JP3788379B2 - Reformed fuel-fired gas turbine equipment and oil heating method thereof - Google Patents

Reformed fuel-fired gas turbine equipment and oil heating method thereof Download PDF

Info

Publication number
JP3788379B2
JP3788379B2 JP2002093554A JP2002093554A JP3788379B2 JP 3788379 B2 JP3788379 B2 JP 3788379B2 JP 2002093554 A JP2002093554 A JP 2002093554A JP 2002093554 A JP2002093554 A JP 2002093554A JP 3788379 B2 JP3788379 B2 JP 3788379B2
Authority
JP
Japan
Prior art keywords
heavy oil
gas turbine
pipe
reformed fuel
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002093554A
Other languages
Japanese (ja)
Other versions
JP2003286865A (en
Inventor
真一 稲毛
信幸 穂刈
明典 林
宏和 高橋
浩美 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002093554A priority Critical patent/JP3788379B2/en
Publication of JP2003286865A publication Critical patent/JP2003286865A/en
Application granted granted Critical
Publication of JP3788379B2 publication Critical patent/JP3788379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、改質燃料焚きガスタービン設備及びその油加熱方法に関わる。
【0002】
【従来の技術】
従来、重質油を昇温昇圧し、別途製造した超臨界水と混合させることにより前記重質油を改質及び軽質化した改質燃料にて運用されるコンバインドガスタービン設備がある。
【0003】
【発明が解決しようとする課題】
重質油を改質した燃料焚きのコンバインドガスタービン設備では、重質油の改質には、重質油を350℃程度に昇温する必要がある。従来の方式では、重質油を直接、コンバインドガスタービン下流に設置した排熱回収ボイラーにて昇温していた。しかし、重質油中には硫黄,バナジウム等の腐食成分が含まれているために、重質油側伝熱管を腐食/破損させる可能性がある。排熱回収ボイラー内には酸素を含む550℃程度の排ガスが流れており、伝熱管より重質油がリークした場合には火災となる可能性がある。
【0004】
本発明の目的は、昇温昇圧された重質油がリークしても火災を防ぎ、信頼性を向上した改質燃料焚きガスタービン設備及びその油加熱方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、重質油を昇温昇圧し、昇温昇圧された前記重質油を改質及び軽質化した改質燃料にて運用されるガスタービンを備えた改質燃料焚きガスタービン設備において、前記ガスタービンの下流に設置された排ガスが流れる排熱回収ボイラー内に二重管構造の伝熱管を設置し、その二重管の内側管に該重質油を供給するよう構成し、前記重質油が前記二重管の内側管から前記排出ボイラー内にリークすることによる火災を防ぐ手段を設け、
該手段として該二重管の外側管に非燃焼性の流体を供給するよう構成したことを特徴とする。
【0006】
【発明の実施の形態】
ガスタービンの下流に設置した排熱回収ボイラー内に二重管構造の伝熱管を設置し、その二重管の内側管に該重質油を供給し、該二重管の外側管に非燃焼性の流体を供給するよう構成したことにより、信頼性を向上することが可能となる。
【0007】
排熱回収ボイラーにて重質油を直接加熱するのではなく、ガスタービンの下流に設置した排熱回収ボイラー内に二重管構造からなる伝熱管を設置し、かつ二重管の内側管に重質油を、外側管には非燃焼性の流体を供給することにより、非燃焼性の流体を介して排熱回収ボイラー中を流れる排ガスと前記重質油と熱交換することにより達成できる。このような構成にすることにより、重質油が内側伝熱管よりリークしても外側管を流れる流体と混合するため、火災が生じることはない。
【0008】
前記二重管の外側管を流れる非燃焼性の流体として好ましくは上記排熱回収ボイラー内において蒸気タービン用蒸気を生成する水を用いることである。二重管の外側管を流れる水も排ガスと熱交換をしている。その熱を蒸気タービン用蒸気により熱回収することにより、全体の熱効率の低下を低減できる。
【0009】
重質油中には、硫黄,バナジウム等の金属に対する腐食成分が含まれる。特に、高温高圧条件下では上記熱交換器の伝熱管の腐食作用は著しくなるものと考える。その対策には、耐腐食性の高い材料を用いることであるが、同時にコストを増大させることにも繋がる。そのため、二重管の内側伝熱管の母材には比較的安価な材料を用い、重質油に直接接触する内部に耐腐食性に優れる材料を溶射或いは溶接することにより、コストの増大を伴うことなく、耐腐食性に優れる伝熱管及び熱交換器の信頼性を向上できる。
【0010】
二重管の内伝熱管内に圧力センサーを設置することにより、伝熱管内蒸気の圧力を計測する。油が伝熱管よりリークした場合には、外側伝熱管内部圧力は増加するために、圧力を通じて外側伝熱管への重質油のリークを確認できる。リーク時には、内側管への重質油供給を停止することにより、蒸気への油混入を最低限に抑制する。
【0011】
重質油を昇温昇圧し、別途製造した超臨界水と混合させることにより前記重質油を改質及び軽質化した改質燃料にて運用されるコンバインドガスタービンについて図3に示す。
【0012】
図3で、1は重質油タンク、2は重質油加圧ポンプ、3は重質油供給系統、4は重質油熱交換用伝熱管、5は水タンク、6は水加圧ポンプ、7は水供給系統、8は水熱交換用伝熱管、9は排熱回収ボイラー、10はガスタービン、11は改質器、12はコンデンサ、13は改質燃料供給系統、14は減圧弁、15は燃焼器、16は重質油、17は水、18は排ガス、19は改質燃料、20は蒸気タービン用の蒸気、21は蒸気タービン、22は発電機である。
【0013】
重質油タンク1より供給された重質油16は、加圧ポンプ2により25Mpa程度に昇圧され、排熱回収ボイラー9内に設置された伝熱管4にて550℃程度の排ガスと熱交換することにより、350℃程度に昇温される。同様に水タンク5より供給された水17は、加圧ポンプ6により25Mpa程度に昇圧され、排熱回収ボイラー9内に設置された伝熱管8にて550℃程度の排ガスと熱交換することにより、450℃程度に昇温される。それぞれ昇温昇圧された重質油16及び超臨界状態の水17を改質器11にて混合し、改質燃料19を製造する。前記改質燃料19を減圧弁14で減圧し、燃焼器15に供給することにより、ガスタービン10を駆動する。さらに、排熱回収ボイラー9にて生成された蒸気20により蒸気タービン21を駆動する。
【0014】
重質油を改質した燃料焚きのコンバインドガスタービン設備では、重質油の改質には、重質油を350℃程度に昇温する必要がある。重質油を直接、コンバインドガスタービン下流に設置した排熱回収ボイラーにて昇温すると、重質油中には硫黄,バナジウム等の腐食成分が含まれているために、重質油側伝熱管を腐食/破損させる可能性がある。また、排熱回収ボイラー内には酸素を含む550℃程度の排ガスが流れており、伝熱管より重質油がリークした場合には火災となる可能性がある。
【0015】
以下、図示した実施例を詳細に説明する。図1には、本発明の第一実施例を示す。図1で、1は重質油タンク、2は重質油加圧ポンプ、3は重質油供給系統、5は水タンク、6は水加圧ポンプ、7は水供給系統、8は水熱交換用伝熱管、9は排熱回収ボイラー、10はガスタービン、11は改質器、12はコンデンサ、13は改質燃料供給系統、14は減圧弁、15は燃焼器、16は重質油、17は水、18は排ガス、19は改質燃料、20は蒸気タービン用の蒸気、21は蒸気タービン、22は発電機、23は重質油と蒸気の二重管からなる熱交換器である。
【0016】
さらに、図2には、前記熱交換器23の構造を示す。図2で、16は重質油、18は排ガス、20は蒸気タービン用の蒸気、23は重質油と蒸気の二重管からなる熱交換器、24は重質油の伝熱管、25は蒸気の伝熱管、26は蒸気伝熱管のヘッダーである。
【0017】
ガスタービン10下流に設置された排熱回収ボイラー9では、蒸気タービン21を駆動するための蒸気20を伝熱管25を介して排ガス18と熱交換することにより製造する。また、タンク1より供給された重質油16は、加圧ポンプ2により25Mpa程度に昇圧された後、上記伝熱管25内に設置された伝熱管24を通じて伝熱管25周囲の蒸気と熱交換することにより350℃程度に昇温される。さらに、水タンク5より供給された水17は加圧ポンプ6により25Mpa程度に昇圧され、排熱回収ボイラー9内に設置された伝熱管8を介して550℃程度の排ガスと熱交換することにより、450℃程度に昇温される。それぞれ昇温昇圧された重質油16及び超臨界水17を改質器11にて混合し、改質燃料19を製造する。
【0018】
超臨界水は化学的に活性が高いために、重質油中の分子量が大きい成分を、容易により分子量の小さい成分へ分解することができる。そのため、大分子量成分の含有率に大きく依存する燃焼安定性や、燃料の粘度を改質することが容易に行える。同時に、超臨界水は油と分子レベルでも容易に混合する性質を持っているために、均一な状態で重質油を改質することができる。さらには、前記改質燃料は排熱回収ボイラー9において一種の熱回収をして、その熱をガスタービン側に戻しているために、コンバインドサイクル全体の熱効率も向上させることができる。
【0019】
このようにして製造した前記改質燃料19を減圧弁14で減圧し、燃焼器15に供給することにより、ガスタービン10を駆動する。さらに、排熱回収ボイラー9にて生成された蒸気20により蒸気タービン21を駆動する。蒸気20は、コンデンサ12において凝縮され、再度排熱回収ボイラーへ戻される。
【0020】
次に、第二実施例として重質油/蒸気の二重管型熱交換器の伝熱管構造を図4に示す。図4で、16は重質油、20は蒸気タービン用の蒸気、24は重油加熱用の伝熱管、25は蒸気加熱用の伝熱管、27は耐腐食性に優れる材料である。重質油中には、硫黄,バナジウム等の金属を腐食させる成分が含まれる。その腐食を抑制するには、SUSなどの中でも、特に耐腐食性の強いSUS316やSUS310Sなどを伝熱管に適用することが望ましい。
【0021】
一方、蒸気/水が混在すると、前記SUS系の材料には、応力腐食割れが生じる。そのため、蒸気/水に接する伝熱管の母材は、炭素鋼などの蒸気による応力腐食割れ等を生じない材料を用いることが望ましい。そのため、伝熱管24には炭素鋼を用い、その内面にはSUS系のように耐腐食性に優れる材料27を、内側を流れる重質油が帯の間隙から進入しないように、帯状に設置しながら溶接により固定する。このような構造を伝熱管24に適用することにより、外部の蒸気20による応力腐食割れ,内部の重質油16中に含まれる硫黄分等による腐食の発生を抑制できる。
【0022】
次に、本発明の第三実施例を図5に示す。図5で、16は重質油、20は蒸気タービン用の蒸気、24は伝熱管、28は圧力センサー、29は圧力計測装置である。圧力センサー28により伝熱管25内の蒸気圧力が測定される。計測された圧力は、圧力計測装置29により計測される。圧力のトレンドは、ガスタービン負荷が一定であれば変化しない。蒸気そのものの圧力は通常定格条件で4Mpa程度である。
【0023】
それに対して、蒸気タービンに用いる蒸気圧力に加圧した重質油は25Mpaであり、蒸気圧力よりも6倍程度の大きさである。そのために、伝熱管にリークがある場合には伝熱管内の圧力は図6のように増加する。これにより、圧力を計測することにより重質油のリークを検知することができる。リーク検知と同時に、熱交換器への重質油供給を遮断することにより、蒸気への重質油混入を最低限に留めることができる。
【0024】
以上のように、本発明の第一実施例によれば、重質油加熱伝熱管を二重管構造にし、内側管に重質油、外側管に蒸気を供給することにより、重質油を蒸気を通じて間接的に加熱できる。そのため、内側伝熱管より重質油がリークした場合でも、外側伝熱管内部は蒸気であることにより、火災が発生することはない。
【0025】
さらに、本発明の第二実施例によれば、重質油加熱用熱交換器の伝熱管において、母材として炭素鋼等の蒸気/水共存雰囲気による応力腐食割れに強い材料を用い、その内側にはSUSなどの耐腐食性に優れる材料を用いることができる。このような構造により、外側を流れる蒸気による応力腐食割れ,内側の重質油の硫黄分等による腐食が発生するのを防止できる。
【0026】
本発明の第三実施例によれば、重質油加熱用熱交換器伝熱管内に圧力センサーを設けて監視し、異常な圧力増加が認められた場合には熱交換器への重質油供給を停止することにより、重質油が伝熱管からリークし、蒸気に混入するのを最小限に留めることができる。
【0027】
【発明の効果】
本発明によると、昇温昇圧された重質油がリークしても火災を防ぎ、信頼性を向上した改質燃料焚きガスタービン設備及びその油加熱方法を提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明を用いた重質油改質燃料で運用するコンバインドガスタービン設備の実施例を示した図。
【図2】本発明を用いた二重管型重質油熱交換器構造を示す図。
【図3】重質油改質燃料で運用するコンバインドガスタービン設備の実施例を示した図。
【図4】本発明を用いた重質油改質燃料で運用するコンバインドガスタービンの二重管型重質油加熱用熱交換器の伝熱管構造を第二実施例として示す図。
【図5】本発明を用いた重質油改質燃料で運用するコンバインドガスタービンの第四実施例を示す図。
【図6】重質油のリークがあった場合の、伝熱管内の圧力変化。
【符号の説明】
1…重質油タンク、2…重質油加圧ポンプ、3…重質油供給系統、4…重質油熱交換用伝熱管、5…水タンク、6…水加圧ポンプ、7…水供給系統、8…水熱交換用伝熱管、9…排熱回収ボイラー、10…ガスタービン、11…改質器、12…コンデンサ、13…改質燃料供給系統、14…減圧弁、15…燃焼器、16…重質油、17…水、18…排ガス、19…改質燃料、20…蒸気タービン用の蒸気、21…蒸気タービン、22…発電機、23…熱交換器、24,25…伝熱管、26…ヘッダー、27…材料、28,33…圧力センサー、29,34…圧力計測装置、30…低温蒸気或いは凝縮水の出口、31…高温蒸気用キャビティ、32…低温蒸気或いは凝縮水のキャビティ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reformed fuel-fired gas turbine facility and an oil heating method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a combined gas turbine facility that is operated with a reformed fuel obtained by reforming and reducing the weight of heavy oil by raising the temperature and pressure of heavy oil and mixing it with supercritical water produced separately.
[0003]
[Problems to be solved by the invention]
In a fuel-fired combined gas turbine facility that reforms heavy oil, it is necessary to raise the temperature of the heavy oil to about 350 ° C. in order to reform the heavy oil. In the conventional system, the temperature of heavy oil is directly increased by an exhaust heat recovery boiler installed downstream of the combined gas turbine. However, since heavy oil contains corrosive components such as sulfur and vanadium, the heavy oil-side heat transfer tube may be corroded / damaged. An exhaust gas of about 550 ° C. containing oxygen flows in the exhaust heat recovery boiler, and if heavy oil leaks from the heat transfer tube, a fire may occur.
[0004]
An object of the present invention is to provide a reformed fuel-fired gas turbine facility and an oil heating method thereof that prevent fire even if heavy oil whose temperature has been raised is increased and leak, and that has improved reliability.
[0005]
[Means for Solving the Problems]
The present invention relates to a reformed fuel-fired gas turbine facility including a gas turbine that is operated with a reformed fuel obtained by heating and pressurizing heavy oil and reforming and lightening the heavy oil that has been heated and pressurized. A heat transfer pipe having a double pipe structure is installed in an exhaust heat recovery boiler through which exhaust gas installed downstream of the gas turbine flows , and the heavy oil is supplied to the inner pipe of the double pipe , A means for preventing fire due to leakage of heavy oil from the inner pipe of the double pipe into the discharge boiler is provided,
The means is characterized in that a non-combustible fluid is supplied to the outer pipe of the double pipe.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
A heat transfer pipe with a double pipe structure is installed in the exhaust heat recovery boiler installed downstream of the gas turbine, the heavy oil is supplied to the inner pipe of the double pipe, and the outer pipe of the double pipe is not burned Therefore, it is possible to improve the reliability.
[0007]
Rather than directly heating heavy oil with an exhaust heat recovery boiler, a heat transfer pipe with a double pipe structure is installed in the exhaust heat recovery boiler installed downstream of the gas turbine, and the inner pipe of the double pipe is installed. Heavy oil can be achieved by supplying a non-combustible fluid to the outer tube and exchanging heat with the exhaust gas flowing in the exhaust heat recovery boiler and the heavy oil via the non-combustible fluid. With such a configuration, even if heavy oil leaks from the inner heat transfer tube, it mixes with the fluid flowing through the outer tube, so that a fire does not occur.
[0008]
As the non-combustible fluid flowing through the outer pipe of the double pipe, water that generates steam for steam turbine in the exhaust heat recovery boiler is preferably used. Water flowing through the outer pipe of the double pipe also exchanges heat with the exhaust gas. By recovering the heat with steam for the steam turbine, it is possible to reduce a decrease in the overall thermal efficiency.
[0009]
Heavy oil contains corrosive components for metals such as sulfur and vanadium. In particular, the corrosive action of the heat exchanger tube of the heat exchanger is considered to be significant under high temperature and high pressure conditions. The countermeasure is to use a material having high corrosion resistance, but at the same time leads to an increase in cost. For this reason, a relatively inexpensive material is used as the base material of the inner heat transfer tube of the double tube, and the cost is increased by thermally spraying or welding a material having excellent corrosion resistance to the inside that directly contacts heavy oil. Therefore, it is possible to improve the reliability of the heat transfer tube and the heat exchanger having excellent corrosion resistance.
[0010]
The pressure of the steam in the heat transfer tube is measured by installing a pressure sensor in the heat transfer tube of the double tube. When the oil leaks from the heat transfer tube, the internal pressure of the outer heat transfer tube increases, so that leakage of heavy oil to the outer heat transfer tube can be confirmed through the pressure. In the event of a leak, the heavy oil supply to the inner pipe is stopped to minimize the entry of oil into the steam.
[0011]
FIG. 3 shows a combined gas turbine operated with a reformed fuel obtained by reforming and reducing the weight of heavy oil by raising the temperature of the heavy oil and mixing it with supercritical water produced separately.
[0012]
In FIG. 3, 1 is a heavy oil tank, 2 is a heavy oil pressure pump, 3 is a heavy oil supply system, 4 is a heat transfer pipe for heavy oil heat exchange, 5 is a water tank, and 6 is a water pressure pump. , 7 is a water supply system, 8 is a heat transfer pipe for water heat exchange, 9 is an exhaust heat recovery boiler, 10 is a gas turbine, 11 is a reformer, 12 is a condenser, 13 is a reformed fuel supply system, and 14 is a pressure reducing valve. , 15 is a combustor, 16 is heavy oil, 17 is water, 18 is exhaust gas, 19 is reformed fuel, 20 is steam for a steam turbine, 21 is a steam turbine, and 22 is a generator.
[0013]
The heavy oil 16 supplied from the heavy oil tank 1 is pressurized to about 25 Mpa by the pressurizing pump 2 and exchanges heat with the exhaust gas at about 550 ° C. in the heat transfer tube 4 installed in the exhaust heat recovery boiler 9. As a result, the temperature is raised to about 350 ° C. Similarly, the water 17 supplied from the water tank 5 is boosted to about 25 Mpa by the pressurizing pump 6, and is heat-exchanged with the exhaust gas at about 550 ° C. in the heat transfer tube 8 installed in the exhaust heat recovery boiler 9. The temperature is raised to about 450 ° C. The reformed fuel 19 is produced by mixing the heavy oil 16 and the supercritical water 17 that have been heated and pressurized, respectively, in the reformer 11. The reformed fuel 19 is decompressed by the decompression valve 14 and supplied to the combustor 15 to drive the gas turbine 10. Further, the steam turbine 21 is driven by the steam 20 generated in the exhaust heat recovery boiler 9.
[0014]
In a fuel-fired combined gas turbine facility that reforms heavy oil, it is necessary to raise the temperature of the heavy oil to about 350 ° C. in order to reform the heavy oil. When the temperature of heavy oil is increased directly in the exhaust heat recovery boiler installed downstream of the combined gas turbine, the heavy oil side heat transfer tube is contained in the heavy oil because it contains corrosive components such as sulfur and vanadium. May corrode / break. Further, exhaust gas at about 550 ° C. containing oxygen flows in the exhaust heat recovery boiler, and if heavy oil leaks from the heat transfer tube, there is a possibility of a fire.
[0015]
Hereinafter, the illustrated embodiment will be described in detail. FIG. 1 shows a first embodiment of the present invention. In FIG. 1, 1 is a heavy oil tank, 2 is a heavy oil pressure pump, 3 is a heavy oil supply system, 5 is a water tank, 6 is a water pressure pump, 7 is a water supply system, and 8 is water heat. Replacement heat transfer tube, 9 is an exhaust heat recovery boiler, 10 is a gas turbine, 11 is a reformer, 12 is a condenser, 13 is a reformed fuel supply system, 14 is a pressure reducing valve, 15 is a combustor, 16 is heavy oil , 17 is water, 18 is exhaust gas, 19 is reformed fuel, 20 is steam for steam turbine, 21 is a steam turbine, 22 is a generator, and 23 is a heat exchanger composed of a double pipe of heavy oil and steam. is there.
[0016]
Further, FIG. 2 shows the structure of the heat exchanger 23. In FIG. 2, 16 is heavy oil, 18 is exhaust gas, 20 is steam for steam turbine, 23 is a heat exchanger composed of a double pipe of heavy oil and steam, 24 is a heat transfer pipe for heavy oil, and 25 is A steam heat transfer tube 26 is a header of the steam heat transfer tube.
[0017]
In the exhaust heat recovery boiler 9 installed downstream of the gas turbine 10, the steam 20 for driving the steam turbine 21 is manufactured by exchanging heat with the exhaust gas 18 via the heat transfer pipe 25. The heavy oil 16 supplied from the tank 1 is pressurized to about 25 MPa by the pressurizing pump 2 and then exchanges heat with the steam around the heat transfer tube 25 through the heat transfer tube 24 installed in the heat transfer tube 25. As a result, the temperature is raised to about 350 ° C. Further, the water 17 supplied from the water tank 5 is pressurized to about 25 Mpa by the pressurizing pump 6, and exchanges heat with the exhaust gas at about 550 ° C. through the heat transfer pipe 8 installed in the exhaust heat recovery boiler 9. The temperature is raised to about 450 ° C. The reformed fuel 19 is produced by mixing the heavy oil 16 and the supercritical water 17 that have been heated and raised, respectively, in the reformer 11.
[0018]
Since supercritical water is chemically highly active, a component having a high molecular weight in heavy oil can be easily decomposed into a component having a low molecular weight. Therefore, it is possible to easily improve the combustion stability that greatly depends on the content of the large molecular weight component and the viscosity of the fuel. At the same time, supercritical water has the property of easily mixing with oil even at the molecular level, so that heavy oil can be reformed in a uniform state. Furthermore, since the reformed fuel recovers a kind of heat in the exhaust heat recovery boiler 9 and returns the heat to the gas turbine side, the thermal efficiency of the entire combined cycle can be improved.
[0019]
The reformed fuel 19 produced in this manner is decompressed by the pressure reducing valve 14 and supplied to the combustor 15 to drive the gas turbine 10. Further, the steam turbine 21 is driven by the steam 20 generated in the exhaust heat recovery boiler 9. The steam 20 is condensed in the condenser 12 and returned to the exhaust heat recovery boiler again.
[0020]
Next, FIG. 4 shows a heat transfer tube structure of a heavy oil / steam double tube heat exchanger as a second embodiment. In FIG. 4, 16 is heavy oil, 20 is steam for steam turbine, 24 is a heat transfer tube for heating heavy oil, 25 is a heat transfer tube for heating steam, and 27 is a material excellent in corrosion resistance. Heavy oil contains components that corrode metals such as sulfur and vanadium. In order to suppress the corrosion, among SUS and the like, it is desirable to apply SUS316, SUS310S, etc., which have particularly strong corrosion resistance, to the heat transfer tube.
[0021]
On the other hand, when steam / water is mixed, stress corrosion cracking occurs in the SUS material. Therefore, it is desirable to use a material that does not cause stress corrosion cracking due to steam, such as carbon steel, as the base material of the heat transfer tube in contact with steam / water. For this reason, carbon steel is used for the heat transfer tube 24, and a material 27 having excellent corrosion resistance such as SUS is used on the inner surface of the heat transfer tube 24 so that heavy oil flowing inside does not enter from the gap of the belt. Fix by welding. By applying such a structure to the heat transfer tube 24, it is possible to suppress the occurrence of stress corrosion cracking due to the external steam 20 and corrosion due to sulfur contained in the internal heavy oil 16.
[0022]
Next, a third embodiment of the present invention is shown in FIG. In FIG. 5, 16 is heavy oil, 20 is steam for steam turbine, 24 is a heat transfer tube, 28 is a pressure sensor, and 29 is a pressure measuring device. The vapor pressure in the heat transfer tube 25 is measured by the pressure sensor 28. The measured pressure is measured by the pressure measuring device 29. The pressure trend does not change if the gas turbine load is constant. The pressure of the steam itself is usually about 4 MPa at the rated conditions.
[0023]
On the other hand, the heavy oil pressurized to the steam pressure used for the steam turbine is 25 Mpa, which is about six times larger than the steam pressure. Therefore, when there is a leak in the heat transfer tube, the pressure in the heat transfer tube increases as shown in FIG. Thereby, the leak of heavy oil is detectable by measuring a pressure. Simultaneously with the leak detection, the heavy oil supply to the heat exchanger is shut off, so that the mixing of the heavy oil into the steam can be minimized.
[0024]
As described above, according to the first embodiment of the present invention, the heavy oil heating heat transfer tube has a double tube structure, and the heavy oil is supplied to the inner tube by supplying heavy oil and the outer tube with steam. Can be heated indirectly through steam. Therefore, even when heavy oil leaks from the inner heat transfer tube, the inside of the outer heat transfer tube is steam, so that no fire occurs.
[0025]
Further, according to the second embodiment of the present invention, in the heat transfer tube of the heavy oil heating heat exchanger, a material resistant to stress corrosion cracking due to steam / water coexistence atmosphere such as carbon steel is used as a base material, A material having excellent corrosion resistance, such as SUS, can be used. With such a structure, it is possible to prevent the occurrence of stress corrosion cracking due to steam flowing outside and corrosion due to the sulfur content of the heavy oil inside.
[0026]
According to the third embodiment of the present invention, a heavy oil heating heat exchanger heat exchanger tube is provided with a pressure sensor for monitoring, and if an abnormal pressure increase is observed, the heavy oil to the heat exchanger is By stopping the supply, it is possible to minimize the leakage of heavy oil from the heat transfer tube and mixing with the steam.
[0027]
【The invention's effect】
According to the present invention, there is an effect that it is possible to provide a reformed fuel-fired gas turbine facility and an oil heating method thereof that can prevent a fire even if heavy oil whose temperature has been increased is leaked and that has improved reliability.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a combined gas turbine facility operated with heavy oil reforming fuel using the present invention.
FIG. 2 is a diagram showing a double-pipe heavy oil heat exchanger structure using the present invention.
FIG. 3 is a diagram showing an embodiment of a combined gas turbine facility operated with heavy oil reformed fuel.
FIG. 4 is a view showing a heat transfer tube structure of a double-tube heavy oil heating heat exchanger of a combined gas turbine operated with heavy oil reformed fuel using the present invention as a second embodiment.
FIG. 5 is a diagram showing a fourth embodiment of a combined gas turbine operated with heavy oil reformed fuel using the present invention.
FIG. 6 shows the pressure change in the heat transfer tube when heavy oil leaks.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heavy oil tank, 2 ... Heavy oil pressurization pump, 3 ... Heavy oil supply system, 4 ... Heat transfer pipe for heavy oil heat exchange, 5 ... Water tank, 6 ... Water pressurization pump, 7 ... Water Supply system, 8 ... Heat transfer tube for water heat exchange, 9 ... Waste heat recovery boiler, 10 ... Gas turbine, 11 ... Reformer, 12 ... Condenser, 13 ... Reformed fuel supply system, 14 ... Pressure reducing valve, 15 ... Combustion 16 ... heavy oil, 17 ... water, 18 ... exhaust gas, 19 ... reformed fuel, 20 ... steam for steam turbine, 21 ... steam turbine, 22 ... generator, 23 ... heat exchanger, 24, 25 ... Heat transfer tube, 26 ... header, 27 ... material, 28, 33 ... pressure sensor, 29, 34 ... pressure measuring device, 30 ... outlet for low temperature steam or condensed water, 31 ... cavity for high temperature steam, 32 ... low temperature steam or condensed water Cavity.

Claims (6)

重質油を昇温昇圧し、昇温昇圧された前記重質油を改質及び軽質化した改質燃料にて運用されるガスタービンを備えた改質燃料焚きガスタービン設備において、
前記ガスタービンの下流に設置された排ガスが流れる排熱回収ボイラー内に二重管構造の伝熱管を設置し、その二重管の内側管に昇温昇圧された該重質油を供給するよう構成し前記重質油が前記二重管の内側管から前記排熱回収ボイラー内にリークすることによる火災を防ぐ手段を設け、
該手段として、該二重管の外側管に非燃焼性の流体を供給するよう構成したことを特徴とする改質燃料焚きガスタービン設備。
The heavy oil was heated boost, the reformed-fuel-burning gas turbine plant equipped with a gas turbine is operated with the heavy oil heated boosted by reforming and lightening the reformed fuel,
A heat transfer pipe having a double-pipe structure is installed in an exhaust heat recovery boiler in which exhaust gas installed downstream of the gas turbine flows , and the heavy oil that has been heated and pressurized is supplied to the inner pipe of the double pipe. configured, a means to prevent fire caused by the heavy oil from leaking to the exhaust heat recovery boiler from inner tube of the double tube,
As the means, a reformed fuel-fired gas turbine equipment is configured to supply a non-combustible fluid to the outer pipe of the double pipe.
重質油を昇温昇圧し、昇温昇圧された前記重質油を改質及び軽質化した改質燃料にて運用されるガスタービンを備えた改質燃料焚きガスタービン設備において、
前記ガスタービンの下流に設置された排ガスが流れる排熱回収ボイラー内に二重管構造の伝熱管を設置し、その二重管の内側管に昇温昇圧された該重質油を供給するよう構成し前記重質油が前記二重管の内側管から前記排熱回収ボイラー内にリークすることによる火災を防ぐ手段を設け、
該手段として、該二重管の外側管に非燃焼性の流体を供給するよう構成し、該非燃焼性の流体を介して排熱回収ボイラー中を流れる排ガスと前記重質油とを熱交換することを特徴とする改質燃料焚きガスタービン設備。
The heavy oil was heated boost, the reformed-fuel-burning gas turbine plant equipped with a gas turbine is operated with the heavy oil heated boosted by reforming and lightening the reformed fuel,
A heat transfer pipe having a double-pipe structure is installed in an exhaust heat recovery boiler in which exhaust gas installed downstream of the gas turbine flows , and the heavy oil that has been heated and pressurized is supplied to the inner pipe of the double pipe. configured, a means to prevent fire caused by the heavy oil from leaking to the exhaust heat recovery boiler from inner tube of the double tube,
As this means, a non-combustible fluid is supplied to the outer tube of the double tube, and heat exchange is performed between the exhaust gas flowing in the exhaust heat recovery boiler and the heavy oil via the non-combustible fluid. A reformed fuel-fired gas turbine facility.
請求項2に記載の改質燃料焚きガスタービン設備において、前記二重管の外側管を流れる非燃焼性の流体として、該排熱回収ボイラー内で蒸気タービン用蒸気を生成する水を用いることを特徴とする改質燃料焚きガスタービン設備。  The reformed fuel-fired gas turbine equipment according to claim 2, wherein water that generates steam for steam turbine in the exhaust heat recovery boiler is used as the non-combustible fluid flowing through the outer pipe of the double pipe. A reformed fuel-fired gas turbine facility. 請求項2又は請求項3記載の改質燃料焚きガスタービン設備において、前記二重管の内側管内面に耐腐食性に優れる金属を溶射したことを特徴とする改質燃料焚きガスタービン設備。  4. The reformed fuel-fired gas turbine equipment according to claim 2, wherein a metal having excellent corrosion resistance is sprayed on the inner surface of the inner pipe of the double pipe. 請求項2〜請求項4の何れかに記載の改質燃料焚きガスタービン設備において、前記二重管の内外管各部の圧力変化を測定し、圧力に異常が認められた場合に、該二重管への重質油供給を停止することを特徴とする改質燃料焚きガスタービン設備。  In the reformed fuel-fired gas turbine equipment according to any one of claims 2 to 4, when a pressure change in each part of the inner and outer pipes of the double pipe is measured and an abnormality is recognized in the pressure, the double pipe A reformed fuel-fired gas turbine facility characterized in that the heavy oil supply to the pipe is stopped. 重質油を昇温昇圧し、昇温昇圧された前記重質油を改質及び軽質化した改質燃料にて運用されるガスタービンを備えた改質燃料焚きガスタービン設備の油加熱方法において、前記ガスタービンの下流に設置された排ガスが流れる排熱回収ボイラー内に二重管構造の伝熱管を設置し、その二重管の内側管に昇温昇圧された該重質油を供給前記重質油が前記二重管の内側管から前記排熱回収ボイラー内にリークすることによる火災を防ぐ手段が設けられ、
該手段では、該二重管の外側管に非燃焼性の流体を供給し、該非燃焼性の流体を介して排熱回収ボイラー中を流れる排ガスと前記重質油とを熱交換することを特徴とする改質燃料焚きガスタービン設備の油加熱方法。
In an oil heating method for a reformed fuel-fired gas turbine equipment comprising a gas turbine operated with a reformed fuel obtained by heating and pressurizing heavy oil and reforming and lightening the heavy oil that has been heated and pressurized A double pipe structure heat transfer pipe is installed in the exhaust heat recovery boiler through which the exhaust gas installed downstream of the gas turbine flows , and the heavy oil that has been heated and pressurized is supplied to the inner pipe of the double pipe. Means for preventing fire due to leakage of the heavy oil from the inner pipe of the double pipe into the exhaust heat recovery boiler;
In this means, a non-combustible fluid is supplied to the outer tube of the double tube, and the heavy oil and the exhaust gas flowing in the exhaust heat recovery boiler are heat-exchanged via the non-combustible fluid. An oil heating method for a reformed fuel-fired gas turbine facility.
JP2002093554A 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof Expired - Fee Related JP3788379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093554A JP3788379B2 (en) 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093554A JP3788379B2 (en) 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof

Publications (2)

Publication Number Publication Date
JP2003286865A JP2003286865A (en) 2003-10-10
JP3788379B2 true JP3788379B2 (en) 2006-06-21

Family

ID=29237956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093554A Expired - Fee Related JP3788379B2 (en) 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof

Country Status (1)

Country Link
JP (1) JP3788379B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555010B2 (en) * 2004-07-15 2010-09-29 株式会社日立製作所 Reformed fuel-fired gas turbine and operation method thereof
JP4680628B2 (en) * 2005-02-24 2011-05-11 株式会社日立製作所 Heavy oil reformer and heavy oil-fired gas turbine system
JP4550720B2 (en) * 2005-11-04 2010-09-22 株式会社日立製作所 Gas turbine equipment using reformed fuel as fuel and operation method thereof
JP2009228475A (en) * 2008-03-19 2009-10-08 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
JP5449426B2 (en) * 2012-02-16 2014-03-19 三菱重工業株式会社 Gas turbine power generation system
ITCO20130044A1 (en) * 2013-10-08 2015-04-09 Nuovo Pignone Srl CASE FOR ROTARY MACHINE AND ROTARY MACHINE INCLUDING SUCH CASH
JP5863875B2 (en) * 2014-05-09 2016-02-17 三菱日立パワーシステムズ株式会社 Gas turbine power generation system
KR101951751B1 (en) * 2015-09-10 2019-02-25 두산중공업 주식회사 A gas turbine combustor control is possible by using a dual fuel tube containing the sensor and Burner control method using a pressure sensor.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827144B2 (en) * 1987-05-14 1996-03-21 川崎重工業株式会社 Exhaust heat recovery method
JPH06207796A (en) * 1993-01-08 1994-07-26 Nippon Steel Corp Leakage sensing and preventing mechanism for mounting structure of heat transfer tube and tube plate of multitubular heat exchanger
JPH08313192A (en) * 1995-05-19 1996-11-29 Hitachi Zosen Corp Spray coating film for heat resistant member
JP3572176B2 (en) * 1997-09-03 2004-09-29 三菱重工業株式会社 Combined cycle power generation method and power generation device
JP3782567B2 (en) * 1997-12-10 2006-06-07 株式会社東芝 Thermal power plant

Also Published As

Publication number Publication date
JP2003286865A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
CN102383936B (en) System and method for thimble-tube boiler
JP3788379B2 (en) Reformed fuel-fired gas turbine equipment and oil heating method thereof
CN102257259B (en) Diesel engine, predetermined breaking point component therefor and method for preventing damage to a diesel engine
CN101305163B (en) Method for starting a steam turbine installation
JP2009026718A (en) Fuel cell cogeneration system
JP2703548B2 (en) Air preheater performance diagnostic device
CN107795340B (en) Turbine temperature control system
WO2007046139A1 (en) Fuel gas moisture monitoring apparatus and method of monitoring fuel gas moisture
JP2003286858A (en) Gas turbine equipment for burning reformed fuel and method of oil-heating the equipment
JP4733612B2 (en) Boiler superheater for waste treatment equipment
EP2344731B1 (en) Start-up system mixing sphere
JP4150948B2 (en) Liquefied gas supply device
JP2002256816A (en) Combined cycle generating plant
Franco Failures of heat exchangers
CN213148698U (en) Gas corrosion resistance test device for material
JP2006017039A (en) Gas turbine and its lubricating oil cooling method
JP4685644B2 (en) Heavy oil reformer, heavy oil reformer shutdown method, and gas turbine equipped with heavy oil reformer
Pasha et al. Design and Modification of Heat Recovery Steam Generators for Cycling Operations
CN213630388U (en) Boiler feed water preheating and deoxidizing system in comprehensive energy system
CN215057761U (en) Credit letter device free of blowing and clearing for maintaining gas turbine combined cycle unit
EP3961014A1 (en) Power generation plant with water supply
Warren et al. Advanced Technology Combustion Turbines in Combined-Cycle Applications
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JP2005054876A (en) Liquefied petroleum gas storage tank
CN116658261A (en) Shaft seal steam leakage bypass device applied to steam turbine generator unit flexibility transformation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees