multi-cell” in the present embodiment) which is an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a Tm value measuring apparatus using a multicell according to the present embodiment.
[0012]
This apparatus includes, as main parts, a photometric unit 1 of a so-called double beam type ultraviolet / visible spectrophotometer, a personal computer (PC) 20 for performing various arithmetic processes and control processes, and a sample unit 30 having a multicell 32. Including. The personal computer 20 is loaded with a predetermined control program, and various processes as described later are executed by executing the control program.
[0013]
In the photometry unit 1, the light emitted from the light source 2 enters the spectroscope 3, where monochromatic light having a desired wavelength is extracted. Here, as the wavelength, ultraviolet light in the range of about 230 to 280 nm is often used. This monochromatic light is sent to the sector mirror 5 by the reflecting mirror 4 and is divided by the sector mirror 5 into two light beams of the sample side light beam S and the reference side light beam R. Further, the sector mirror 5 is provided with a light shielding portion so that a light shielding period occurs alternately with the generation period of the sample side light beam S and the reference side light beam R. The sample-side light beam S is irradiated to one cell among the multicells 32 provided in the sample unit 30 via the reflecting mirror 6, and the light that has passed through the cell passes through the reflecting mirrors 8, 10 to the photodetector 11. Sent to the light receiving surface. On the other hand, the reference-side light beam R is irradiated to the aperture plate 31 in the sample unit 30 through the reflecting mirror 7, passes through the aperture plate 31, and the light beam diameter is aligned with the sample side, and the light passes through the reflecting mirror 9. Similarly, the light is sent to the light receiving surface of the photodetector 11. A dummy cell may be arranged in place of the aperture plate 31.
[0014]
An output signal of the photodetector 11 is input to an absorbance calculation unit 22 embodied by the personal computer 20 via an interface unit (I / F) 12 including a sample hold circuit, an analog-digital converter, and the like. For example, various calculation processes for calculating the absorbance are executed. The absorbance, which is the calculation result, is given to the Tm value calculator 23, where a thermal melting curve as shown in FIG. 4 is created, and a Tm value is calculated based on this curve. The central control unit 21 has a function of controlling the operation of each unit in the photometry unit 1 and the sample unit 30. The operation unit 24 connected to the personal computer 20 is, for example, a keyboard or a pointing device, and is used to set various parameters related to measurement, and to perform various measurement and processing instructions. Furthermore, the display unit 25 displays auxiliary information for operation, measurement results, and the like on the screen.
[0015]
FIG. 2 is a side external view (a) and a top external view (b) of the multicell 32 of this embodiment. One cell 40 is a quartz cell having a capacity of 100 μL, and has a cubic shape elongated in the light transmission direction and has a light transmission window on both sides, and communicated with an upper portion of the solution storage unit 41. It has an inverted frustoconical sample injection hole 42. A multi-cell 32 is configured as an integrated body in which eight cells 40 are connected in a straight line. Independent plugs 43 are inserted into the sample injection holes 42 of the respective cells 40 from above, and each of the plugs 43 has an inverted frustoconical insertion portion that is slightly larger in size than the sample injection holes 42. 431 and a presser portion 432 provided integrally therewith. The sealing plug 43 is formed of a silicone resin, has a relatively high hardness, and has an appropriate elasticity.
[0016]
FIG. 3 is a schematic configuration diagram of the cell holder 50 that holds the multicell 32. In the cell holder 50, the multi-cell 32 is set on the thermostatic block 33 in a state where the sealing plugs 43 are fitted in the sample injection holes 42 of the cells 40. A Peltier element 34 is disposed on the lower surface of the constant temperature block 33, and a water-cooled cooling block 51 for cooling the Peltier element 34 is provided below the Peltier element 34. Further, the whole can be reciprocated linearly in a direction substantially orthogonal to the sample-side light beam S by a slide drive unit 37 including a motor, a linear guide, and the like. A lid 52 that covers the multicell 32 except for the light transmission window of each cell 40 is attached to the upper part of the thermostatic block 33. A sponge body 53 such as polyethylene foam or urethane foam is provided inside the lid body 52. When the lid body 52 is attached to the thermostatic block 33 and the screw 54 is tightened, the sponge body 53 is held by the holding portion 432 of the sealing plug 43. The upper surface is pressed with an appropriate force, and the adhesion between the sealing plug 43 and the sample injection hole 42 is further increased.
[0017]
Three temperature sensors 36 are embedded in the constant temperature block 33, and the detected temperature is given to the temperature control unit 35 as shown in FIG. The temperature control unit 35 receives the temperature control target value Tc from the central control unit 21 and controls the power supplied to the Peltier element 34 so that the detected temperature becomes the control target value Tc, that is, the difference is zero. To do. The constant temperature block 33 is heated or cooled substantially uniformly by the Peltier element 34, and the multicell 32 is brought to substantially the same temperature by heat conduction from the constant temperature block 33. Therefore, in the present apparatus, the absorbance of the sample at an arbitrary temperature can be measured within a predetermined temperature range by appropriately setting the control target value Tc.
[0018]
Next, the operation of Tm value measurement by the above apparatus will be schematically described. Among the eight cells 40 of the multi-cell 32, one to a plurality of cells (but seven or less) of cells 40 contain a blank sample solution containing only the solvent, and the other cells 40 dissolve the DNA to be analyzed in the solvent. The measured sample solution is stored and sealed in the sealing plug 43 as described above, and then set in the cell holder 50. Further, various measurement conditions including a temperature program are input and set from the operation unit 24, and thereafter, the start of measurement is instructed.
[0019]
When the measurement is started, the central control unit 21 sends a temperature control target value Tc to the temperature control unit 35 in accordance with the set temperature program. In response to this, the temperature control unit 35 controls the power supplied to the Peltier element 34 so that the temperature detected by the temperature sensor 36 matches the control target value Tc. At a predetermined target temperature, under the control of the central control unit 21, the slide drive unit 37 sequentially moves the multicell 32 so that the sample-side light beam S is irradiated to each cell 40 in order, and the photometry unit 1 operates each cell. 40 is irradiated with ultraviolet light, the intensity of light passing through the cell 40 is detected by the photodetector 11, and the intensity of the light of the reference side light beam R is also detected alternately in synchronization with the rotation of the sector mirror 5. The detector 11 detects it. Now, the electrical signal obtained by the photodetector 11 with respect to the light amount of the reference side light beam R is r, the electrical signal obtained by the photodetector 11 with respect to the light amount of the sample side light beam S is s, and further, the sector mirror. When the zero signal corresponding to the reference side light beam R is obtained as z r and the zero signal corresponding to the sample side light beam S is obtained as z s by intermittent shielding of the light by 5, respectively, the reference side light beam R and the sample side light beam S are obtained. Is obtained as W = (s−z s ) / (r−z r ). Thereby, the influence of the light quantity fluctuation | variation of the light source 2, etc. can be removed.
[0020]
Preferably, the temperature of the constant temperature block 33 is kept constant while the amount of light passing through each cell 40 is sequentially measured. The absorbance calculation unit 22 receives the detection signal from the photodetector 11 and calculates the absorbance due to the DNA excluding the influence of the solvent from the measurement result with the measurement sample solution and the measurement result with the blank sample solution at a certain temperature. Can do. When such measurement is performed one cycle at a predetermined temperature interval, the Tm value calculation unit 23 generates a thermal melting curve as shown in FIG. 4 for each measurement sample solution from the relationship between temperature and absorbance. Can be created. Therefore, the Tm value is calculated based on this thermal melting curve.
[0021]
In the present embodiment, in addition to the characteristic configuration of the multicell 32 as described above, by pressing the sealing plug 43 with the sponge body 53, the temperature of the multicell 32 is in the range of about 0 to 100 ° C. by the above measurement. Even if it changes, each cell 40 maintains high airtightness consistently, and the vaporization solvent of the sample solution accommodated in the cell 40 does not leak from the cell 40. Therefore, it is possible to prevent the component concentration of the sample solution stored in the cell 40 from changing greatly. Further, since each cell 40 is provided with the sealing plug 43 independently, when the sealing plug 43 of a certain cell 40 is pulled out, the sealing plug 43 of another cell 40 can be closed. After the measurement is completed, the condensed sample solution adheres to the lower surface of the sealing plug 43, and when the sealing plug 43 is pulled out, it may scatter around. By closing the sealing plug 43 of other cells 40, The scattered solution can be prevented from entering another cell 40. As a result, the sample solutions are not mixed with each other, so that the sample solution for which the measurement has been completed can be reused for other measurements with peace of mind.
[0022]
In order to demonstrate the effect of the multicell 32 in the above-described embodiment, the following experiment was performed.
[Experiment 1]
In the Tm measuring apparatus having the above configuration, the temperature was raised and lowered for about 4 hours at a moderate rate of 1 ° C./min between 0 and 100 ° C., and the evaporation amount of the solution at that time was measured. When the silicone resin seal plug 43 of the above example was used, the amount of evaporation was as small as 1 to 2 μL. On the other hand, when a seal plug made of a fluororesin having the same shape was used, the evaporation amount was about 10 μL. Thus, it can be seen that evaporation from the cell 40 can be extremely reduced in the configuration of this embodiment.
[0023]
[Experiment 2]
Using the Tm measuring apparatus having the above configuration, each cell 40 of the multicell 32 accommodated a plurality of sample solutions having the same DNA and different concentrations, and the respective thermal melting curves were measured. The thermal melting curve is shown in FIG. However, since the absorbance varies depending on the concentration, the vertical axis is normalized so that comparison is possible. It is theoretically known that the melting temperature also shifts when the concentration of the same DNA changes. From the results shown in FIG. 5, it can be seen that the theoretical phenomenon is correctly reflected in this result because the curve of the thermal melting curve is shifted in the horizontal axis direction due to the difference in concentration. That is, the Tm values of DNA solutions having different concentrations can be obtained accurately.
[0024]
In addition, although the said Example is an example which applied the multicell by this invention to the Tm value measuring apparatus which used the ultraviolet visible spectrophotometer, the application range of this invention is not restricted to this. That is, the present invention can be applied to general optical analyzers that measure the absorbance, transmittance, etc. of a sample solution while heating the sample solution, particularly while heating to a high temperature. Moreover, since the said Example is only an example, it is clear that a change and correction can be performed suitably in the range of the meaning of this invention.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a Tm value measuring apparatus using an ultraviolet-visible spectrophotometer that performs measurement using a multicell according to an embodiment of the present invention.
FIG. 2 is a side external view (a) and a top external view (b) of the multicell of the present embodiment.
FIG. 3 is a schematic configuration diagram of a cell holder that holds a multi-cell according to the present embodiment.
FIG. 4 is a diagram showing an example of a thermal melting curve.
5 is a diagram showing thermal melting curves obtained for a plurality of samples having the same DNA and different concentrations, using the Tm value measuring apparatus of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Photometry part 20 ... Personal computer 21 ... Central control part 22 ... Absorbance calculation part 23 ... Tm value calculation part 24 ... Operation part 25 ... Display part 30 ... Sample unit 31 ... Aperture board 32 ... Multicell 33 ... Constant temperature block 34 ... Peltier Element 35 ... Temperature control unit 36 ... Temperature sensor 37 ... Slide drive unit 40 ... Cell 41 ... Solution container 42 ... Sample injection hole 43 ... Sealing plug 431 ... Fitting insert 432 ... Presser unit 50 ... Cell holder 51 ... Cooling block 52 ... Lid Body 53 ... Sponge body 54 ... Screw

Claims (1)

試料溶液を加熱しつつ吸光度や透過率を測定する光分析装置に用いられる試料容器であって、複数種類の試料溶液を順次測定するために複数の小型セルが直線状に連なって配置された光分析用多連装セルにおいて、
前記小型セルは、立方体形状であって対向する両側面に光透過部を有する溶液収容部と、該溶液収容部の上部に連通した逆円錐台形状の試料注入穴とを有し、各小型セルの試料注入穴に独立に、逆円錐台形状のシリコーンゴム製の密栓を着脱自在に設けたことを特徴とする光分析用多連装セル。
A sample container used in an optical analyzer that measures absorbance and transmittance while heating a sample solution, in which a plurality of small cells are arranged in a straight line to sequentially measure a plurality of types of sample solutions. In multi-cells for analysis,
Each of the small cells has a cubic shape and has a solution containing portion having light transmitting portions on opposite side surfaces and an inverted frustoconical sample injection hole communicating with an upper portion of the solution containing portion. A multi-connected cell for photoanalysis characterized in that an inverted frustoconical silicone rubber seal plug is detachably provided independently in the sample injection hole.
JP2001313469A 2001-10-11 2001-10-11 Multiple cell for optical analysis Expired - Lifetime JP3791384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001313469A JP3791384B2 (en) 2001-10-11 2001-10-11 Multiple cell for optical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313469A JP3791384B2 (en) 2001-10-11 2001-10-11 Multiple cell for optical analysis

Publications (3)

Publication Number Publication Date
JP2003121344A JP2003121344A (en) 2003-04-23
JP2003121344A5 JP2003121344A5 (en) 2005-04-07
JP3791384B2 true JP3791384B2 (en) 2006-06-28

Family

ID=19131936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313469A Expired - Lifetime JP3791384B2 (en) 2001-10-11 2001-10-11 Multiple cell for optical analysis

Country Status (1)

Country Link
JP (1) JP3791384B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961591B2 (en) * 2007-08-23 2012-06-27 大塚電子株式会社 Solution characteristic measuring apparatus and solution characteristic measuring method
EP3077794A4 (en) 2013-12-06 2017-12-13 Bacterioscan Ltd. Optical measurement cuvette having sample chambers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423593A (en) * 1977-07-22 1979-02-22 Horiba Ltd Microsample container
JPH04337448A (en) * 1991-05-15 1992-11-25 Sekisui Chem Co Ltd Cell for measuring fluorescent light
JPH06105220B2 (en) * 1991-08-23 1994-12-21 近藤フィリップスライティング株式会社 Apparatus and method for nondestructive quantitative analysis of coagulating gas phase substances using high sensitivity infrared spectroscopy
JPH05288667A (en) * 1992-04-09 1993-11-02 Nippon Telegr & Teleph Corp <Ntt> Measuring container for measuring magnetism in laser interference
JPH10142142A (en) * 1996-11-06 1998-05-29 S T Japan:Kk Sample holder
JP4327913B2 (en) * 1997-11-19 2009-09-09 大日本印刷株式会社 Gene amplification apparatus and gene amplification method
JP2000121552A (en) * 1998-10-20 2000-04-28 Suzuki Motor Corp Spr sensor cell and immunoreaction measuring device using the same
JP2000187038A (en) * 1998-12-22 2000-07-04 Shimadzu Corp Autosampler
JP2001041879A (en) * 1999-08-02 2001-02-16 Yokogawa Electric Corp Spectral analyzing vial bottle
JP2001349825A (en) * 2000-06-06 2001-12-21 Kowa Co Cuvette stand and stand with cuvette
JP3551917B2 (en) * 2000-11-29 2004-08-11 株式会社島津製作所 Reaction vessel and reaction apparatus using the same
JP2002372490A (en) * 2001-04-12 2002-12-26 Fuji Photo Film Co Ltd Sensor utilizing total reflection attenuation and measurement chip assembly

Also Published As

Publication number Publication date
JP2003121344A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
ES2266614T3 (en) METHOD FOR QUANTITATIVE DETERMIATION OF HEMOGLOBIN IN COMPLETE BLOOD WITHOUT DILUTING OR HEMOLIZING.
CN101374455B (en) Temperature-adjusted analyte determination for biosensor systems
Ashworth et al. HemoCue: evaluation of a portable photometric system for determining glucose in whole blood
KR102301688B1 (en) Urinalysis device and Dry Reagent for Quantitative Urinalysis
US7271912B2 (en) Method of determining analyte concentration in a sample using infrared transmission data
Gibson [6] Rapid mixing: Stopped flow
Floris et al. A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood
US9423393B2 (en) Analytical test cartridge; and, methods
US20040193024A1 (en) Calibrator
CA2522487A1 (en) Sample element qualification
WO2013025036A2 (en) Capillary microcuvette having double collection means
JP2008209350A (en) Device for measuring blood coagulation time
EP2715369B1 (en) Optical glucose biosensor calibration using different temperature calibration solutions
JP7260623B2 (en) sensor assembly
TWI470219B (en) Hand-held systems and methods for detection of contaminants in a liquid
JP3791384B2 (en) Multiple cell for optical analysis
US9274079B2 (en) Etchant product analysis in alkaline etchant solutions
KR20160081669A (en) Reaction apparatus, test device and control method for the test device
EP3972493A1 (en) Compensation system and method for thermistor sensing in an analyte biosensor
US5535744A (en) Method and apparatus for blood chemistry analysis
US20180185837A1 (en) Apparatus for analyzing a liquid sample including a locking and withdrawal device
Wong et al. StatPal II pH and blood gas analysis system evaluated
CN101923055A (en) Portable functional color comparator
JP4591245B2 (en) Laser diffraction / scattering particle size distribution analyzer
US20210247380A1 (en) Contoured sample path for fluid analyzer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Ref document number: 3791384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8