JP3789892B2 - Method for fixing inorganic substance on silicon substrate - Google Patents

Method for fixing inorganic substance on silicon substrate Download PDF

Info

Publication number
JP3789892B2
JP3789892B2 JP2003026906A JP2003026906A JP3789892B2 JP 3789892 B2 JP3789892 B2 JP 3789892B2 JP 2003026906 A JP2003026906 A JP 2003026906A JP 2003026906 A JP2003026906 A JP 2003026906A JP 3789892 B2 JP3789892 B2 JP 3789892B2
Authority
JP
Japan
Prior art keywords
silicon substrate
inorganic substance
nanometer
fixing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003026906A
Other languages
Japanese (ja)
Other versions
JP2004237374A (en
Inventor
徹 米澤
邦仁 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003026906A priority Critical patent/JP3789892B2/en
Publication of JP2004237374A publication Critical patent/JP2004237374A/en
Application granted granted Critical
Publication of JP3789892B2 publication Critical patent/JP3789892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン基板上への無機物の固定方法に関するものである。
【0002】
【従来の技術】
従来、無機物をシリコン基板上に固定する方法としては、蒸着して無機物の薄膜を作成する方法、無機物を分散液にして塗布する方法などが考えられる。一般的に、シリコンテクノロジーでは、光リソグラフィーとともに蒸着などの物理的方法により、他の無機物の薄膜をシリコン表面上に作製する方法がとられる。
【0003】
【発明が解決しようとする課題】
しかしながら、無機物、特にナノメートルレベルの大きさの無機物を簡便に、化学的にシリコン表面上に固定させる、特に無機物をシリコン基板上へ一層形成することは簡単なことではない。
【0004】
本発明は、上記状況に鑑みて、無機物表面を化合物の単分子膜やそれらの分子のコート膜で修飾することにより、無機物のシリコン基板上への化学的固定化を可能とするシリコン基板上への無機物の固定方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〕シリコン基板上への無機物の固定方法において、アリルメルカプタンでコートしたナノメートルサイズの金粒子のn−デカン分散液に水素終端化したシリコン基板を導入し、アルゴン下で加熱還流し、前記シリコン基板上にナノメートルサイズの金粒子を化学的に固定することを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0007】
図1は本発明の実施例のシリコン基板上への無機物の固定方法を示すフローチャート、図2は本発明の実施例のシリコン基板上への無機物の固定方法を示す模式図である。
【0008】
(1)まず、図1のステップS1に示すように、末端にC=C二重結合を有し逆末端(もしくは中間部)に無機物と親和性のある部位をもつ化合物を合成する。
【0009】
(2)次に、ステップS2に示すように、その化合物を無機物の表面にコートする。
【0010】
(3)そして、ステップS3に示すように、表面に末端C=C結合を持つようになった無機物を溶媒中に分散させ加温する。
【0011】
(4)次に、ステップS4に示すように、その中にシリコン基板を導入する。例えば、ここではシリコン基板は水素終端化しておく。
【0012】
(5)次に、ステップS5に示すように、シリコン基板上に無機物を化学的に固定する。
【0013】
すなわち、シリコン表面は、図2(a)に示すように、水素終端化した状態から、図2(b)に示すように、熱などでラジカル化する。
【0014】
一方、図2(c)に示すような、2重結合を持つ化合物で覆われた無機物を、図2(d)に示すように、前記ラジカル化されたシリコン表面に、2重結合を持つ化合物で覆われた無機物を固定することができる。
【0015】
(実施例)
アリルメルカプタンでコートしたナノメートルサイズの金粒子のn−デカン分散液に水素終端化したシリコン基板を導入し、アルゴン下で加熱還流する。
【0016】
すると、分散液の色は消え、ナノメートルサイズの粒子が一部沈殿した。シリコン基板をAFM観察すると、図3に示すように、シリコン基板上にナノメートルサイズの粒子が吸着していた。このナノメートルサイズの粒子は、超音波照射によっても脱着せず、シリコン基板上に固定化されたことが分かる。
【0017】
良好な条件下においては、シリコン基板上に無機物を一層堆積させることが可能となる。
【0018】
このように、シリコン基板上に無機物の固定化が可能であることは、シリコン基板が容易に加工できることからも将来技術として期待できる。
【0019】
また、C=C二重結合の代わりに、MgXグループをもつグリニヤル型化合物を用いても同様の操作が可能である。
【0020】
以下、詳細に述べると、水素終端化したシリコン基板を入れ、酸素および水分のない条件にした溶液にマグネシウムブロマイドなどのグリニヤル部位を末端に持つ配位子(たとえばHS−R−MgBr)で保護された無機物を入れて、アルゴン下において加熱することにより、無機物はシリコン基板表面に固定化される。
【0021】
このとき、上述したような二重結合のみを用いた場合に比べ比較的低温(室温から120℃、好ましくは80℃から100℃)で無機物の固定を行うことができる。また、塩素終端化したシリコンも用いることができる。
【0022】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0023】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0024】
(A)シリコン基板上に容易に無機物を固定させることができる。
【0025】
(B)シリコン基板上に簡便に無機物層を一層形成することができる。
【0026】
(C)シリコン基板上にナノメートルサイズの粒子を固定することにより、ナノメートルサイズのデバイスをシリコン基板上に構築することができる。
【図面の簡単な説明】
【図1】 本発明の実施例のシリコン基板上への無機物の固定方法を示すフローチャートである。
【図2】 本発明の実施例のシリコン基板上への無機物の固定方法を示す模式図である。
【図3】 本発明の実施例を示すシリコン基板上にナノメートルサイズの粒子が吸着された様子を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for fixing an inorganic substance on a silicon substrate.
[0002]
[Prior art]
Conventionally, as a method for fixing an inorganic substance on a silicon substrate, a method of forming a thin film of an inorganic substance by vapor deposition, a method of applying an inorganic substance as a dispersion, and the like can be considered. In general, in silicon technology, a method of forming a thin film of another inorganic material on a silicon surface by a physical method such as vapor deposition together with photolithography is employed.
[0003]
[Problems to be solved by the invention]
However, it is not easy to easily form an inorganic substance, particularly an inorganic substance having a size of nanometer level, on a silicon substrate, particularly to form a single inorganic substance on a silicon substrate.
[0004]
In view of the above situation, the present invention is directed to a silicon substrate that enables chemical immobilization of an inorganic substance on a silicon substrate by modifying the inorganic surface with a monomolecular film of a compound or a coat film of those molecules. An object of the present invention is to provide a method for fixing an inorganic substance.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[ 1 ] In the method of fixing an inorganic substance on a silicon substrate, a hydrogen-terminated silicon substrate is introduced into an n-decane dispersion of nanometer-sized gold particles coated with allyl mercaptan, heated under reflux under argon, It is characterized in that nanometer-sized gold particles are chemically fixed on a silicon substrate.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0007]
FIG. 1 is a flowchart showing a method for fixing an inorganic substance on a silicon substrate according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a method for fixing an inorganic substance on a silicon substrate according to an embodiment of the present invention.
[0008]
(1) First, as shown in step S1 of FIG. 1, a compound having a C = C double bond at the terminal and a site having an affinity for an inorganic substance at the reverse terminal (or intermediate part) is synthesized.
[0009]
(2) Next, as shown in step S2, the compound is coated on the surface of the inorganic substance.
[0010]
(3) Then, as shown in step S3, the inorganic substance having a terminal C═C bond on the surface is dispersed in a solvent and heated.
[0011]
(4) Next, as shown in step S4, a silicon substrate is introduced therein. For example, here, the silicon substrate is hydrogen-terminated.
[0012]
(5) Next, as shown in step S5, an inorganic substance is chemically fixed on the silicon substrate.
[0013]
That is, the silicon surface is radicalized by heat or the like as shown in FIG. 2B from a hydrogen-terminated state as shown in FIG.
[0014]
On the other hand, as shown in FIG. 2C, an inorganic substance covered with a compound having a double bond is converted into a compound having a double bond on the radicalized silicon surface as shown in FIG. The inorganic substance covered with can be fixed.
[0015]
(Example)
A hydrogen-terminated silicon substrate is introduced into an n-decane dispersion of nanometer-sized gold particles coated with allyl mercaptan and heated to reflux under argon.
[0016]
Then, the color of the dispersion disappeared and some nanometer-sized particles precipitated. When the silicon substrate was observed with an AFM, nanometer-sized particles were adsorbed on the silicon substrate as shown in FIG. It can be seen that the nanometer-sized particles were not detached even by ultrasonic irradiation and were immobilized on the silicon substrate.
[0017]
Under favorable conditions, it becomes possible to deposit an inorganic substance on the silicon substrate.
[0018]
Thus, it is expected as a future technology that the inorganic substance can be fixed on the silicon substrate because the silicon substrate can be easily processed.
[0019]
The same operation can be performed by using a Grignard type compound having an MgX group instead of the C═C double bond.
[0020]
Hereinafter, in detail, a hydrogen-terminated silicon substrate is put in a solution free of oxygen and moisture, and protected with a ligand having a grinder site such as magnesium bromide (eg, HS-R-MgBr). The inorganic substance is fixed on the surface of the silicon substrate by adding the inorganic substance and heating it under argon.
[0021]
At this time, the inorganic substance can be fixed at a relatively low temperature (room temperature to 120 ° C., preferably 80 ° C. to 100 ° C.) as compared with the case where only the double bond as described above is used. Also, chlorine-terminated silicon can be used.
[0022]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0023]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0024]
(A) An inorganic substance can be easily fixed on a silicon substrate.
[0025]
(B) An inorganic layer can be easily formed on the silicon substrate.
[0026]
(C) Nanometer-sized devices can be built on a silicon substrate by immobilizing nanometer-sized particles on the silicon substrate.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for fixing an inorganic substance on a silicon substrate according to an embodiment of the present invention.
FIG. 2 is a schematic view showing a method for fixing an inorganic substance on a silicon substrate according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating a state in which nanometer-sized particles are adsorbed on a silicon substrate according to an embodiment of the present invention.

Claims (1)

(a)アリルメルカプタンでコートしたナノメートルサイズの金粒子のn−デカン分散液に水素終端化したシリコン基板を導入し、
(b)アルゴン下で加熱還流し、
(c)前記シリコン基板上にナノメートルサイズの金粒子を化学的に固定することを特徴とするシリコン基板上への無機物の固定方法。
(A) introducing a hydrogen-terminated silicon substrate into an n-decane dispersion of nanometer-sized gold particles coated with allyl mercaptan;
(B) heating to reflux under argon;
(C) A method for fixing an inorganic substance on a silicon substrate, wherein gold particles of nanometer size are chemically fixed on the silicon substrate.
JP2003026906A 2003-02-04 2003-02-04 Method for fixing inorganic substance on silicon substrate Expired - Fee Related JP3789892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026906A JP3789892B2 (en) 2003-02-04 2003-02-04 Method for fixing inorganic substance on silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026906A JP3789892B2 (en) 2003-02-04 2003-02-04 Method for fixing inorganic substance on silicon substrate

Publications (2)

Publication Number Publication Date
JP2004237374A JP2004237374A (en) 2004-08-26
JP3789892B2 true JP3789892B2 (en) 2006-06-28

Family

ID=32954780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026906A Expired - Fee Related JP3789892B2 (en) 2003-02-04 2003-02-04 Method for fixing inorganic substance on silicon substrate

Country Status (1)

Country Link
JP (1) JP3789892B2 (en)

Also Published As

Publication number Publication date
JP2004237374A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US7465605B2 (en) In-situ functionalization of carbon nanotubes
WO2018049948A1 (en) Method for linking in quantum dot film and quantum dot film
JP3420590B2 (en) Substrate flattening method, coated substrate and semiconductor device manufacturing method
JP4096330B2 (en) Core / shell structure having controlled voids inside, structure using it as a constituent element, and method for preparing them
US6624071B2 (en) Systems and method for fabrication of a thin film pattern
JP2007512412A5 (en)
JP2003523441A5 (en)
WO2005121019A1 (en) Method for manufacturing nanostructure and nanostructure
JP2004530027A5 (en)
JP2002060979A (en) Method for depositing indium zinc oxide film and indium tin oxide film patterned by micro-contact printing
KR20100132637A (en) A method for treating high hydrophobic surface of substrate
CN105057691B (en) The method for mixing the substrate surface deposition nanogold particle of self-assembled molecule layer modification
TW531556B (en) Process for joining two solid bodies and the resultant structural element
CN106415803A (en) System and methods for spin-on coating of self-assembled monolayers or periodic organosilicates on a substrate
JP2004523889A5 (en)
JP3789892B2 (en) Method for fixing inorganic substance on silicon substrate
US20150177139A1 (en) Sensor including flexible nanostructure and method for fabricating the same
JP2001019493A (en) Functional float glass and its production
KR101807459B1 (en) Self-healing method of self-healing polymer using defect-healed reduced graphene oxide heater
JPH08181133A (en) Dielectric material and manufacture of dielectric film
JP2001067963A (en) Manufacture of porous dielectric
KR20090093788A (en) Pattern forming method and method for manufacturing semiconductor device
JP2001214381A5 (en)
US20100101713A1 (en) Printing mold and manufacturing method thereof, and method of forming thin film pattern using the same
Chang et al. Preparation of superhydrophobic silica‐based films by using polyethylene glycol and tetraethoxysilane

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees