JP3788295B2 - Solar cell maximum power control method - Google Patents

Solar cell maximum power control method Download PDF

Info

Publication number
JP3788295B2
JP3788295B2 JP2001272653A JP2001272653A JP3788295B2 JP 3788295 B2 JP3788295 B2 JP 3788295B2 JP 2001272653 A JP2001272653 A JP 2001272653A JP 2001272653 A JP2001272653 A JP 2001272653A JP 3788295 B2 JP3788295 B2 JP 3788295B2
Authority
JP
Japan
Prior art keywords
operating voltage
target operating
power
solar cell
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001272653A
Other languages
Japanese (ja)
Other versions
JP2003084844A (en
Inventor
裕明 湯浅
忠吉 向井
浩道 井上
省互 一村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001272653A priority Critical patent/JP3788295B2/en
Publication of JP2003084844A publication Critical patent/JP2003084844A/en
Application granted granted Critical
Publication of JP3788295B2 publication Critical patent/JP3788295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、日射量で変化する太陽電池の最大出力動作電圧に追従制御し、電力変換装置を介して太陽電池から得られる出力電力を最大にする太陽電池の最大電力制御方法に関するものである。
【0002】
【従来の技術】
近年、太陽電池を電源とし、インバータ等の電力変換装置を介して所定の電力を供給する電源装置が注目されている。太陽電池は、一般に入射する日射量をパラメータとした場合、日射量の増大に従って電力が増大する傾向を有しており、また、その太陽電池の動作電圧により出力電力が大幅に変動する特性を有している。
【0003】
このような特性を有する太陽電池から最大電力を効率よく取り出すために、従来より、山登り法といわれる最大出力追従制御の方法が提案されている。
【0004】
上記山登り方においては、一定の日射量の下において太陽電池が、図3の曲線イ,ロ(曲線イは日射量大、曲線ロは日射量小の場合をそれぞれ表す)に示すような電圧−電力特性を有している場合、先ず太陽電池の出力電圧の目標動作電圧を開放電圧VOPから所定のサンプリング周期で一定の変化幅で減少させていく。この間、太陽電池の出力電力は図3中左向きに増加し、やがては最大電力Pmaxを越えて減少して行く。この出力電力の減少を検出すると、今度は目標動作電圧を変化幅で増加させる。これにより、出力電力は図3中右向きに増加し、やがて最大電力Pmax越えて減少し始める。そこでこの電力の減少を検出して、再び目標動作電圧を変化幅で減少させる方向へ変化させる。以上の動作を繰り返して行くことにより目標動作電圧を最大電力Pmaxが得られる動作電圧(最大出力動作電圧)Vmax近傍で往復させ、太陽電池の最大出力動作電圧Vmaxに追従させている。なお、太陽電池の目標動作電圧を変化させるには電力変換装置の出力電流を変化させればよく、電力変換装置の出力電流を指令する電流指令値を電力変換装置に与えて目標動作電圧を変化させている。
【0005】
ところが、上述の従来方法では、目標動作電圧と太陽電池における実際の動作電圧との間に差が生じた場合、その差が零になるように電力変換装置の電流指令値を制御することになるが、その差の大小に関わらず一定の変化幅で電流指令値の制御がなされていた。このため、例えば、太陽電池の実際の動作電圧と目標動作電圧との差が大きい場合、目標動作電圧に達するまでに多くの時間を必要とするという問題点を有していた。
【0006】
これに対して本出願人は、電力変換装置に与える電流指令値を制御して目標動作電圧を変化させていく際、目標動作電圧の出力電力と実際の出力電力との差に応じて電流指令値を変更する最大電力制御方法を提案している(特開2001−60118号公報参照)。すなわち、この方法では、例えば目標動作電圧における出力電力に対して実際の出力電力が大きく上回る場合は電流指令値を大きく増加させ、目標動作電圧における出力電力に対して実際の出力電力が若干上回る場合は電流指令値を小さく増加させるのである。
【0007】
【発明が解決しようとする課題】
ところが、日射量の増減にともなって太陽電池の出力特性(出力電圧−出力電力特性)は大きく異なり、図3の曲線ロに示すように日射量が減少したときには最大出力動作電圧付近における変化が少ない緩やかな曲線となるため、出力電力の変化量が同じであったとしても日射量が多いときと日射量が少ないときとでは、日射量が少ないときの方が太陽電池の動作電圧が大きく変動してしまう。そのため、目標動作電圧を最大出力動作電圧Vmaxに追従させる際に、太陽電池の動作電圧を目標動作電圧に略一致させるまでに要する時間が増大し、ひいては目標動作電圧を最大出力動作電圧Vmaxに素早く追従させることができなくなってしまう。
【0008】
本発明は上記事情に鑑みて為されたものであり、その目的とするところは、日射量が減少した場合でも目標動作電圧を最大出力動作電圧に素早く追従させることができる太陽電池の最大電力制御方法を提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、太陽電池の最大出力動作電圧に追従制御し、電力変換装置を介して太陽電池から得られる出力電力を最大にする太陽電池の最大電力制御方法であって、電力変換装置の出力電流を指令する電流指令値により太陽電池の目標動作電圧を変化させて前回の目標動作電圧における出力電力と今回の目標動作電圧における出力電力との差を求めて当該差が最も小さくなる最大出力動作電圧に目標動作電圧を略一致させる太陽電池の最大電力制御方法において、電流指令値を制御して目標動作電圧を変化させる際に前回の目標動作電圧における出力電力と今回の目標動作電圧における出力電力との差を今回の目標動作電圧における出力電力で除算した値に応じて目標動作電圧を変化させることを特徴とし、出力電力が最大電力に近付くにつれて目標動作電圧を変化させる際の変化幅が相対的に小さくなり、日射量が減少した場合でも最大電力付近における目標動作電圧のばらつきを抑えて目標動作電圧を最大出力動作電圧に素早く追従させることができる。
【0010】
請求項2の発明は、請求項1の発明において、前回の目標動作電圧における出力電力よりも今回の目標動作電圧における出力電力が小さい場合には目標動作電圧を変化させる向きを反転することを特徴とし、目標動作電圧が最大出力動作電圧を通り過ぎた場合でも目標動作電圧の変化させる向きを反転することで確実に最大出力動作電圧に追従させることができる。
【0011】
【発明の実施の形態】
以下、本発明を実施形態により詳細に説明する。
【0012】
図2は本実施形態の最大電力制御方法を実施するパワーコンディショナの一例を示すブロック図である。このパワーコンディショナは、太陽電池10の直流電力をインバータからなる電力変換装置11にて交流電力に変換し、図示しない保護継電器等を介して商用電力系統13に並列に接続されて系統連係運転を行うものである。
【0013】
太陽電池10の出力電流及び出力電圧は、電流検出器21及び電圧検出器22で検出され、その検出値は最大電力制御回路23に入力される。最大電力制御回路23では、入力された値より太陽電池10の出力電力を求め、その値に基づいて設定される目標動作電圧とするための電流指令値を出力する。電流検出器26は電力変換装置11から出力された電流を検出するものであり、電流指令値は電流検出器26により検出された値と比較され、その偏差が誤差増幅器24により増幅されて電流制御回路25に入力される。電流制御回路25では、誤差増幅器24からの偏差に応じてこの偏差が零になるように電力変換装置11の位相を制御する。
【0014】
ここで、本発明の最大電力制御方法、すなわち最大電力制御回路23の動作について、図1のフローチャートを参照して説明する。
【0015】
まず最初に、最大電力制御回路23は目標動作電圧を太陽電池10の開放電圧VOPに一致させるような電流指令値を出力する。そして、所定のサンプリング周期で目標動作電圧Vrefk(k=1,2,…)を変化させながら太陽電池10の出力電流Iok並びに太陽電池10の出力電圧Vokを電流検出器21及び電圧検出器22にて検出し(図1のステップ2)、太陽電池10の出力電力Pok(=Vok×Iok)を演算するとともに、求めた出力電力Pokを図示しないメモリに保存する(図1のステップ1,3)。
【0016】
そして、最大電力制御回路23では次回のサンプリング時における目標動作電圧Vrefk+1を決定するための目標動作電圧変化量ΔVrefk+1を下式により求める(図1のステップ4)。
【0017】
ΔVrefk+1=K×(Pok−Pok-1)/Pok
但し、Kは予め設定された定数である。そして、最大電力制御回路23は今回の目標動作電圧Vrefkから目標動作電圧変化量ΔVrefk+1を減算することで次回の目標動作電圧Vrefk+1(=Vrefk−ΔVrefk+1)を求め(図1のステップ5)、太陽電池10を目標動作電圧Vrefk+1で動作させるための電流指令値を出力する(図1のステップ6)。
【0018】
而して、目標動作電圧Vrefkを低下させていくと、出力電力Pokは図3における左向きに増加し、やがて出力電力Pokが最大出力電力Pmaxを越えて減少を始めることになる。すると、最大電力制御回路23では前回の出力電力Pok-1よりも今回の出力電力Pokが小さくなることから出力電力Pokの減少を検出して、動作電圧を増加する方向へ目標動作電圧Vrefkの変化の向きを反転し、目標動作電圧Vrefkに動作電圧が一致するように電流指令値を制御する。動作電圧が増加すると太陽電池10からの出力電力Pokは図3中右向きに増加し、やがて最大電力Pmaxを超えると再び減少を開始する。再度この減少を検出すると最大電力制御回路23は、動作電圧を減少する方向へ目標動作電圧Vrefkの変化の向きを反転し、目標動作電圧Vrefkに動作電圧が一致するように電流指令値を制御するのである。そして、上記動作を繰り返すことで従来技術で説明した山登り法により出力電力Poを最大出力電力Pmaxに略一致させることができる。
【0019】
ところで本実施形態では、電流指令値を制御して目標動作電圧Vrefを変化させる際に前回の目標動作電圧Vrefk-1における出力電力Pok-1と今回の目標動作電圧Vrefkにおける出力電力Pokとの差を今回の目標動作電圧Vrefkにおける出力電力Pokで除算した値ΔVrefkに応じて目標動作電圧Vrefk+1を変化させているため、出力電力Poが最大出力電力Pmaxに近付くにつれて目標動作電圧Vrefkを変化させる際の変化幅ΔVrefkが相対的に小さくなり、日射量が減少した場合でも最大電力Pmax付近における目標動作電圧Vrefのばらつきを抑えて目標動作電圧Vrefを最大出力動作電圧Vmaxに素早く追従させることができる。
【0020】
【発明の効果】
請求項1の発明は、太陽電池の最大出力動作電圧に追従制御し、電力変換装置を介して太陽電池から得られる出力電力を最大にする太陽電池の最大電力制御方法であって、電力変換装置の出力電流を指令する電流指令値により太陽電池の目標動作電圧を変化させて前回の目標動作電圧における出力電力と今回の目標動作電圧における出力電力との差を求めて当該差が最も小さくなる最大出力動作電圧に目標動作電圧を略一致させる太陽電池の最大電力制御方法において、電流指令値を制御して目標動作電圧を変化させる際に前回の目標動作電圧における出力電力と今回の目標動作電圧における出力電力との差を今回の目標動作電圧における出力電力で除算した値に応じて目標動作電圧を変化させるので、出力電力が最大電力に近付くにつれて目標動作電圧を変化させる際の変化幅が相対的に小さくなり、日射量が減少した場合でも最大電力付近における目標動作電圧のばらつきを抑えて目標動作電圧を最大出力動作電圧に素早く追従させることができるという効果がある。
【0021】
請求項2の発明は、請求項1の発明において、前回の目標動作電圧における出力電力よりも今回の目標動作電圧における出力電力が小さい場合には目標動作電圧を変化させる向きを反転するので、目標動作電圧が最大出力動作電圧を通り過ぎた場合でも目標動作電圧の変化させる向きを反転することで確実に最大出力動作電圧に追従させることができるという効果がある。
【図面の簡単な説明】
【図1】実施形態を説明するためのフローチャートである。
【図2】同上のパワーコンディショナを示すブロック図である。
【図3】太陽電池の電圧−電力特性を示す波形図である。
【符号の説明】
10 太陽電池
11 電力変換装置
13 商用電力系統
21 電流検出器
22 電圧検出器
23 最大電力制御回路
24 誤差増幅器
25 電流制御回路
26 電流検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the maximum power of a solar cell that controls the maximum output operating voltage of the solar cell that varies with the amount of solar radiation and maximizes the output power obtained from the solar cell via a power converter.
[0002]
[Prior art]
In recent years, a power supply device that uses a solar cell as a power supply and supplies predetermined power via a power conversion device such as an inverter has attracted attention. In general, when the amount of incident solar radiation is used as a parameter, a solar cell has a tendency that the power increases as the amount of solar radiation increases, and the output power greatly varies depending on the operating voltage of the solar cell. is doing.
[0003]
In order to efficiently extract the maximum power from a solar cell having such characteristics, a maximum output tracking control method called a hill climbing method has been proposed.
[0004]
In the above hill-climbing method, the solar cell under a certain amount of solar radiation has a voltage − as shown in curves i and b in FIG. 3 (curve i represents a large amount of solar radiation and curve b represents a case in which the amount of solar radiation is small). when it has power characteristics, first gradually reducing the target operating voltage of the output voltage of the solar cell from the open circuit voltage V OP at a constant variation width at a predetermined sampling period. During this time, the output power of the solar cell increases to the left in FIG. 3, and eventually decreases beyond the maximum power Pmax. When this decrease in output power is detected, the target operating voltage is increased by the change width. As a result, the output power increases to the right in FIG. 3, and eventually starts to decrease beyond the maximum power Pmax. Therefore, this decrease in power is detected, and the target operating voltage is changed again in the direction of decreasing by the change width. By repeating the above operation, the target operating voltage is reciprocated in the vicinity of the operating voltage (maximum output operating voltage) Vmax at which the maximum power Pmax is obtained, and is made to follow the maximum output operating voltage Vmax of the solar cell. The target operating voltage of the solar cell can be changed by changing the output current of the power converter, and the target operating voltage is changed by giving a current command value for instructing the output current of the power converter to the power converter. I am letting.
[0005]
However, in the above-described conventional method, when a difference occurs between the target operating voltage and the actual operating voltage of the solar cell, the current command value of the power converter is controlled so that the difference becomes zero. However, the current command value is controlled with a constant change width regardless of the magnitude of the difference. For this reason, for example, when the difference between the actual operating voltage of the solar cell and the target operating voltage is large, there is a problem that it takes a lot of time to reach the target operating voltage.
[0006]
On the other hand, when changing the target operating voltage by controlling the current command value given to the power converter, the present applicant determines the current command according to the difference between the output power of the target operating voltage and the actual output power. A maximum power control method for changing the value has been proposed (see Japanese Patent Laid-Open No. 2001-60118). That is, in this method, for example, when the actual output power greatly exceeds the output power at the target operating voltage, the current command value is greatly increased, and when the actual output power slightly exceeds the output power at the target operating voltage. Increases the current command value by a small amount.
[0007]
[Problems to be solved by the invention]
However, the output characteristics (output voltage-output power characteristics) of the solar cell greatly differ with the increase and decrease of the amount of solar radiation, and when the amount of solar radiation decreases as shown by the curve (b) in FIG. 3, the change near the maximum output operating voltage is small. Because of the gentle curve, even if the amount of change in output power is the same, the operating voltage of the solar cell fluctuates more when the amount of solar radiation is small and when the amount of solar radiation is small. End up. For this reason, when the target operating voltage is made to follow the maximum output operating voltage Vmax, the time required to make the operating voltage of the solar cell substantially coincide with the target operating voltage increases, and as a result, the target operating voltage is quickly increased to the maximum output operating voltage Vmax. It becomes impossible to follow.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to control the maximum power of a solar cell that can quickly make the target operating voltage follow the maximum output operating voltage even when the amount of solar radiation decreases. It is to provide a method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 controls the maximum output operating voltage of the solar cell to follow and controls the maximum power of the solar cell to maximize the output power obtained from the solar cell via the power converter. A method of calculating a difference between output power at a previous target operating voltage and output power at a current target operating voltage by changing a target operating voltage of a solar cell according to a current command value that commands an output current of a power converter. In the maximum power control method for solar cells, in which the target operating voltage is substantially matched to the maximum output operating voltage at which the difference becomes the smallest, the output at the previous target operating voltage is changed when the target operating voltage is changed by controlling the current command value. The target operating voltage is changed according to a value obtained by dividing the difference between the power and the output power at the current target operating voltage by the output power at the current target operating voltage. As the output power approaches the maximum power, the range of change when changing the target operating voltage becomes relatively small, and even when the amount of solar radiation decreases, the target operating voltage is maximized by suppressing variations in the target operating voltage near the maximum power. The operating voltage can be followed quickly.
[0010]
The invention of claim 2 is characterized in that, in the invention of claim 1, when the output power at the current target operating voltage is smaller than the output power at the previous target operating voltage, the direction of changing the target operating voltage is reversed. Even when the target operating voltage passes the maximum output operating voltage, the maximum output operating voltage can be reliably followed by reversing the direction in which the target operating voltage is changed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0012]
FIG. 2 is a block diagram showing an example of a power conditioner that implements the maximum power control method of the present embodiment. This power conditioner converts the DC power of the solar cell 10 into AC power by a power converter 11 composed of an inverter, and is connected in parallel to the commercial power system 13 via a protective relay (not shown) to perform system linkage operation. Is what you do.
[0013]
The output current and output voltage of the solar cell 10 are detected by the current detector 21 and the voltage detector 22, and the detected values are input to the maximum power control circuit 23. The maximum power control circuit 23 calculates the output power of the solar cell 10 from the input value, and outputs a current command value for setting a target operating voltage set based on the value. The current detector 26 detects the current output from the power converter 11. The current command value is compared with the value detected by the current detector 26, and the deviation is amplified by the error amplifier 24 to control the current. Input to the circuit 25. The current control circuit 25 controls the phase of the power converter 11 so that this deviation becomes zero according to the deviation from the error amplifier 24.
[0014]
Here, the maximum power control method of the present invention, that is, the operation of the maximum power control circuit 23 will be described with reference to the flowchart of FIG.
[0015]
First, the maximum power control circuit 23 outputs a current command value that matches the target operating voltage with the open circuit voltage V OP of the solar cell 10. Then, the target operates at a predetermined sampling period voltage Vref k (k = 1,2, ... ) while changing the output voltage Vo k of the output current Io k and the solar cell 10 of the solar cell 10 a current detector 21 and the voltage detection detected by the vessel 22 (step 2 in FIG. 1), as well as calculating the output power Po k of the solar cell 10 (= Vo k × Io k ), stored in the memory (not shown) the output power Po k obtained (FIG. 1 step 1, 3).
[0016]
The maximum power control circuit 23 obtains the target operating voltage change amount ΔVref k + 1 for determining the target operating voltage Vref k + 1 at the next sampling by the following equation (step 4 in FIG. 1).
[0017]
ΔVref k + 1 = K × ( Po k -Po k-1) / Po k
However, K is a preset constant. The maximum power control circuit 23 subtracts the target operating voltage change amount ΔVref k + 1 from the current target operating voltage Vref k to obtain the next target operating voltage Vref k + 1 (= Vref k −ΔVref k + 1 ). Obtained (step 5 in FIG. 1), a current command value for operating the solar cell 10 at the target operating voltage Vref k + 1 is output (step 6 in FIG. 1).
[0018]
And Thus, when gradually lowering the target operating voltage Vref k, the output power Po k increases to the left in FIG. 3, the output power Po k is to start decreasing beyond the maximum output power Pmax soon. Then, by detecting a decrease in output power Po k since than the maximum power control circuit of the last in the 23 output power Po k-1 is the output power Po k of this smaller, the target operating voltage in the direction to increase the operating voltage The direction of change in Vref k is reversed, and the current command value is controlled so that the operating voltage matches the target operating voltage Vref k . Output power Po k from the solar battery 10 when the operating voltage is increased is increased in FIG. 3 the right, eventually it starts decreasing again exceeds the maximum power Pmax. When this decrease is detected again, the maximum power control circuit 23 reverses the direction of change of the target operating voltage Vref k in the direction of decreasing the operating voltage, and sets the current command value so that the operating voltage matches the target operating voltage Vref k. To control. Then, by repeating the above operation, the output power Po can be made substantially equal to the maximum output power Pmax by the hill-climbing method described in the prior art.
[0019]
By the way, in the present embodiment, when the current command value is controlled to change the target operating voltage Vref, the output power Po k-1 at the previous target operating voltage Vref k-1 and the output power Po at the current target operating voltage Vref k . since the changing of the target operating voltage Vref k + 1 the difference between k according to the value .DELTA.Vref k obtained by dividing the output power Po k in the current target operating voltage Vref k, the output power Po approaches the maximum output power Pmax Accordingly, the change width ΔVref k when the target operating voltage Vref k is changed becomes relatively small, and even when the amount of solar radiation is reduced, the target operating voltage Vref is maximized by suppressing variations in the target operating voltage Vref near the maximum power Pmax. It is possible to quickly follow the operating voltage Vmax.
[0020]
【The invention's effect】
The invention of claim 1 is a method for controlling the maximum power of a solar cell that controls the maximum output operating voltage of the solar cell and maximizes the output power obtained from the solar cell via the power converter. The target operating voltage of the solar cell is changed according to the current command value for commanding the output current of the solar cell, and the difference between the output power at the previous target operating voltage and the output power at the current target operating voltage is obtained. In the solar cell maximum power control method that makes the target operating voltage substantially coincide with the output operating voltage, when the target operating voltage is changed by controlling the current command value, the output power at the previous target operating voltage and the current target operating voltage Since the target operating voltage is changed according to the value obtained by dividing the difference from the output power by the output power at the current target operating voltage, as the output power approaches the maximum power When the target operating voltage is changed, the range of change is relatively small, and even if the amount of solar radiation decreases, the target operating voltage can quickly follow the maximum output operating voltage by suppressing variations in the target operating voltage near the maximum power. There is an effect that can be done.
[0021]
In the invention of claim 2, in the invention of claim 1, when the output power at the current target operating voltage is smaller than the output power at the previous target operating voltage, the direction of changing the target operating voltage is reversed. Even when the operating voltage has passed the maximum output operating voltage, there is an effect that the maximum output operating voltage can be surely followed by reversing the direction in which the target operating voltage is changed.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining an embodiment;
FIG. 2 is a block diagram showing the above-described power conditioner.
FIG. 3 is a waveform diagram showing voltage-power characteristics of a solar cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Solar cell 11 Power converter 13 Commercial power system 21 Current detector 22 Voltage detector 23 Maximum power control circuit 24 Error amplifier 25 Current control circuit 26 Current detector

Claims (2)

太陽電池の最大出力動作電圧に追従制御し、電力変換装置を介して太陽電池から得られる出力電力を最大にする太陽電池の最大電力制御方法であって、電力変換装置の出力電流を指令する電流指令値により太陽電池の目標動作電圧を変化させて前回の目標動作電圧における出力電力と今回の目標動作電圧における出力電力との差を求めて当該差が最も小さくなる最大出力動作電圧に目標動作電圧を略一致させる太陽電池の最大電力制御方法において、電流指令値を制御して目標動作電圧を変化させる際に前回の目標動作電圧における出力電力と今回の目標動作電圧における出力電力との差を今回の目標動作電圧における出力電力で除算した値に応じて目標動作電圧を変化させることを特徴とする太陽電池の最大電力制御方法。A solar cell maximum power control method for controlling the maximum output operating voltage of a solar cell and maximizing the output power obtained from the solar cell via the power converter, the current commanding the output current of the power converter The target operating voltage of the solar cell is changed according to the command value, the difference between the output power at the previous target operating voltage and the output power at the current target operating voltage is obtained, and the target operating voltage is set to the maximum output operating voltage at which the difference becomes the smallest. In the solar cell maximum power control method that substantially matches the output power, when the target operating voltage is changed by controlling the current command value, the difference between the output power at the previous target operating voltage and the output power at the current target operating voltage is A method for controlling the maximum power of a solar cell, wherein the target operating voltage is changed according to a value divided by the output power at the target operating voltage. 前回の目標動作電圧における出力電力よりも今回の目標動作電圧における出力電力が小さい場合には目標動作電圧を変化させる向きを反転することを特徴とする請求項1記載の太陽電池の最大電力制御方法。2. The method for controlling the maximum power of a solar cell according to claim 1, wherein when the output power at the current target operating voltage is smaller than the output power at the previous target operating voltage, the direction of changing the target operating voltage is reversed. .
JP2001272653A 2001-09-07 2001-09-07 Solar cell maximum power control method Expired - Fee Related JP3788295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272653A JP3788295B2 (en) 2001-09-07 2001-09-07 Solar cell maximum power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272653A JP3788295B2 (en) 2001-09-07 2001-09-07 Solar cell maximum power control method

Publications (2)

Publication Number Publication Date
JP2003084844A JP2003084844A (en) 2003-03-19
JP3788295B2 true JP3788295B2 (en) 2006-06-21

Family

ID=19097992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272653A Expired - Fee Related JP3788295B2 (en) 2001-09-07 2001-09-07 Solar cell maximum power control method

Country Status (1)

Country Link
JP (1) JP3788295B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046751A (en) 2006-08-11 2008-02-28 Toyota Motor Corp Photovoltaic power generation system, vehicle, control method for photovoltaic power generation system, and computer readable recording medium with program for making computer perform its control method reocrded
JP5320144B2 (en) * 2009-04-16 2013-10-23 本田技研工業株式会社 Solar cell maximum output power tracking control device

Also Published As

Publication number Publication date
JP2003084844A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3567808B2 (en) Maximum power control method for solar cells
JP3516101B2 (en) Solar power generator
JP2766407B2 (en) Inverter control device for photovoltaic power generation
JP7248593B2 (en) Surplus power extraction method and system
US6046919A (en) Solar power generating device
US9985545B2 (en) DC-to-DC converter, power converter, power generation system, and method for DC-to-DC conversion
EP0653692B1 (en) Method and apparatus for controlling the power of a battery power source
CN108649844B (en) Feedforward control method and control system for brushless direct current power generation system
US8773077B1 (en) Controllers for battery chargers and battery chargers therefrom
JP2005235082A (en) Method for tracking and controlling maximum power, and power converting device
JP2008090672A (en) Power conversion device and power conversion method
US10574058B2 (en) Power conversion apparatus, power generation system, controller, and method for performing control
JP3949350B2 (en) Interconnection device
JP3788295B2 (en) Solar cell maximum power control method
EP3247018A1 (en) Control device for inverter
JP3823785B2 (en) Solar cell maximum power control method
JPH10207560A (en) Solar light power generation system
JPH09131081A (en) Power controller for battery power supply
JP3567810B2 (en) Maximum power control method for solar cells
JP3567809B2 (en) Maximum power control method for solar cells
JP3480321B2 (en) Solar inverter device
JPH07109569B2 (en) Maximum power control method for solar cells
CN114421849B (en) Drive control method, device and equipment of photovoltaic motor and storage medium
JP6256287B2 (en) Solar cell control device
JPS58101313A (en) Output adjusting and controlling system of solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees