JP3790956B2 - Control rod for boiling water reactor - Google Patents

Control rod for boiling water reactor Download PDF

Info

Publication number
JP3790956B2
JP3790956B2 JP2001053947A JP2001053947A JP3790956B2 JP 3790956 B2 JP3790956 B2 JP 3790956B2 JP 2001053947 A JP2001053947 A JP 2001053947A JP 2001053947 A JP2001053947 A JP 2001053947A JP 3790956 B2 JP3790956 B2 JP 3790956B2
Authority
JP
Japan
Prior art keywords
fin
welded
sheath
welding
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001053947A
Other languages
Japanese (ja)
Other versions
JP2002257968A (en
Inventor
昇司 足立
紀昭 後藤
武裕 瀬戸
道夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001053947A priority Critical patent/JP3790956B2/en
Publication of JP2002257968A publication Critical patent/JP2002257968A/en
Application granted granted Critical
Publication of JP3790956B2 publication Critical patent/JP3790956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【0001】
【発明の属する技術分野】
本発明は沸騰水型原子炉用制御棒に係り、特に、タイロッドとシース間の健全な溶接構造を有する原子炉用制御棒に関する。
【0002】
【従来の技術】
従来の沸騰水型原子炉用制御棒の利用環境とその構造を説明する。原子炉内では、核燃料中のウラン235が核***反応をし、このときに発生する熱を利用し炉水を沸騰させ、同時に発生する中性子が他のウラン235を***させる連鎖反応が起きている。
【0003】
核***の連鎖反応量を制御するため、中性子吸収材を内部に収納する制御棒が利用される。このうち、沸騰水型原子炉で通常使用される制御棒は、十字型横断面をしており、鉛直方向に立設した4つの筒状の燃料チャンネルボックス間に形成される十字型の隙間に、鉛直方向に移動させて挿入される。
【0004】
この燃料チャンネルボックス間に形成される十字型の隙間に、制御棒が滑らかに挿入される挿入性を確保するため、制御棒の十字断面を形成する4枚のブレードの厚み寸法や、幅寸法、角度の位置関係、および制御棒の真直性に厳しい品質が要求される。
【0005】
沸騰水型原子炉用制御棒として最もよく使用されるものは、十字断面を持つタイロッドの各辺にU字断面を持つシースを取り付け、シースの内部に中性子吸収材を収納し、タイロッドとシースを溶接接合したものである。
【0006】
このタイロッドとシースの溶接接合には、シースの一定箇所を溶接部として突出させ、その突出部をスポット溶接している。スポット溶接を施した溶接部では、タイロッドとシースの隙間に炉水が循環しにくくなりよどむ。よどんだ炉水が長期間炉内の照射を受けると腐食環境を発生させ、この状態にスポット溶接部が晒されると隙間腐食発生の可能性がある。
【0007】
一方、TIG溶接を採用して完全溶着させた溶接部は、その構造から炉水がよどむ隙間は発生しない。このため、改良型の沸騰水型原子炉用制御棒のタイロッドとシースの溶接構造は、このTIG溶接を適用し、完全溶着させる方法が取り入れられている。そこで、従前のスポット溶接から完全溶着可能な溶接構造への変更が求められるようになった。
【0008】
【発明が解決しようとする課題】
しかしながら、従来型沸騰水型原子炉用制御棒に比較して、改良型沸騰水型制御棒のシースは薄い板材を使用して製作されているので、シース溶接部の間の座屈に対する強度は低下する。
【0009】
また、シースの突出部をタイロッドのフィンに溶接すると、溶接の熱影響によりタイロッドは長手方向に収縮し、溶接部の間の距離は縮まる。同様に、タイロッドの幅方向にも収縮が生じる。
【0010】
このように、シースの座屈強度の低下とタイロッドの収縮および溶接部の残留応力により、薄いシースには溶接部である突出部に波打ち現象が発現し、このことが未溶接部のワークの位置関係をずらして溶接品質に影響を与え、上記各寸法を守るための修正作業に時間を費やす原因となっている。
【0011】
薄いシースをタイロッドフィンにTIG溶接する際,熱容量の差があるので、アークの入熱で双方に溶融池が発生するまでに時差があり、溶接電流を大きくするとシースが先に溶融し、溶接電流を小さくするとタイロッドフィンが溶融せず、その間にシースに入熱が掛かり熱変形する原因となり、開先形状が変形し溶接品質にばらつきを発生することになる。
【0012】
そこで、段取り作業と修正作業を減らすために、シースの変形と溶接部の残留応力を抑え、同時にフィン溶接部の重なり代の面とシース突出部との間で裏波ビードが得られ、タイロッドとシース間が完全溶着する良好な溶接品質を得るため、低入熱で入熱範囲が狭く、TIG溶接より溶け込みが深いレーザ溶接技術を適用することが考えられる(例えば、特開2000−329885号公報、特開平9−61576号公報参照)。
【0013】
本発明の目的は、沸騰水型原子炉用制御棒のタイロッドと薄いシースとの溶接構造において、レーザ溶接技術を適用するにあたり、溶接部の位置や開先形状を最適化することによって、隙間腐食の発生を予防できる健全性を確保し、溶接品質と寸法精度が向上し、安定した炉心運転が可能な制御棒を提供することである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の沸騰水型原子炉用制御棒は、断面十字形状を形成する4つのフィンを有する棒状のタイロッドと、前記フィンの先端部を断面U字形に形成されたシースの開口部でそれぞれ挟み、前記フィンの先端部と前記シースの開口部との重なり部を溶接して形成される沸騰水型原子炉用制御棒において、ィンとシースとの溶接部を検討し、フィンとシースの重なり部に連なるフィンの端面の短手方向を凸面又は凹面に形成したり、4つのフィンの溶接箇所を異なる水平位置で溶接するようにした。
【0015】
本発明によれば、タイロッドのフィンの先端面に、テーパー面または曲面などにより凹凸形状を形成したので、溶接時、完全溶着した重なり代に由来する溶接金属が、フィン部に設けたテーパー面または曲面とシースに連なり、シースの突出部とタイロッドの重なり代の隙間が封をされ、このため、炉水がよどむ隙間が発生せず、隙間腐食の発生が予防されて溶接品質が向上する。
【0016】
また、溶接部の位置を4つのフィンで異ならせることにより、溶接の入熱を分散できるため、溶接部で発生するタイロッドの収縮とシースの変形を低減することができる。そのため、溶接による変形が抑制された健全な制御棒が得られる。
【0017】
したがって、タイロッドの縮みや熱負荷の不揃いが原因となる曲がりや捩れが減少し、また、シースでは残留応力を低く抑えられ、シースの波打ち現象の発生がなくなり、フィンの長さや幅寸法と角度の精度が向上する。また、修正作業を短縮することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。まず、沸騰水型原子炉用制御棒において、シースとの溶接部であるタイロッドのフィン先端部の開先形状について説明し、次に、十字形状の4つのフィンの溶接位置の異なる配置について説明し、最後に、本制御棒の製造手順と、本発明になる開先形状にレーザ溶接を適用した施工試験について説明する。
【0019】
図1は、タイロッドとシースの溶接部のフィン先端部開先形状が凸状に形成された例の断面および斜視図である。断面十字形状を形成する4つのフィン8を有する棒状のタイロッド1と、フィン8の先端部に断面U字形状の開口部を挟んで一定箇所が溶接されるシース2とから構成され、フィン8とシース2との溶接部9の開先形状が、フィン8の端面にテーパ面を有する凸部31が形成された断面形状となっている。
【0020】
このような開先形状を採用してレーザ溶接すると、溶接時、完全溶着したフィンの重なり代7に由来する溶接金属が、凸部31のテーパ面とシース2とに連なり、重なり代7の隙間が封をされ、このため、炉水がよどむ隙間が発生せず、隙間腐食の発生が予防されて溶接品質が向上する。なお、シース2には突出部23が形成されて溶接部となっている。また、シース2内には中性子吸収材3が入っている。
【0021】
図2に、開先形状の種々の例を示す。図2(a)は、図1に使用した例であり、
タイロッドのフィン8の先端部が、重なり代10に連なってテーパ面11となって三角形状に突出している。
【0022】
図2(b)は、フィン8の重なり代10から先端側を円弧で繋いだものである。溶接時、重なり代10に近い位置ほど、シース2の突出部23と円弧面24の間にできる隙間は小さくなるので、溶融した金属がシース突出部23の面と円弧面24との間で連なりやすく、このため腐食環境となる隙間が塞がれるので、隙間腐食の発生を予防することができる。
【0023】
図2(c)は、フィン8の重なり代10より先端側をテーパ面11と平面を連ねたものである。テーパ面11は対称である必要はなく、テーパ面11とテーパ面11の間はどのような面で連絡させてもよい。テーパ面11は平面であるため、開先加工が容易になり、使用可能な工具刃の種類が増える利点がある。
【0024】
図2(d)および(e)は、フィン8の重なり代10より先端側を、凸な曲面12aとしたもの、および凹な曲面12aとしたものである。曲面12aは対称である必要はなく、また曲面12aと曲面12aの間は、どのような面で連絡させてもよい。
【0025】
図2(d)は凸曲面12aを使用するので、溶接部であるシース突出部23の面と凸曲面12aの間で溶融した金属が連結しやすくなり、また、溶接部9近傍の母材の量が減少するため溶接の入熱が伝熱で逃げにくく、重なり代10の温度が上昇し溶融しやすくなるので溶接速度を上げることができる。
【0026】
図2(e)は凹曲面12bを使用するので、溶接部9近傍の母材の量が図2(c)の形状に比べてさらに減少するため、溶接の入熱が伝熱で逃げにくく、重なり代10の温度が上昇し溶融しやすくなるので、溶接速度を上げることができる。このため溶接部9の入熱量を低く抑えることができる。
【0027】
図3は、タイロッドのフィン8の先端部を、凹状に形成した例である。図3(a)は、テーパ面11で三角状のV溝が形成され、図3(b)は、コの字型の凹溝とした。また、図3(c)では、曲面13によって溝の先端部と底部とを形成した。また、図3(d)は、図3(a)の溝でV溝の先端部に平面14を形成してある。
【0028】
図3に示した例でも、図2に記載した例と同様に、溶融した金属が連結しやすくなり、溶接部9近傍の母材の量が減少するため溶接の入熱が伝熱で逃げにくく、重なり代の温度が上昇して溶融しやすくなるので溶接速度を上げることができる。特に、凹溝の両側壁部が完全溶融して完全溶接接合が可能になる。
【0029】
次に、図4および図5を用いて、タイロッドとシースの溶接部9の配置を変えた例について説明する。図4は、隣接フィンの溶接位置が異なり、180度離れたフィン同士は溶接位置を同じにした例を示す斜視図、図5は、各フィンの溶接位置が異なる例を正面図である。
【0030】
図4において、十字断面形状を形成する4つのフィンを持つ棒状のタイロッドと、このタイロッドと同程度の長さを持ち、U字断面形状をして縁部に複数の突出した溶接部を形成したシースとから構成され、シースの突出部でフィンを挟み込んで溶接する構造の沸騰水型原子炉用制御棒において、フィンとシース突出部とを溶接する際、180度離れた位置にあるシース同士の突出部は同一位置で溶接され、90度離れた隣接のシース同士はずれた位置で溶接するようにした。
【0031】
4枚のフィンのシースとの溶接部9が同一位置にある従来方法では、溶接による曲がりなどの変形の方向は、断面のX−Y方向混合となり、複雑な変形を発生する。一方、互いに反対側のフィンの溶接部9を同じ位置に、隣接フィンの溶接部9をずらした溶接位置にした図4の方法によれば、溶接の入熱を分散できるため、各溶接部で発生するタイロッドの収縮と、シースの変形を低減できることになる。
【0032】
また、タイロッドの曲がり方向を、X軸とY軸に分解することができるため、曲がり修正が必要なときには、その修正方向が明確になり、修正作業がきわめて容易となる。その結果、変形のないより健全な制御棒を提供することができる。
【0033】
図5は、十字形状のタイロッドの4つのフィンとシース突出部との溶接部9を、4つのフィンにおいてそれぞれ異ならせた例である。図において、目視Aによれば、シース(1)と(3)とで溶接部9がずれ、目視Bによれば、シース(2)と(4)とで溶接部9がずれ、しかも、図中に一点鎖線で示すように、隣接フィンごとに順次ずらして螺旋(スパイラル)状に溶接部9を配置した。
【0034】
このように、タイロッドの長さ方向にスパイラル状に溶接部を配置すると、上記図4の例よりもさらに溶接による入熱が分散する。そのため、入熱による変形と他の溶接部からの影響が低減する。しかも、変形が生じる場合も、螺旋を描くように発生するため、全体的に変形のバランスが得られ、きわめて容易に修正可能となる。そして、レーザ溶接等の低入熱の溶接技術を採用することにより、変形のない健全性の高い溶接棒が得られる。
【0035】
次に、図6〜図8を用いて、タイロッドのフィン先端部の開先形状の配置について説明する。図6〜図8はタイロッドの正面図とその側面図をあらわしたもので、タイロッド1の全長にわたり溶接部の開先形状を加工したものである。
【0036】
図6のものは、全長にわたり同様の加工をするため、製造容易で、タイロッドの重量を最も軽くできる利点がある。また、図7および図8のものは、シース2の突出部23との溶接に必要な開先形状を、必要な箇所にのみ適用した例である。タイロッドの加工量が減少し製作工程の短縮化が図れる。
【0037】
図7では、断面Aは溶接に必要な開先加工を施した位置での断面であり、断面Bは開先加工を施さない位置での断面である。開先加工を施す位置が4つのフィン8で同じになるので、使用するシース2の縁部にある突出部23の配置状態が1種類で済む利点がある。
【0038】
図8では、断面Aは対向する2つのフィン8に溶接に必要な開先加工を施した位置での断面であり、断面Bは、開先加工を施さない位置での断面である。断面Cは、断面Aで開先加工を施したフィン8と直行方向の位置関係にある2つのフィン8に開先加工を施した位置での断面である。タイロッド1とシース2の溶接部が、図7の断面Aのように1断面に4箇所ではなくなるので、タイロッドに発生する溶接の入熱に起因する曲がり変形の影響を分散することができる利点がある。
【0039】
次に、本発明になる制御棒の製造手順を、図4を参照して説明する。ステンレス製の板材であるシースは、(1)素材から(2)穴明および凸部の切り出しを行い、プレス機で曲げ(3)加工を行い、次工程送り(10)となる。
【0040】
一方、制御棒を構成する部品のハンドルや落下速度リミッタ、およびその他の部品(6)を組み立てたもの(7)を、タイロッドの両端部に組み付け溶接(5)を行い、制御棒の骨格を製作して次工程送り(10)となる。
【0041】
また、中性子吸収材は、素材(8)に加工と組み立ておよび溶接(9)を行い、棒状の部品となる。中性子吸収材をシースに内包し、制御棒のブレードを組み立てる(10)。シースの溶接用突出部と、タイロッドの開先部分を合わせてレーザ溶接(11)を行い、完成(12)となる。
【0042】
ここで、図10および図11を用いて、図2(a)に示した断面形状を持つタイロッドに対して行ったレーザ溶接の施工試験について説明する。図2(b)〜(e)およびその他のタイロッドの断面形状も合わせて説明する。本施工試験では、YAGレーザ溶接機を使用し溶接を行った。施工条件を表1に示す。
【0043】
【表1】

Figure 0003790956
【0044】
図10に示すように、タイロッド1とシース2を受け台13に載せ、シース2を固定金具14で固定し、熱引き治具(図に記載せず)を取り付け、タイロッド1とシース2の溶接位置を決める。レール17上に乗り、移動できるレーザ発振器16から伸びる腕に、レーザトーチ15およびトレーラガスノズル21(図11中に記載)が取り付けられる。
【0045】
図11に示すように、タイロッド1のフィン8先端側にある重なり代10とシース2の溶接用突出部23を重ね、仮溶接を実施し固定金具13(図10中に記載)でシース2を固定する。
【0046】
シールドガス20を溶接部に向けて流す。シールドガス20の種類は本施工試験ではN2を使用しているが、溶接部の酸化を防ぐのが目的であるので、He、Ar、N2など酸化を防ぐ効果をもつガスであればいずれでも良い。また、シールドガス20の流量は、目的の効果が得られる範囲内で使用している。
【0047】
次いで、レーザトーチ15を溶接の開始位置まで移動させ、レーザの焦点を調節する。シース2が薄い板のときに、レーザ光線19の出力が大きく、溶接速度が小さいと溶け込みが深く、ビード幅も大きく、裏波ビードも得られ、溶接部の完全溶着が得られやすい。このため、フィン8の重なり代10を大きく取ることができるが、ボイドなどの溶接欠陥が発生しやすい。
【0048】
また、シース2が厚い板のとき、レーザ光線19の出力が小さく、溶接速度が大きいと溶け込みが浅くなり、重なり代10を少なくしないと完全溶着が得られない。また、本施工試験では、溶接棒20を使用するので、溶接棒20の供給量が多くなると溶接の入熱が溶接棒の溶融に使用され、このため溶け込みは浅くなり、また供給量が少ないと溶け込みは深くなる。
【0049】
完全溶着可能な重なり代10の寸法は、使用するシースの板厚とレーザ光線19の出力と溶接速度、および溶接棒20の供給速度に依存する。そのため、製品仕様の溶接部の強度と溶接品質が得られる範囲を調べ、入熱による変形を少なくするため、その中でもレーザの出力の小さいものを選択し、重なり代10の寸法を決定している。
【0050】
溶接ビードは、溶接直後は温度が高い状態にあり酸化しやすく、これを防ぐ目的から溶接直後の溶接ビードへ、トレーラガスノズル21からトレーラガス22を吹き付け、表面の酸化を防いでいる。トレーラガス22の種類の選択方法は、シールドガス20の場合と同じであり、本施工試験ではN2を使用している。
【0051】
本施工試験の結果とTIG溶接で行った結果を比較したところ、ビード外観と断面金層が良好で優れた溶接品質であり、溶接部近傍の残留応力の低下が確認できた。また、シースの波打ち現象およびブレードなど全体的に変形量の減少が確認でき、制御棒に求められる品質を満たすことが分かった。
【0052】
【発明の効果】
上述のとおり、本発明によれば、沸騰水型原子炉用制御棒のタイロッドと薄いシースとの溶接構造において、レーザ溶接技術を適用するにあたり、溶接部の位置や開先形状を最適化することによって、隙間腐食の発生を予防できる健全性を確保し、溶接品質と寸法精度が向上し、安定した炉心運転が可能な制御棒が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す断面および斜視図。
【図2】本発明になる開先形状の凸状の例を示す斜視図。
【図3】本発明になる開先形状の凹状の例を示す斜視図。
【図4】本発明になるシースとタイロッドの溶接部の配置を変えた一例を示す斜視図。
【図5】本発明になるシースとタイロッドの溶接部の配置を変えた他の例を示す斜視図。
【図6】本発明になるタイロッドの開先加工部の一例を示す正面図。
【図7】本発明になるタイロッドの開先加工部の他の例を示す正面図。
【図8】本発明になるタイロッドの開先加工部のさらに他の例を示す正面図。
【図9】本発明になる制御棒の製作手順を示す工程図。
【図10】本発明におけるタイロッドとシースのレーザ溶接施工試験の説明図。
【図11】本発明におけるタイロッドとシースのレーザ溶接施工試験の細部の説明図。
【符号の説明】
1 タイロッド
2 シース
3 中性子吸収材
8 フィン
9 溶接部
10 重なり代
11 テーパ面
12 曲面
23 溶接用突出部
24 円弧面
31 凹凸部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boiling water reactor control rod, and more particularly to a reactor control rod having a sound welded structure between a tie rod and a sheath.
[0002]
[Prior art]
The usage environment and structure of a conventional boiling water reactor control rod will be described. In the nuclear reactor, uranium 235 in the nuclear fuel undergoes a fission reaction, the heat generated at this time is used to boil the reactor water, and a neutron generated at the same time causes a chain reaction in which other uranium 235 is split.
[0003]
In order to control the amount of chain reaction of fission, a control rod that houses a neutron absorber is used. Of these, the control rods that are normally used in boiling water reactors have a cross-shaped cross-section, with a cross-shaped gap formed between four cylindrical fuel channel boxes erected in the vertical direction. , Moved vertically and inserted.
[0004]
In order to ensure the insertion property that the control rod is smoothly inserted into the cross-shaped gap formed between the fuel channel boxes, the thickness dimension, width dimension, and the like of the four blades forming the cross section of the control rod Strict quality is required for the positional relationship of the angle and the straightness of the control rod.
[0005]
The most commonly used control rod for boiling water reactors is a tie rod with a cross-section with a U-section sheath attached to each side, a neutron absorber inside the sheath, and a tie rod and sheath. It is welded.
[0006]
In the welding joint between the tie rod and the sheath, a fixed portion of the sheath is projected as a welded portion, and the projected portion is spot welded. In the welded part that has been spot welded, the reactor water becomes difficult to circulate in the gap between the tie rod and the sheath. When stagnant reactor water is irradiated in the furnace for a long period of time, a corrosive environment is generated. If the spot weld is exposed to this state, crevice corrosion may occur.
[0007]
On the other hand, in a welded portion that is completely welded by employing TIG welding, a gap in which the reactor water stagnates does not occur due to its structure. For this reason, the tie rod and sheath welded structure of the improved boiling water reactor control rod adopts the TIG welding and a method of complete welding. Therefore, a change from a conventional spot welding to a welding structure capable of complete welding has been demanded.
[0008]
[Problems to be solved by the invention]
However, compared to the conventional boiling water reactor control rod, the sheath of the improved boiling water control rod is manufactured using a thin plate, so the strength against buckling between the sheath welds is descend.
[0009]
Further, when the protruding portion of the sheath is welded to the fin of the tie rod, the tie rod contracts in the longitudinal direction due to the heat effect of the welding, and the distance between the welded portions decreases. Similarly, shrinkage also occurs in the width direction of the tie rod.
[0010]
As described above, due to the decrease in the buckling strength of the sheath, the shrinkage of the tie rods, and the residual stress in the welded portion, the wavy phenomenon appears in the protruding portion which is the welded portion in the thin sheath, and this is the position of the workpiece in the unwelded portion. This shifts the relationship, affects the welding quality, and is a cause of spending time on the correction work to keep the above dimensions.
[0011]
When TIG welding a thin sheath to a tie rod fin, there is a difference in heat capacity, so there is a time difference until a molten pool is generated on both sides due to arc heat input. When the welding current is increased, the sheath melts first, and the welding current If this is reduced, the tie rod fins will not melt and heat will be applied to the sheath during that time, causing thermal deformation, and the groove shape will be deformed, resulting in variations in weld quality.
[0012]
Therefore, in order to reduce the setup work and the correction work, the deformation of the sheath and the residual stress in the welded portion are suppressed, and at the same time, a back bead is obtained between the overlapping surface of the fin welded portion and the sheath protruding portion, In order to obtain good welding quality in which the sheaths are completely welded, it is conceivable to apply a laser welding technique with a low heat input, a narrow heat input range, and deeper penetration than TIG welding (for example, Japanese Patent Laid-Open No. 2000-329885). JP, 9-61576, A).
[0013]
The object of the present invention is to apply crevice corrosion by optimizing the position of the weld and the groove shape when applying the laser welding technique in the welded structure of the tie rod of the control rod for boiling water reactor and the thin sheath. It is to provide a control rod capable of preventing sound generation, ensuring welding quality and dimensional accuracy, and capable of stable core operation.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a control rod for a boiling water reactor according to the present invention comprises a rod-shaped tie rod having four fins forming a cross-shaped cross section, and a tip portion of each fin having a U-shaped cross section. was sandwiched respectively opening of the sheath, in a boiling water nuclear reactor control rods which are formed by welding the overlapped portion of the opening of the the distal end portion of the fin sheath, welded portions of the full fin and sheath Then, the lateral direction of the end surface of the fin connected to the overlapping portion of the fin and the sheath is formed as a convex surface or a concave surface, or the welding positions of the four fins are welded at different horizontal positions.
[0015]
According to the present invention, since the concavo-convex shape is formed on the tip surface of the fin of the tie rod by a taper surface or a curved surface, the weld metal derived from the overlap allowance that is completely welded during welding is a taper surface provided on the fin portion or Continuing to the curved surface and the sheath, the clearance gap between the protruding portion of the sheath and the tie rod is sealed, so that no gap for stagnation of the reactor water is generated, and the occurrence of crevice corrosion is prevented and the welding quality is improved.
[0016]
Moreover, since the heat input of welding can be disperse | distributed by varying the position of a welding part with four fins, the shrinkage | contraction of a tie rod and the deformation | transformation of a sheath which generate | occur | produce in a welding part can be reduced. Therefore, a healthy control rod in which deformation due to welding is suppressed can be obtained.
[0017]
Therefore, bending and torsion caused by shrinkage of tie rods and uneven thermal load are reduced, and residual stress can be kept low in the sheath, so that the wavy phenomenon of the sheath is eliminated, and the fin length, width dimension and angle are not affected. Accuracy is improved. In addition, the correction work can be shortened.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. First, in the control rod for boiling water reactor, the groove shape of the fin tip of the tie rod, which is the welded portion with the sheath, will be explained, and then the different arrangement of the welding positions of the four cross-shaped fins will be explained. Finally, the manufacturing procedure of the present control rod and the construction test in which laser welding is applied to the groove shape according to the present invention will be described.
[0019]
FIG. 1 is a cross-sectional view and a perspective view of an example in which a fin tip portion groove shape of a weld portion between a tie rod and a sheath is formed in a convex shape. It is composed of a rod-shaped tie rod 1 having four fins 8 forming a cross-shaped cross section, and a sheath 2 in which a certain portion is welded across a U-shaped opening at the tip of the fin 8. The groove shape of the welded portion 9 with the sheath 2 is a cross-sectional shape in which a convex portion 31 having a tapered surface is formed on the end surface of the fin 8.
[0020]
When laser welding is performed using such a groove shape, the weld metal derived from the overlap margin 7 of the completely welded fin is connected to the tapered surface of the convex portion 31 and the sheath 2 at the time of welding, and the gap of the overlap margin 7 is obtained. As a result, the gap in which the reactor water stagnates is not generated, the occurrence of crevice corrosion is prevented, and the welding quality is improved. The sheath 2 is formed with a protruding portion 23 to be a welded portion. A neutron absorber 3 is contained in the sheath 2.
[0021]
FIG. 2 shows various examples of groove shapes. FIG. 2A is an example used in FIG.
Tip ends of the fins 8 of the tie rods are connected to the overlap margin 10 to form a tapered surface 11 and project in a triangular shape.
[0022]
FIG. 2B is a diagram in which the tip end side is connected by an arc from the overlap margin 10 of the fin 8. At the time of welding, the closer to the overlap margin 10, the smaller the gap formed between the protruding portion 23 of the sheath 2 and the arc surface 24, so that the molten metal continues between the surface of the sheath protruding portion 23 and the arc surface 24. This easily closes the gap that becomes a corrosive environment, so that the occurrence of crevice corrosion can be prevented.
[0023]
FIG. 2C is a diagram in which the tip end side of the overlap margin 10 of the fins 8 is connected to the tapered surface 11 and a plane. The taper surface 11 does not need to be symmetrical, and the taper surface 11 and the taper surface 11 may be connected by any surface. Since the tapered surface 11 is a flat surface, there is an advantage that groove processing becomes easy and the number of usable tool blades increases.
[0024]
FIGS. 2D and 2E show a case in which the tip side of the overlap margin 10 of the fin 8 is a convex curved surface 12a and a concave curved surface 12a. The curved surface 12a does not need to be symmetric, and the curved surface 12a and the curved surface 12a may be connected by any surface.
[0025]
Since FIG. 2D uses the convex curved surface 12a, the molten metal is easily connected between the surface of the sheath protruding portion 23 which is a welded portion and the convex curved surface 12a, and the base metal near the welded portion 9 is connected. Since the amount is reduced, it is difficult for the heat input of welding to escape by heat transfer, and the temperature of the overlap margin 10 rises and becomes easy to melt, so the welding speed can be increased.
[0026]
Since FIG. 2 (e) uses the concave curved surface 12b, the amount of the base material in the vicinity of the welded portion 9 is further reduced as compared with the shape of FIG. 2 (c). Since the temperature of the overlap margin 10 rises and becomes easy to melt, the welding speed can be increased. For this reason, the heat input of the welding part 9 can be restrained low.
[0027]
FIG. 3 shows an example in which the tip of the fin 8 of the tie rod is formed in a concave shape. 3A, a triangular V-shaped groove is formed on the tapered surface 11, and FIG. 3B is a U-shaped concave groove. Further, in FIG. 3C, the front end portion and the bottom portion of the groove are formed by the curved surface 13. FIG. 3D shows a groove 14 in FIG. 3A in which a flat surface 14 is formed at the tip of the V groove.
[0028]
In the example shown in FIG. 3, similarly to the example shown in FIG. 2, the molten metal is easily connected, and the amount of the base material in the vicinity of the welded portion 9 is reduced, so that the heat input of welding is difficult to escape by heat transfer. Since the temperature of the overlap margin rises and it becomes easy to melt, the welding speed can be increased. In particular, the both side walls of the concave groove are completely melted to enable complete welding joining.
[0029]
Next, an example in which the arrangement of the welded portion 9 between the tie rod and the sheath is changed will be described with reference to FIGS. 4 and 5. FIG. 4 is a perspective view showing an example in which the welding positions of adjacent fins are different and the fins 180 degrees apart have the same welding position, and FIG. 5 is a front view of an example in which the welding positions of the fins are different.
[0030]
In FIG. 4, a rod-shaped tie rod having four fins forming a cross-sectional shape and a length approximately the same as this tie rod, a U-shaped cross-sectional shape, and a plurality of protruding welds at the edge are formed. In the boiling water nuclear reactor control rod, which is composed of a sheath and has a structure in which the fin is sandwiched and welded between the sheath projections, when the fin and the sheath projection are welded, the sheaths at positions 180 degrees apart The protrusions were welded at the same position, and the adjacent sheaths separated by 90 degrees were welded at positions shifted from each other.
[0031]
In the conventional method in which the welded portion 9 with the sheath of four fins is in the same position, the deformation direction such as bending due to welding is mixed in the XY direction of the cross section, and complicated deformation occurs. On the other hand, according to the method of FIG. 4 in which the welding portions 9 of the fins on the opposite sides are located at the same position and the welding positions 9 of the adjacent fins are shifted to each other, the heat input of welding can be dispersed. The contraction of the tie rod and the deformation of the sheath can be reduced.
[0032]
In addition, since the bending direction of the tie rod can be disassembled into the X axis and the Y axis, when the bending correction is necessary, the correction direction becomes clear and the correction work becomes extremely easy. As a result, a healthier control rod without deformation can be provided.
[0033]
FIG. 5 is an example in which the welded portions 9 between the four fins of the cross-shaped tie rod and the sheath protruding portion are different in the four fins. In the figure, according to the visual A, the weld 9 is displaced between the sheaths (1) and (3), and according to the visual B, the weld 9 is displaced between the sheaths (2) and (4). As indicated by the alternate long and short dash line inside, the welds 9 are arranged in a spiral shape by sequentially shifting each adjacent fin.
[0034]
As described above, when the welded portion is arranged in a spiral shape in the length direction of the tie rod, the heat input by welding is further dispersed as compared with the example of FIG. Therefore, the deformation due to heat input and the influence from other welds are reduced. In addition, even when deformation occurs, it occurs like drawing a spiral, so that a balance of deformation can be obtained as a whole and correction can be made very easily. And the welding rod with high soundness without a deformation | transformation is obtained by employ | adopting welding techniques with low heat input, such as laser welding.
[0035]
Next, the arrangement of the groove shape of the fin tip portion of the tie rod will be described with reference to FIGS. 6 to 8 show a front view and a side view of the tie rod, and the groove shape of the welded portion is processed over the entire length of the tie rod 1.
[0036]
The thing of FIG. 6 has the advantage which can manufacture easily and can make the weight of a tie rod the lightest since it processes similarly over the full length. Moreover, the thing of FIG. 7 and FIG. 8 is an example which applied the groove shape required for welding with the protrusion part 23 of the sheath 2 only to the required location. The processing amount of the tie rod is reduced and the manufacturing process can be shortened.
[0037]
In FIG. 7, the cross section A is a cross section at a position where groove processing necessary for welding is performed, and the cross section B is a cross section at a position where groove processing is not performed. Since the position where the groove processing is performed is the same in the four fins 8, there is an advantage that only one type of arrangement state of the protruding portion 23 at the edge of the sheath 2 to be used is sufficient.
[0038]
In FIG. 8, the cross section A is a cross section at a position where groove processing necessary for welding is performed on two fins 8 facing each other, and the cross section B is a cross section at a position where groove processing is not performed. The cross section C is a cross section at a position where the groove processing is performed on the two fins 8 which are in a positional relationship in the orthogonal direction with the fin 8 which is subjected to the groove processing in the cross section A. Since the welded portion between the tie rod 1 and the sheath 2 is not four in one cross section as shown in the cross section A of FIG. 7, there is an advantage that the influence of the bending deformation caused by the heat input of welding generated in the tie rod can be dispersed. is there.
[0039]
Next, the manufacturing procedure of the control rod according to the present invention will be described with reference to FIG. The sheath, which is a stainless steel plate material, is (1) cut from the material (2) perforations and projections, bent (3) with a press machine, and sent to the next process (10).
[0040]
On the other hand, the assembly of the control rod handle, drop speed limiter and other parts (6) (7) is assembled to both ends of the tie rod and welded (5) to produce the control rod skeleton. Then, the next process feed (10) is performed.
[0041]
Further, the neutron absorber is processed into a raw material (8), processed and assembled, and welded (9) to become a rod-shaped part. Enclose the neutron absorber in the sheath and assemble the blade of the control rod (10). Laser welding (11) is performed by combining the welding projection of the sheath and the groove portion of the tie rod to complete (12).
[0042]
Here, with reference to FIG. 10 and FIG. 11, a laser welding construction test performed on the tie rod having the cross-sectional shape shown in FIG. FIGS. 2B to 2E and other cross-sectional shapes of the tie rods are also described. In this construction test, welding was performed using a YAG laser welder. The construction conditions are shown in Table 1.
[0043]
[Table 1]
Figure 0003790956
[0044]
As shown in FIG. 10, the tie rod 1 and the sheath 2 are placed on the cradle 13, the sheath 2 is fixed by a fixing bracket 14, a heat drawing jig (not shown) is attached, and the tie rod 1 and the sheath 2 are welded. Determine the position. A laser torch 15 and a trailer gas nozzle 21 (described in FIG. 11) are attached to an arm extending from a laser oscillator 16 that can move on the rail 17.
[0045]
As shown in FIG. 11, the overlap margin 10 on the tip end side of the fin 8 of the tie rod 1 and the welding projection 23 of the sheath 2 are overlapped, temporary welding is performed, and the sheath 2 is attached with the fixing bracket 13 (described in FIG. 10). Fix it.
[0046]
The shield gas 20 is flowed toward the weld. N2 is used as the type of shield gas 20 in this construction test. However, since the purpose is to prevent oxidation of the welded portion, any gas may be used as long as it has an effect of preventing oxidation, such as He, Ar, and N2. . Further, the flow rate of the shielding gas 20 is used within a range where the desired effect can be obtained.
[0047]
Next, the laser torch 15 is moved to the welding start position, and the focus of the laser is adjusted. When the sheath 2 is a thin plate, if the output of the laser beam 19 is large and the welding speed is low, the penetration is deep, the bead width is large, the back bead is obtained, and complete welding of the welded portion is easily obtained. For this reason, although the overlap margin 10 of the fin 8 can be taken large, welding defects, such as a void, are easy to generate | occur | produce.
[0048]
Further, when the sheath 2 is a thick plate, the laser beam 19 is low in output, and if the welding speed is high, the penetration becomes shallow, and complete welding cannot be obtained unless the overlap margin 10 is reduced. Further, since the welding rod 20 is used in this construction test, when the supply amount of the welding rod 20 is increased, the heat input of welding is used for melting the welding rod, so that the penetration becomes shallow and the supply amount is small. The penetration deepens.
[0049]
The dimension of the overlap margin 10 that can be completely welded depends on the thickness of the sheath to be used, the output of the laser beam 19 and the welding speed, and the supply speed of the welding rod 20. Therefore, in order to reduce the deformation due to heat input by examining the range where the strength and welding quality of the welded part of the product specification can be obtained, among them, the one with a small laser output is selected and the dimension of the overlap margin 10 is determined. .
[0050]
The weld bead is in a high temperature state immediately after welding and easily oxidizes, and for the purpose of preventing this, the trailer gas 22 is blown from the trailer gas nozzle 21 to the weld bead immediately after welding to prevent oxidation of the surface. The method for selecting the type of the trailer gas 22 is the same as that for the shield gas 20, and N2 is used in this construction test.
[0051]
When the result of this construction test was compared with the result of TIG welding, the bead appearance and the cross-section gold layer were good and the welding quality was excellent, and a decrease in residual stress in the vicinity of the weld could be confirmed. In addition, it was confirmed that the deformation of the sheath and the blade as a whole were reduced in deformation, and the quality required for the control rod was satisfied.
[0052]
【The invention's effect】
As described above, according to the present invention, in applying the laser welding technique to the welded structure between the tie rod of the boiling water reactor control rod and the thin sheath, the position of the welded portion and the groove shape are optimized. As a result, a control rod capable of ensuring soundness to prevent the occurrence of crevice corrosion, improving welding quality and dimensional accuracy, and capable of stable core operation can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional and perspective view showing an embodiment of the present invention.
FIG. 2 is a perspective view showing an example of a groove-shaped convex shape according to the present invention.
FIG. 3 is a perspective view showing an example of a groove-shaped concave shape according to the present invention.
FIG. 4 is a perspective view showing an example in which the arrangement of the welded portion between the sheath and the tie rod according to the present invention is changed.
FIG. 5 is a perspective view showing another example in which the arrangement of the welded portion between the sheath and the tie rod according to the present invention is changed.
FIG. 6 is a front view showing an example of a groove processing portion of a tie rod according to the present invention.
FIG. 7 is a front view showing another example of a groove processing portion of a tie rod according to the present invention.
FIG. 8 is a front view showing still another example of a groove processing portion of a tie rod according to the present invention.
FIG. 9 is a process diagram showing a manufacturing procedure of a control rod according to the present invention.
FIG. 10 is an explanatory view of a laser welding execution test of a tie rod and a sheath in the present invention.
FIG. 11 is an explanatory view of details of a laser welding execution test of a tie rod and a sheath in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tie rod 2 Sheath 3 Neutron absorber 8 Fin 9 Welding part 10 Overlap 11 Tapered surface 12 Curved surface 23 Protruding part 24 for welding Arc surface 31 Uneven part

Claims (8)

断面十字形状を形成する4つのフィンを有する棒状のタイロッドと、前記フィンの先端部を断面U字形に形成されたシースの開口部でそれぞれ挟み、前記フィンの先端部と前記シースの開口部との重なり部を溶接して形成される沸騰水型原子炉用制御棒において、前記フィンと前記シースとの溶接部は、前記フィンと前記シースの重なり部に連なる前記フィンの端面の短手方向に凸面又は凹面が形成されていることを特徴とする沸騰水型原子炉用制御棒。A rod-shaped tie rod having four fins forming a cross-shaped cross section, and a tip portion of each fin sandwiched by an opening portion of a sheath formed in a U-shaped cross section, and a tip portion of the fin and an opening portion of the sheath In the boiling water nuclear reactor control rod formed by welding the overlapping portions of the fins, the welded portion of the fin and the sheath is in the short direction of the end surface of the fin that is continuous with the overlapping portion of the fin and the sheath. A control rod for a boiling water reactor, wherein a convex surface or a concave surface is formed. 断面十字形状を形成する4つのフィンを有する棒状のタイロッドと、前記フィンの先端部に断面U字形状の開口部を挟んで一定箇所が溶接される4つのシースとから構成され、立設して用いられる沸騰水型原子炉用制御棒において、前記フィンと前記シースとの溶接部は、前記4つのフィンの溶接箇所が、異なる水平位置で溶接されていることを特徴とする沸騰水型原子炉用制御棒。  It is composed of a rod-shaped tie rod having four fins that form a cross-shaped cross section, and four sheaths that are welded at certain locations across a U-shaped opening at the tip of the fin. In the control rod for boiling water reactor used, the welded portion between the fin and the sheath is a boiling water reactor characterized in that welded portions of the four fins are welded at different horizontal positions. Control rod for. 断面十字形状を形成する4つのフィンを有する棒状のタイロッドと、前記フィンの先端部に断面U字形状の開口部を挟んで一定箇所が溶接される4つのシースとから構成され、立設して用いられる沸騰水型原子炉用制御棒において、前記フィンと前記シースとの溶接部は、前記4つのフィンの溶接箇所が異なる水平位置で溶接され、かつ、前記4つのフィンの端面に凸部又は凹部からなる開先形状が形成されていることを特徴とする沸騰水型原子炉用制御棒。It is composed of a rod-shaped tie rod having four fins that form a cross-shaped cross section, and four sheaths that are welded at certain locations across a U-shaped opening at the tip of the fin. In the boiling water nuclear reactor control rod used, the welded portion between the fin and the sheath is welded at a horizontal position where the welded portions of the four fins are different from each other, and a convex portion or an end surface of the four fins is used. A control rod for a boiling water reactor, characterized in that a groove shape formed of a recess is formed. 前記フィンの先端部の開先形状は、フィン先端面が凸状又は凹状のテーパ面又は曲面を有してなる請求項1、2又は3に記載の沸騰水型原子炉用制御棒。Groove shape of the tip of the fin, a boiling water nuclear reactor control rod according to claim 1, 2 or 3 fins tip surface is a convex or concave tapered surface or a curved surface. 前記溶接部は、断面十字形状の180度離れたフィンの溶接部が同一の水平位置にあり、90度離れた隣接のフィンの溶接部が異なる水平位置にある請求項1〜4のうちいずれか1項に記載の沸騰水型原子炉用制御棒。  5. The welded portion according to claim 1, wherein the welded portions of the fins having a cross shape of 180 degrees apart are in the same horizontal position, and the welded portions of adjacent fins separated by 90 ° are in different horizontal positions. A control rod for a boiling water reactor according to item 1. 前記溶接部は、4つのフィンの溶接部が全て異なる水平位置にある請求項1〜4のうちいずれか1項に記載の沸騰水型原子炉用制御棒。  The said welding part is a control rod for boiling water reactors of any one of Claims 1-4 in which all the welding parts of four fins exist in a different horizontal position. 前記フィンの先端部は、長手方向の全長に溶接用の開先形状が形成されている請求項1〜6のうちいずれか1項に記載の沸騰水型原子炉用制御棒。  The boiling water reactor control rod according to any one of claims 1 to 6, wherein a tip shape of the fin is formed with a groove shape for welding at an entire length in a longitudinal direction. 前記フィンの先端部は、前記溶接部のみに溶接用の開先形状が形成されている請求項1〜6のうちいずれか1項に記載の沸騰水型原子炉用制御棒。  The control rod for boiling water reactor according to any one of claims 1 to 6, wherein a tip shape of the fin is formed with a groove shape for welding only in the welded portion.
JP2001053947A 2001-02-28 2001-02-28 Control rod for boiling water reactor Expired - Lifetime JP3790956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053947A JP3790956B2 (en) 2001-02-28 2001-02-28 Control rod for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053947A JP3790956B2 (en) 2001-02-28 2001-02-28 Control rod for boiling water reactor

Publications (2)

Publication Number Publication Date
JP2002257968A JP2002257968A (en) 2002-09-11
JP3790956B2 true JP3790956B2 (en) 2006-06-28

Family

ID=18914357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053947A Expired - Lifetime JP3790956B2 (en) 2001-02-28 2001-02-28 Control rod for boiling water reactor

Country Status (1)

Country Link
JP (1) JP3790956B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961154B2 (en) * 2006-03-23 2012-06-27 日立Geニュークリア・エナジー株式会社 Manufacturing method of control rod for boiling water reactor
JP4369493B2 (en) 2007-03-30 2009-11-18 日立Geニュークリア・エナジー株式会社 Control rod
JP5171151B2 (en) * 2007-08-07 2013-03-27 日立Geニュークリア・エナジー株式会社 Control rod for boiling water reactor
JP4997023B2 (en) * 2007-08-24 2012-08-08 日立Geニュークリア・エナジー株式会社 Control rod and manufacturing method thereof
JP5672195B2 (en) * 2011-08-22 2015-02-18 Jfeスチール株式会社 Steel chimney cylindrical steel skin repair method
JP2013092482A (en) * 2011-10-27 2013-05-16 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor control rod
JP5143277B2 (en) * 2011-12-28 2013-02-13 株式会社東芝 Reactor control rod
CN112404816B (en) * 2020-11-10 2022-06-17 中国核动力研究设计院 Cross-shaped workpiece assembling and welding device

Also Published As

Publication number Publication date
JP2002257968A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP5260268B2 (en) Manufacturing method of core shroud for nuclear power plant and nuclear power plant structure
EP0767718B1 (en) Method and apparatus for joining metal components
US20140079471A1 (en) Welding method and welded joint structure
Slobodyan Resistance, electron-and laser-beam welding of zirconium alloys for nuclear applications: a review
JP3790956B2 (en) Control rod for boiling water reactor
JP2011161459A (en) Method of welding material with high-corrosion resistance
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
US6735266B1 (en) Control rod for boiling water reactor and method for manufacturing the same
JP5153368B2 (en) T-type joint penetration welding method and penetration welded structure
JP6619232B2 (en) Welding method
US20120205351A1 (en) Stainless steel joining method
JP2002301582A (en) Thick plate welding method by combination of laser welding and tig welding or mig welding
JP5235332B2 (en) Laser welding method and welding apparatus for steel plate
CN112846500B (en) Welding deformation control method
JP5002234B2 (en) Reactor control rod and manufacturing method thereof
JP4961154B2 (en) Manufacturing method of control rod for boiling water reactor
JP2019084559A (en) Welding method and corner joint component
JP6954970B2 (en) Manufacturing method of parts
JP6409397B2 (en) Welded structure manufacturing method and welded structure
RU2451586C1 (en) Method of producing complex-shape axially symmetric welded aluminium structure
US4390777A (en) Fusion welding process
JPH09295149A (en) Method and equipment for tig welding of very thick narrow groove
JPH0517512B2 (en)
JP2015205286A (en) Method for production of welded structure, and the welded structure
JP2015031619A (en) Method of manufacturing control rod for reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3790956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term