JP3787674B2 - Sliding parts - Google Patents

Sliding parts Download PDF

Info

Publication number
JP3787674B2
JP3787674B2 JP15934799A JP15934799A JP3787674B2 JP 3787674 B2 JP3787674 B2 JP 3787674B2 JP 15934799 A JP15934799 A JP 15934799A JP 15934799 A JP15934799 A JP 15934799A JP 3787674 B2 JP3787674 B2 JP 3787674B2
Authority
JP
Japan
Prior art keywords
amount
spherical carbide
less
carbide
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15934799A
Other languages
Japanese (ja)
Other versions
JP2000345299A (en
Inventor
一寿 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP15934799A priority Critical patent/JP3787674B2/en
Publication of JP2000345299A publication Critical patent/JP2000345299A/en
Application granted granted Critical
Publication of JP3787674B2 publication Critical patent/JP3787674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は摺動部品に関し、さらに詳しくは、たとえばすべり軸受部品、自動車エンジン用ロッカアームのローラ支持軸、ローラカムフォロワ、自動車エンジン用カムリフタ、もしくは一方向クラッチ等として用いられるのに適した摺動部品に関する。
【0002】
【従来の技術】
この種摺動部品として、従来、JIS SUJ2等の高硬度鋼よりなり、表面部にショットピーニングを施して表面硬さを増大させたものが用いられていた。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の摺動部品には次のような問題があることが判明した。すなわち、ショットピーニングによる表面硬さの増大は、靭性の低下を招き、耐摩耗性は向上するものの耐衝撃性が低下したり、亀裂進展速度が増加したりするという問題があった。また、使用中に摺動部品が発熱して焼戻し現象が生じた場合には、残留オーステナイトがマルテンサイト変態を起こし、寸法が膨張して焼付きが発生するという問題があった。
【0004】
この発明の目的は、上記問題を解決し、靭性を損なうことなく、耐摩耗性が向上し、しかも焼付きが起こりにくくなる摺動部品を提供することにある。
【0005】
【課題を解決するための手段と発明の効果】
この発明による摺動部品は、鋼よりなり、浸炭処理を含む熱処理が施されて表面部のCが0.9〜1.42重量%となされるとともに、表面硬さがロックウェルC硬さで63以上となされ、浸炭層に微細球状炭化物が析出させられ、球状炭化物の平均粒径が3μm以下でかつ球状炭化物の量が面積率で13.5〜40%となされているとともに、球状炭化物の70%以上の粒径が10μm以下となされており、さらに浸炭層の残留オーステナイト量が13〜40%となされていることを特徴とするものである。
【0006】
上記において、通常、摺動部品は、摺動面に数十〜数百μm程度の研磨仕上げ処理が施されて使用される。したがって、上記においてCが0.9〜1.42重量%となされている表面部とは、研磨仕上げ処理が施された後の最表面から50μmの深さの部分までを意味するものとする。なお、浸炭層の深さは、上記研磨量に比べてかなり深く、したがって上記研磨により浸炭層の性状が影響を受けることはない。
【0007】
上記摺動部品において、表面部のCの量、表面硬さ、球状炭化物の平均粒径および球状炭化物中の粒径10μm以下のものの量、球状炭化物の量(面積率)、ならびに浸炭層の残留オーステナイト量の限定理由は、次の通りである。
【0008】
表面部のC量
表面部のCの量が0.9重量%未満であると炭化物を均一に分散させることができず、1.42重量%を越えると表面部の粗大炭化物量や残留オーステナイト量が多くなって強度が低下する。摺動部品の表面部にCが集まると、ここに生成する炭化物が粗大化するので、実際には粒径が10μmを越えた球状炭化物が全体の40%程度となり、場合によっては最大粒径が20μmとなり、その結果粒径が10μmを越えた球状炭化物に応力が集中し、この部分から破壊が生じるおそれがある。したがって、表面部のC量は0.9〜1.42重量%の範囲内で選ぶべきである。
【0009】
表面硬さ
表面硬さがロックウェルC硬さ(以下、HRCと称する)で63未満であると表面硬さが十分ではなく、耐摩耗性が低下して摺動部品の寿命が短くなる。したがって、表面硬さはHRC63以上とすべきである。なお、表面硬さの上限は、靭性を考慮するとHRC68程度であることが好ましい。
【0010】
球状炭化物の平均粒径および球状炭化物中の粒径10μm以下のものの量
球状炭化物の平均粒径が10μmを越えると、粒径が10μmを越える球状炭化物の量が全体の80%程度となり、その結果粒径が10μmを越えた球状炭化物に応力が集中し、この部分から破壊が生じるおそれがある。したがって、球状炭化物の平均粒径は10μm以下、好ましくは3μm以下とすべきである。また、球状炭化物中の粒径が10μm以下のものの量が70%未満であると粒径が10μmを越えた球状炭化物の量が全体の30%以上となり、場合によっては最大粒径が20μmとなり、その結果粒径が10μmを越えた球状炭化物に応力が集中し、この部分から破壊が生じるおそれがある。したがって、球状炭化物中の粒径10μm以下のものの量は球状炭化物全体の70%以上とするべきである。
【0011】
球状炭化物の量(面積率)
球状炭化物の量が面積率で40%を越えると浸炭層マトリックスの強度が低下するので、球状炭化物の量は面積率で40%以下、好ましくは25%以下とすべきである。なお、球状炭化物の量の下限は、13.5%とすべきである。ここで、面積率とは、3000倍で観察した40×30μmの視野5箇所の面積率を各々画像解析によって観察し、上記5箇所の面積率の平均値をいうものとする。
【0012】
残留オーステナイト量
残留オーステナイト量が13%未満であると靭性が低下するとともに亀裂進展速度が速くなって摺動部品の寿命が低下し、40%を越えると必要な硬さを確保することができない。したがって、残留オーステナイト量は13〜40%の範囲内で選ぶべきである。
【0013】
この発明の摺動部品において、材料となる鋼に施される浸炭処理を含む熱処理としては、たとえば浸炭処理または浸炭焼入れ処理を施す第1工程と、焼入れ処理を施して浸炭層に微細球状炭化物を析出させる第2工程と、表面部の炭素濃度が上記第1工程で得られた表面部の炭素濃度よりも高濃度になるように高濃度浸炭焼入れ処理を施す第3工程とよりなる方法がある。上記第3工程における加熱温度は、上記第2工程の加熱温度以下であることが好ましい。上記第3工程の加熱温度が上記第2工程の加熱温度よりも高くなると、第2工程において析出した炭化物の一部がマトリックス中に溶解するおそれがあるからである。このような方法をより具体的に説明すると、次の通りである。すなわち、C3 8 を10〜17vol %含む浸炭雰囲気中において930〜950℃の温度で3〜5時間加熱した後、油冷する第1工程と、800〜840℃の温度で0.5〜0.8時間加熱した後、油冷する第2工程と、C3 8 を10〜17vol %含む浸炭雰囲気中において790〜840℃の温度でかつ第2工程の加熱温度以下の温度で3〜5時間加熱した後、油冷する第3工程とよりなる方法である。上記第3工程において、C3 8 を10〜17vol %含む浸炭雰囲気中において790〜820℃の温度でかつ第2工程の加熱温度以下の温度で3〜5時間加熱した後、温度を上げて830〜840℃の温度で0.5〜0.8時間加熱し、その後油冷することが好ましい。この場合、炭化物の粗大化を伴わずに、炭化物量を増加させることが可能になる。
【0014】
この発明による摺動部品によれば、鋼よりなり、浸炭処理を含む熱処理が施されて表面部のCが0.9〜1.42重量%となされるとともに、表面硬さがロックウェルC硬さで63以上となされ、浸炭層に微細球状炭化物が析出させられ、球状炭化物の平均粒径が3μm以下でかつ球状炭化物の量が面積率で13.5〜40%となされているとともに、球状炭化物の70%以上の粒径が10μm以下となされており、さらに浸炭層の残留オーステナイト量が13〜40%となされているので、心部の強度および硬さが確保されるとともに、靭性の低下が防止される。特に、表面部のCが0.9〜1.42重量%となされるとともに、表面硬さがロックウェルC硬さで63以上となされ、浸炭層に微細球状炭化物が析出させられ、球状炭化物の平均粒径が10μm以下でかつその量が面積率で13.5〜40%となされているとともに、球状炭化物の70%以上の粒径が10μm以下となされており、さらに残留オーステナイト量が13〜40%となされているので、この摺動部品の耐摩耗性が向上して寿命が延びる。しかも、靭性の低下が防止される。
【0015】
【発明の実施の形態】
以下、この発明の具体的実施例を比較例とともに説明する。
【0016】
実施例1〜4
SAE5120を用いて自動車エンジン用ロッカアームのローラ支持軸の素材を4個分つくり、これらの素材のうちの1個分に図1に示す条件(熱処理条件1)で熱処理を施すとともに、残りの3個分に図2に示す条件(熱処理条件2)で熱処理を施した。ついで、各素材に160℃で2時間加熱して焼戻し処理を施した後、各素材の表面を研磨し、その研磨量を変えることにより、表面部の性状の異なる4個のローラ支持軸を製造した。なお、上記焼戻しは、焼入れ処理の後、素材の靭性を向上させるために一般的に行われている工程であるので、図示は省略している。
【0017】
上記熱処理条件1は、流動層炉を用いて行ったものであり、流動化ガスとしてN2 ガスを流量が4.5×10-43 /sとなるように供給するとともにC3 8 ガスを流量が0.5×10-43 /sとなるように供給しつつ(雰囲気中のC3 8 濃度は10vol %である)、930℃で3時間加熱した後、80℃に油冷して浸炭焼入れ処理を施す第1工程と、流動化ガスとしてN2 ガスを流量が5.0×10-43 /sとなるように供給しつつ、840℃で0.5時間加熱した後、80℃に油冷して焼入れ処理を施す第2工程と、流動化ガスとしてN2 ガスを流量が4.2×10-43 /sとなるように供給するとともにC3 8 ガスを流量が0.8×10-43 /sとなるように供給しつつ(雰囲気中のC3 8 濃度は16vol %である)、830℃で5時間加熱した後、80℃に油冷して高濃度浸炭焼入れ処理を施す第3工程とよりなる。
【0018】
上記熱処理条件2は、流動層炉を用いて行ったものであり、流動化ガスとしてN2 ガスを流量が4.5×10-43 /sとなるように供給するとともにC3 8 ガスを流量が0.5×10-43 /sとなるように供給しつつ(雰囲気中のC3 8 濃度は10vol %である)、930℃で3時間加熱した後、80℃に油冷して浸炭焼入れ処理を施す第1工程と、流動化ガスとしてN2 ガスを流量が5.0×10-43 /sとなるように供給しつつ、840℃で0.5時間加熱した後、80℃に油冷して焼入れ処理を施す第2工程と、流動化ガスとしてN2 ガスを流量が4.5×10-43 /sとなるように供給するとともにC3 8 ガスを流量が0.5×10-43 /sとなるように供給しつつ(雰囲気中のC3 8 濃度は10vol %である)、830℃で5時間加熱した後、80℃に油冷して高濃度浸炭焼入れ処理を施す第3工程とよりなる。
【0019】
実施例5〜10
JIS SUJ2を用いて自動車エンジン用ロッカアームのローラ支持軸の素材を6個分つくり、これらの素材のうちの2個分に熱処理条件1で熱処理を施すとともに、残りの4個分に熱処理条件2で熱処理を施した。ついで、各素材に160℃で2時間加熱して焼戻し処理を施した後、各素材の表面を研磨し、その研磨量を変えることにより、表面部の性状の異なる6個の自動車エンジン用ロッカアームのローラ支持軸を製造した。なお、上記焼戻しは、焼入れ処理の後、素材の靭性を向上させるために一般的に行われている工程であるので、図示は省略している。
【0020】
比較例1〜4
JIS SUJ2を用いて自動車エンジン用ロッカアームのローラ支持軸の素材を4個分つくり、これらの素材に図3に示す条件(熱処理条件3)で熱処理を施した。ついで、各素材の表面を研磨し、その研磨量を変えることにより、表面部の性状の異なる4個の自動車エンジン用ロッカアームのローラ支持軸を製造した。
【0021】
上記熱処理条件3は、830℃で0.5時間加熱した後油冷して焼入れ処理を施す第1工程と、180℃で2時間加熱して焼戻し処理を施す第2工程とよりなる。
【0022】
比較例5〜8
JIS SUJ2を用いて自動車エンジン用ロッカアームのローラ支持軸の素材を4個分つくり、これらの素材に図4に示す条件(熱処理条件4)で熱処理を施した。ついで、各素材に160℃で2時間加熱して焼戻し処理を施した後、各素材の表面を研磨し、その研磨量を変えることにより、表面部の性状の異なる4個の自動車エンジン用ロッカアームのローラ支持軸を製造した。なお、上記焼戻しは、焼入れ処理の後、素材の靭性を向上させるために一般的に行われている工程であるので、図示は省略している。
【0023】
上記熱処理条件4は、流動層炉を用いて行ったものであり、流動化ガスとしてN2 ガスを流量が3.5×10-43 /sとなるように供給するとともにC3 8 ガスを流量が1.5×10-43 /sとなるように供給しつつ(雰囲気中のC3 8 濃度は30vol %である)、930℃で3時間加熱した後、80℃に油冷して浸炭焼入れ処理を施す第1工程と、流動化ガスとしてN2 ガスを流量が5.0×10-43 /sとなるように供給しつつ、830℃で0.5時間加熱した後、80℃に油冷して焼入れ処理を施す第2工程と、流動化ガスとしてN2 ガスを流量が5.0×10-43 /sとなるように供給しつつ、830℃で0.5時間加熱した後、80℃に油冷して焼入れ処理を施す第3工程と、流動化ガスとしてN2 ガスを流量が4.2×10-43 /sとなるように供給するとともにC3 8 ガスを流量が0.8×10-43 /sとなるように供給しつつ(雰囲気中のC3 8 濃度は16vol %である)、930℃で5時間加熱した後、80℃に油冷して高濃度浸炭焼入れ処理を施す第4工程と、流動化ガスとしてN2 ガスを流量が5.0×10-43 /sとなるように供給しつつ、830℃で0.5時間加熱した後、80℃に油冷して焼入れ処理を施す第5工程とよりなる。
【0024】
上記実施例1〜10および比較例1〜8のローラ支持軸の表面部の表面硬さ、表面部のC量、浸炭層の炭化物面積率、同じく炭化物の平均粒径、同じく粒径10μm以下の球状炭化物量、および同じく残留オーステナイト量(γR)を表1および表2に示す。
【0025】
【表1】

Figure 0003787674
【0026】
【表2】
Figure 0003787674
【0027】
評価試験
上記実施例1〜10および比較例1〜8のローラ支持軸を用いて、次のようにして摩耗試験を行った。すなわち、まずJIS SUJ2を用いて自動車エンジン用ロッカアームのローラの素材を18個分つくり、これらの素材に図3に示す条件(熱処理条件3)で熱処理を施した後、各素材の表面を研磨し、その研磨量を変えることにより、表面部の性状の異なる18個の自動車エンジン用ロッカアームのローラを製造した。ついで、実施例1〜10および比較例1〜8のローラ支持軸に上記ローラを取付けてなるロッカアームを自動車用ガソリンエンジンに組み付けた。そして、潤滑油としてモータオイル(10W−30)を使用し、油温を60℃に設定してエンジンをかけ、200時間経過した後のローラ支持軸の摩耗深さを測定するとともに、ピーリング発生の有無を観察した。その結果も表1および表2に示す。また、表面硬さと摩耗深さとの関係を図5に示す。
【0028】
表1および表2、ならびに図5から明らかなように、本発明品は、耐摩耗性が優れていることが分かる。しかも、表1および表2から明らかなように、本発明品は、ピーリングが発生しておらず、損傷抑制効果が、従来品に比べて著しく向上し、長寿命化を達成できることが分かる。
【0029】
上記実施例においては、材料となる鋼として、SAE5120およびJIS SUJ2だけが挙げられているが、これに限定されるものではない。
【図面の簡単な説明】
【図1】実施例の熱処理条件1を示す線図である。
【図2】実施例の熱処理条件2を示す線図である。
【図3】比較例の熱処理条件3を示す線図である。
【図4】比較例の熱処理条件4を示す線図である。
【図5】実施例および比較例における表面硬さと摩耗深さとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding part, and more particularly, to a sliding part suitable for use as, for example, a sliding bearing part, a roller support shaft of a rocker arm for an automobile engine, a roller cam follower, an automobile engine cam lifter, or a one-way clutch. .
[0002]
[Prior art]
Conventionally, as this kind of sliding parts, those made of high-hardness steel such as JIS SUJ2 and whose surface hardness is increased by shot peening the surface portion have been used.
[0003]
[Problems to be solved by the invention]
However, it has been found that conventional sliding parts have the following problems. That is, the increase in surface hardness due to shot peening causes a decrease in toughness, but there is a problem that although the wear resistance is improved, the impact resistance is decreased and the crack growth rate is increased. Further, when the sliding part generates heat during use and a tempering phenomenon occurs, there is a problem that the retained austenite undergoes martensitic transformation, the dimensions expand, and seizure occurs.
[0004]
An object of the present invention is to provide a sliding component that solves the above-described problems and that has improved wear resistance and that is less likely to seize without impairing toughness.
[0005]
[Means for Solving the Problems and Effects of the Invention]
The sliding component according to the present invention is made of steel and subjected to heat treatment including carburizing treatment so that the surface portion C is 0.9 to 1.42 % by weight and the surface hardness is Rockwell C hardness. 63 or more, fine spherical carbide is precipitated in the carburized layer, the average particle size of the spherical carbide is 3 μm or less, and the amount of the spherical carbide is 13.5 to 40% in terms of area ratio. The particle size of 70% or more is 10 μm or less, and the amount of retained austenite of the carburized layer is 13 to 40%.
[0006]
In the above, the sliding component is usually used after the sliding surface is subjected to a polishing finish of about several tens to several hundreds of μm. Therefore, in the above description, the surface portion in which C is 0.9 to 1.42 % by weight means the portion from the outermost surface after the polishing finishing treatment to a portion having a depth of 50 μm. Note that the depth of the carburized layer is considerably deeper than the polishing amount, and therefore the properties of the carburized layer are not affected by the polishing.
[0007]
In the sliding part, the amount of C in the surface portion, the surface hardness, the average particle size of the spherical carbide, the amount of the spherical carbide having a particle size of 10 μm or less, the amount of spherical carbide (area ratio), and the residual carburized layer The reason for limiting the amount of austenite is as follows.
[0008]
If the amount of C in the surface portion is less than 0.9% by weight, the carbide cannot be uniformly dispersed. If it exceeds 1.42 % by weight, the amount of coarse carbide and the amount of retained austenite in the surface portion Increases and the strength decreases. When C collects on the surface part of the sliding part, the carbides generated here become coarse, so in reality, spherical carbides with a particle size exceeding 10 μm are about 40% of the total, and in some cases the maximum particle size is As a result, the stress concentrates on the spherical carbide having a particle diameter of more than 10 μm, and there is a possibility that fracture occurs from this portion. Therefore, the amount of C in the surface portion should be selected within the range of 0.9 to 1.42 % by weight.
[0009]
Surface hardness If the surface hardness is less than 63 in terms of Rockwell C hardness (hereinafter referred to as HRC), the surface hardness is not sufficient, wear resistance is reduced, and the life of the sliding part is shortened. Shorter. Therefore, the surface hardness should be HRC63 or higher. Note that the upper limit of the surface hardness is preferably about HRC68 in consideration of toughness.
[0010]
The average particle size of spherical carbide and the amount of spherical carbide having a particle size of 10 μm or less When the average particle size of spherical carbide exceeds 10 μm, the amount of spherical carbide exceeding 10 μm is about 80% of the total As a result, stress concentrates on the spherical carbide having a particle diameter exceeding 10 μm, and there is a possibility that fracture occurs from this portion. Therefore, the average particle size of the spherical carbide should be 10 μm or less, preferably 3 μm or less. Further, if the amount of spherical carbide having a particle size of 10 μm or less is less than 70%, the amount of spherical carbide having a particle size exceeding 10 μm is 30% or more of the total, and in some cases the maximum particle size is 20 μm, As a result, stress concentrates on the spherical carbide having a particle diameter exceeding 10 μm, and there is a possibility that fracture occurs from this portion. Therefore, the amount of spherical carbide having a particle size of 10 μm or less should be 70% or more of the entire spherical carbide.
[0011]
Amount of spherical carbide (area ratio)
If the amount of spherical carbide exceeds 40% in area ratio, the strength of the carburized layer matrix decreases, so the amount of spherical carbide should be 40% or less, preferably 25% or less in area ratio. The lower limit of the amount of spherical carbide should be 13.5%. Here, the area ratio refers to an average value of the above five area ratios by observing the area ratios of five 40 × 30 μm visual fields observed at 3000 times by image analysis.
[0012]
Residual austenite amount If the retained austenite amount is less than 13%, the toughness is reduced and the crack growth rate is increased to reduce the life of the sliding part. If the amount exceeds 40%, the necessary hardness is ensured. I can't. Therefore, the amount of retained austenite should be selected within the range of 13-40%.
[0013]
In the sliding part of the present invention, as the heat treatment including carburizing treatment applied to the material steel, for example, a first step of performing carburizing treatment or carburizing and quenching treatment, and applying a quenching treatment to form fine spherical carbide in the carburized layer. There is a method comprising a second step of precipitation and a third step of performing high-concentration carburizing and quenching treatment so that the carbon concentration of the surface portion is higher than the carbon concentration of the surface portion obtained in the first step. . The heating temperature in the third step is preferably not more than the heating temperature in the second step. This is because if the heating temperature in the third step is higher than the heating temperature in the second step, a part of the carbide precipitated in the second step may be dissolved in the matrix. This method will be described more specifically as follows. That is, in a carburizing atmosphere containing 10 to 17% by volume of C 3 H 8 , after heating at a temperature of 930 to 950 ° C. for 3 to 5 hours and then oil-cooling, and at a temperature of 800 to 840 ° C., 0.5 to After heating for 0.8 hours, in a second step of oil cooling, in a carburizing atmosphere containing 10 to 17 vol% of C 3 H 8 , the temperature is 790 to 840 ° C. and is equal to or lower than the heating temperature of the second step. This is a method comprising a third step of oil cooling after heating for 5 hours. In the third step, after heating in a carburizing atmosphere containing 10 to 17 vol% of C 3 H 8 at a temperature of 790 to 820 ° C. and a temperature not higher than the heating temperature of the second step for 3 to 5 hours, the temperature is raised. It is preferable to heat at a temperature of 830 to 840 ° C. for 0.5 to 0.8 hours and then cool with oil. In this case, it becomes possible to increase the amount of carbide without coarsening of the carbide.
[0014]
According to the sliding component of the present invention, it is made of steel and subjected to heat treatment including carburizing treatment so that the surface portion C is 0.9 to 1.42 % by weight and the surface hardness is Rockwell C hardness. The fine spherical carbide is precipitated in the carburized layer, the average particle size of the spherical carbide is 3 μm or less, and the amount of the spherical carbide is 13.5 to 40% by area ratio. The particle size of 70% or more of the carbide is 10 μm or less, and the amount of retained austenite of the carburized layer is 13 to 40%, so that the strength and hardness of the core is ensured and the toughness is reduced. Is prevented. In particular, the surface portion C is 0.9 to 1.42 % by weight, the surface hardness is Rockwell C hardness 63 or more, fine spherical carbide is precipitated in the carburized layer, The average particle size is 10 μm or less and the amount thereof is 13.5 to 40% by area ratio, the particle size of 70% or more of the spherical carbide is 10 μm or less, and the amount of retained austenite is 13 to Since it is 40%, the wear resistance of this sliding part is improved and the life is extended. And the fall of toughness is prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described together with comparative examples.
[0016]
Examples 1-4
4 pieces of making material of the roller support shaft of the rocker arm for an automobile engine using SAE5120, with heat treatment in these materials under the conditions shown in Figure 1 in one minute of the (heat treatment condition 1), the remaining three Heat treatment was performed on the condition shown in FIG. 2 (heat treatment condition 2). Next, each material is heated at 160 ° C. for 2 hours and tempered, then the surface of each material is polished, and the amount of polishing is changed to produce four roller support shafts with different surface properties. did. In addition, since the said tempering is a process generally performed in order to improve the toughness of a raw material after a hardening process, illustration is abbreviate | omitted.
[0017]
The heat treatment condition 1 is performed using a fluidized bed furnace. N 2 gas is supplied as a fluidizing gas so that the flow rate is 4.5 × 10 −4 m 3 / s and C 3 H 8 is used. While supplying the gas at a flow rate of 0.5 × 10 −4 m 3 / s (the C 3 H 8 concentration in the atmosphere is 10 vol%), after heating at 930 ° C. for 3 hours, A first step of carburizing and quenching by oil cooling, and supplying N 2 gas as a fluidizing gas at a flow rate of 5.0 × 10 −4 m 3 / s, at 840 ° C. for 0.5 hour After heating, the second step of quenching by oil cooling to 80 ° C. and supplying N 2 gas as fluidizing gas so that the flow rate becomes 4.2 × 10 −4 m 3 / s and C 3 While supplying H 8 gas at a flow rate of 0.8 × 10 −4 m 3 / s (the C 3 H 8 concentration in the atmosphere is 16 vol%), 830 It consists of a third step of heating at 80 ° C. for 5 hours, followed by oil cooling to 80 ° C. and applying a high-concentration carburizing and quenching treatment.
[0018]
The heat treatment condition 2 is performed using a fluidized bed furnace. N 2 gas is supplied as a fluidizing gas so that the flow rate is 4.5 × 10 −4 m 3 / s and C 3 H 8 is used. While supplying the gas at a flow rate of 0.5 × 10 −4 m 3 / s (the C 3 H 8 concentration in the atmosphere is 10 vol%), after heating at 930 ° C. for 3 hours, A first step of carburizing and quenching by oil cooling, and supplying N 2 gas as a fluidizing gas at a flow rate of 5.0 × 10 −4 m 3 / s, at 840 ° C. for 0.5 hour After heating, oil cooling to 80 ° C. and second quenching treatment, and N 2 gas as a fluidizing gas are supplied at a flow rate of 4.5 × 10 −4 m 3 / s and C 3 While supplying H 8 gas at a flow rate of 0.5 × 10 −4 m 3 / s (the C 3 H 8 concentration in the atmosphere is 10 vol%), 830 It consists of a third step of heating at 80 ° C. for 5 hours, followed by oil cooling to 80 ° C. and applying a high-concentration carburizing and quenching treatment.
[0019]
Examples 5-10
JIS SUJ2 is used to make 6 roller support shaft materials for the rocker arm for automobile engines, heat treatment condition 1 is applied to 2 of these materials, and heat treatment condition 2 is applied to the remaining 4 parts. Heat treatment was applied. Next, after each material was heated at 160 ° C. for 2 hours and tempered, the surface of each material was polished and the amount of polishing was changed, so that six rocker arms for automobile engines with different surface properties were obtained. A roller support shaft was manufactured. In addition, since the said tempering is a process generally performed in order to improve the toughness of a raw material after a hardening process, illustration is abbreviate | omitted.
[0020]
Comparative Examples 1-4
Using JIS SUJ2, four materials for roller support shafts of the rocker arm for automobile engines were made, and these materials were heat-treated under the conditions shown in FIG. 3 (heat treatment condition 3). Then, the roller support shafts of four rocker arms for automobile engines having different surface properties were manufactured by polishing the surface of each material and changing the polishing amount.
[0021]
The heat treatment condition 3 consists of a first step of heating at 830 ° C. for 0.5 hours and then oil cooling and quenching, and a second step of heating at 180 ° C. for 2 hours and tempering.
[0022]
Comparative Examples 5-8
Using JIS SUJ2, four materials for the roller support shafts of the rocker arm for automobile engines were made, and these materials were subjected to heat treatment under the conditions shown in FIG. 4 (heat treatment condition 4). Next, after each material was heated at 160 ° C. for 2 hours to be tempered, the surface of each material was polished, and the amount of polishing was changed, so that four rocker arms for automobile engines with different surface properties were obtained. A roller support shaft was manufactured. In addition, since the said tempering is a process generally performed in order to improve the toughness of a raw material after a hardening process, illustration is abbreviate | omitted.
[0023]
The heat treatment condition 4 is performed using a fluidized bed furnace. N 2 gas is supplied as a fluidizing gas so that the flow rate is 3.5 × 10 −4 m 3 / s and C 3 H 8 is used. While supplying the gas at a flow rate of 1.5 × 10 −4 m 3 / s (the C 3 H 8 concentration in the atmosphere is 30 vol%), after heating at 930 ° C. for 3 hours, The first step of carburizing and quenching by oil cooling, and supplying N 2 gas as fluidizing gas at a flow rate of 5.0 × 10 −4 m 3 / s, at 830 ° C. for 0.5 hour After heating, the second step of performing oil quenching at 80 ° C. and quenching, and supplying N 2 gas as a fluidizing gas at a flow rate of 5.0 × 10 −4 m 3 / s, 830 after heating 0.5 hours at ° C., 80 a third step of performing hardening treatment cooled oil ° C., fluidization flow rate 4.2 × 1 N 2 gas as the gas -4 m 3 / s is supplied so that while supplying to the flow of C 3 H 8 gas is 0.8 × 10 -4 m 3 / s (C 3 H 8 concentration in the atmosphere is 16vol 4), after heating at 930 ° C. for 5 hours, oil-cooling to 80 ° C. and subjecting to high-concentration carburizing and quenching, and N 2 gas as a fluidizing gas at a flow rate of 5.0 × 10 −4 This is a fifth step in which heating is performed at 830 ° C. for 0.5 hour while supplying at m 3 / s, followed by oil cooling to 80 ° C. and quenching.
[0024]
The surface hardness of the surface part of the roller support shaft of Examples 1 to 10 and Comparative Examples 1 to 8, the amount of C in the surface part, the carbide area ratio of the carburized layer, the average particle diameter of the carbide, and the particle diameter of 10 μm or less. Table 1 and Table 2 show the amount of spherical carbide and the amount of retained austenite (γR).
[0025]
[Table 1]
Figure 0003787674
[0026]
[Table 2]
Figure 0003787674
[0027]
Evaluation Test Using the roller support shafts of Examples 1 to 10 and Comparative Examples 1 to 8, a wear test was performed as follows. That is, first, JIS SUJ2 was used to make 18 materials for the rocker arm rollers for automobile engines, and after these materials were heat treated under the conditions shown in FIG. 3 (heat treatment condition 3), the surface of each material was polished. By changing the amount of polishing, 18 rocker arm rollers for automobile engines having different surface properties were manufactured. Subsequently, the rocker arm which attached the said roller to the roller support shaft of Examples 1-10 and Comparative Examples 1-8 was assembled | attached to the gasoline engine for motor vehicles. Then, motor oil (10W-30) is used as the lubricating oil, the engine temperature is set to 60 ° C., the engine is started, the wear depth of the roller support shaft after 200 hours has passed, and peeling occurs. The presence or absence was observed. The results are also shown in Tables 1 and 2. Moreover, the relationship between surface hardness and wear depth is shown in FIG.
[0028]
As is apparent from Tables 1 and 2 and FIG. 5, it can be seen that the product of the present invention has excellent wear resistance. Moreover, as is apparent from Tables 1 and 2, the product of the present invention has no peeling, and it can be seen that the damage suppressing effect is remarkably improved as compared with the conventional product, and a longer life can be achieved.
[0029]
In the said Example, although only SAE5120 and JIS SUJ2 are mentioned as steel used as a material, it is not limited to this.
[Brief description of the drawings]
FIG. 1 is a diagram showing heat treatment condition 1 of an example.
FIG. 2 is a diagram showing a heat treatment condition 2 of the example.
FIG. 3 is a diagram showing a heat treatment condition 3 of a comparative example.
FIG. 4 is a diagram showing a heat treatment condition 4 of a comparative example.
FIG. 5 is a graph showing the relationship between surface hardness and wear depth in Examples and Comparative Examples.

Claims (2)

鋼よりなり、浸炭処理を含む熱処理が施されて表面部のCが0.9〜1.42重量%となされるとともに、表面硬さがロックウェルC硬さで63以上となされ、浸炭層に微細球状炭化物が析出させられ、球状炭化物の平均粒径が3μm以下でかつ球状炭化物の量が面積率で13.5〜40%となされているとともに、球状炭化物の70%以上の粒径が10μm以下となされており、さらに浸炭層の残留オーステナイト量が13〜40%となされていることを特徴とする摺動部品。Made of steel and subjected to heat treatment including carburizing treatment, the surface portion C is 0.9 to 1.42 % by weight and the surface hardness is 63 or more in Rockwell C hardness, Fine spherical carbide is precipitated, the average particle size of the spherical carbide is 3 μm or less, the amount of the spherical carbide is 13.5 to 40% in terms of area ratio, and the particle size of 70% or more of the spherical carbide is 10 μm. A sliding component characterized in that the amount of retained austenite of the carburized layer is 13 to 40%. 浸炭層における球状炭化物の平均粒径が3μm以下で、かつ球状炭化物の量が面積率で25%以下となされている請求項1の摺動部品。The sliding component according to claim 1, wherein the average particle diameter of the spherical carbide in the carburized layer is 3 µm or less, and the amount of the spherical carbide is 25% or less in terms of area ratio .
JP15934799A 1999-06-07 1999-06-07 Sliding parts Expired - Fee Related JP3787674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15934799A JP3787674B2 (en) 1999-06-07 1999-06-07 Sliding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15934799A JP3787674B2 (en) 1999-06-07 1999-06-07 Sliding parts

Publications (2)

Publication Number Publication Date
JP2000345299A JP2000345299A (en) 2000-12-12
JP3787674B2 true JP3787674B2 (en) 2006-06-21

Family

ID=15691868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15934799A Expired - Fee Related JP3787674B2 (en) 1999-06-07 1999-06-07 Sliding parts

Country Status (1)

Country Link
JP (1) JP3787674B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060797A (en) 2002-07-30 2004-02-26 Koyo Seiko Co Ltd Roller member and its manufacturing method
JP4743067B2 (en) * 2006-09-29 2011-08-10 株式会社デンソー Scroll compressor

Also Published As

Publication number Publication date
JP2000345299A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JP4022607B2 (en) Manufacturing method of high surface pressure resistant member
US6325867B1 (en) Rolling bearing and heat treatment method therefor
US8562767B2 (en) Method of heat treating a steel bearing component
EP1837413B1 (en) Rolling-sliding elements and process for production of the same
JPH0578814A (en) Rolling bearing
JPH0826446B2 (en) Rolling bearing
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
EP1725693B1 (en) Method for carburizing a steel article with improved wear resistance
JP4217818B2 (en) Rolling bearing, and rolling ring bearing ring and rolling element manufacturing method
US20070240791A1 (en) Rolling, sliding part and process for producing same
JP2002180203A (en) Needle bearing components, and method for producing the components
JP3845843B2 (en) Rolling and sliding parts and manufacturing method thereof
JP3787674B2 (en) Sliding parts
EP1400606B1 (en) Method of carburizing a bearing steel to produce a roller member
JP3013452B2 (en) Rolling bearing
JP3700044B2 (en) Rolling parts
JP2008163414A (en) Rolling member and manufacturing method for the same
JP3959627B2 (en) Inner ring or outer ring having cam surface in one-way clutch and manufacturing method thereof
JP2002212642A (en) Gas carburized hardening method of rolling-formed parts and rolling-formed parts obtained with this method
EP1001181B1 (en) Rolling or sliding parts
JPH05240253A (en) Mechanical part having rolling body
JP2004059994A (en) Rolling-sliding contact part and method for producing the same
JP4066780B2 (en) Rolling and sliding contact parts and manufacturing method thereof
JP2004285460A (en) Rolling and/or sliding parts, and manufacturing method
JPH0972342A (en) Rolling bearing member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees