JP3785367B2 - 圧縮機への電流及び静電容量の供給を制御する装置並びに方法 - Google Patents

圧縮機への電流及び静電容量の供給を制御する装置並びに方法 Download PDF

Info

Publication number
JP3785367B2
JP3785367B2 JP2001537157A JP2001537157A JP3785367B2 JP 3785367 B2 JP3785367 B2 JP 3785367B2 JP 2001537157 A JP2001537157 A JP 2001537157A JP 2001537157 A JP2001537157 A JP 2001537157A JP 3785367 B2 JP3785367 B2 JP 3785367B2
Authority
JP
Japan
Prior art keywords
current
capacitance
switch
compressor
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001537157A
Other languages
English (en)
Other versions
JP2003515306A (ja
Inventor
スン クワン クオン,
スン ヨプ イム,
キョン ヨル ノー,
チャン ウン アン,
カム ギュ イ,
Original Assignee
エルジー エレクトロニクス インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019990050263A external-priority patent/KR100335381B1/ko
Priority claimed from KR10-2000-0037565A external-priority patent/KR100371340B1/ko
Priority claimed from KR10-2000-0037570A external-priority patent/KR100371342B1/ko
Priority claimed from KR10-2000-0037563A external-priority patent/KR100371339B1/ko
Priority claimed from KR10-2000-0037562A external-priority patent/KR100371338B1/ko
Priority claimed from KR1020000037564A external-priority patent/KR100347923B1/ko
Priority claimed from KR1020000037566A external-priority patent/KR100347924B1/ko
Application filed by エルジー エレクトロニクス インコーポレーテッド filed Critical エルジー エレクトロニクス インコーポレーテッド
Publication of JP2003515306A publication Critical patent/JP2003515306A/ja
Publication of JP3785367B2 publication Critical patent/JP3785367B2/ja
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • H02P1/445Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor by using additional capacitors switched at start up
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/423Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by using means to limit the current in the main winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【0001】
(技術分野)
本発明は圧縮機への電流及び静電容量の供給を制御する装置並びに方法に関する。
【0002】
(背景技術)
図1は従来技術による圧縮機への電流及び静電容量の供給を制御する装置を示すダイアグラムである。
【0003】
図1に示すように、従来圧縮機への電流及び静電容量の供給を制御する装置は、常用電圧源1と、圧縮機の制御信号に従ってオンまたはオフ動作を行う第1継電器2と、その第1継電器2のターンオン動作により、常用電圧源1を介して供給される常用電圧の無効電力を吸収し、圧縮機モータMの主巻線C1に常用電圧を印加するリアクタ3と、リアクタ3の電圧を監視するための第2継電器4と、第2継電器4によって開放または閉鎖されるようにリアクタ3と並列結合される第1接点部4aと、リアクタ3と並列に接続される運転用キャパシタ5と、運転用キャパシタ5と並列結合される始動用キャパシタ6と、始動時電圧を監視するための第3継電器7と、第3継電器によって開放または閉鎖されるように第2継電器4の先端に設けられる第2接点部7aと、そして、始動用キャパシタの後端に設けられる第3接点部7bとで構成されている。
【0004】
以下で図1の構成による装置の動作を説明する。
【0005】
まず、圧縮機の制御信号が印加されると、第1継電器2がターンオンされつつ、リアクタ3を介して圧縮機モータMの主巻線C1に電圧が供給される。この際、主巻線C1に供給される電圧はリアクタ3によって無効電力が除去された値である。また、圧縮機モータMの補助巻線には、第3接点部7bの閉鎖による運転用キャパシタ5と始動用キャパシタ6の並列回路構造を介して常用電圧が供給される。
【0006】
一方、図1の領域8の動作を参照すると、圧縮機の始動初期には圧縮機モータMが回転しないため、第3継電器7に印加される電圧が低く、第3継電器7が作動しない。また、圧縮機モータMが回転しつつ第3継電器7にかかる電圧が上昇して圧縮機モータMの回転数が一定値以上になると、第3継電器7が作動し、これに従って第2接点部7aは閉鎖され、第3接点部7bは開放される。従って、第2接点部7aの閉鎖動作により第2継電器4が作動するので、第1接点部4aが閉鎖動作してリアクタ3は短絡され、第3接点部7bの開放動作により始動用キャパシタ6は回路から分離される。即ち、始動瞬間はリアクタ3が圧縮機モータMと直列に連結され、過多な電流を制限し、始動用キャパシタ6は始動時補助巻線C2に提供される容量を大きくして圧縮機の始動特性を改選させる。
【0007】
しかし、従来技術による圧縮機への電源供給制御装置は次のような短所がある。
【0008】
第一、始動容量制御領域8の不良が頻繁に発生する。
【0009】
第二、圧縮機の電源供給装置は主に機械的構成となっているため相当の費用がかかる。
【0010】
第三、始動時圧縮機モータMの回転による電圧上昇によって始動制御を完了するので、始動電流の制限が正確に行われず、始動特性が良くない。
【0011】
第四、圧縮機の始動時、過度電流が発生すると遮断機が作動し、圧縮機の周辺機器に悪影響を与えるだけでなく、圧縮機を元の状態に復帰させるにも不便である。
【0012】
本発明は上記従来問題点を解決するためのもので、圧縮機の始動時、その圧縮機の主巻線に過度電流が流れることを防止することのできる圧縮機への電流及び静電容量の供給を制御する装置並びに方法を提供することに目的がある。
【0013】
本発明の他の目的は、外部からの常用電圧の変動に係わらず、圧縮機へ安定した電圧を供給できる圧縮機への電流及び静電容量の供給制御装置並びに方法を提供することにある。
【0014】
本発明のまた他の目的は、圧縮機の始動時及び運転時、急激な電流の集中による内部接点の破損を防止できる圧縮機への電流及び静電容量の供給制御装置並びに方法を提供することにある。
【0015】
本発明のまた他の目的は、圧縮機外部の温度状態及び季節に符合するよう安定的に圧縮機へ電流及び静電容量を供給できる圧縮機への電流及び静電容量の供給制御装置並びに方法を提供することにある。
【0016】
本発明のまた他の目的は、圧縮機の始動特性を改選できる圧縮機への電流及び静電容量の供給制御装置並びに方法を提供することにある。
【0017】
上記目的を達成するための本発明の装置並びに方法によれば、制御信号発生部は、まず、外部常用電圧の状態、つまり常用電圧の大きさ及び周波数を感知する。 次いで、圧縮機の始動時と始動後を区分する。それから、印加された外部常用電圧が既設定値より高いか低いかによって、異なるように電流制御のための位相制御信号を発生する。
【0018】
そして、制御信号発生部は始動時及び始動後によって異なるように圧縮機の主巻線及び始動用補助巻線に供給される外部常用電圧の大きさを制御するように内部回路を変更するためのスイッチング制御信号を提供する。
【0019】
また、制御信号発生部は圧縮機の外部温度、季節及び現在圧縮機のモータへ供給される電源の状態に応じて、可変的にスイッチング制御信号及び位相制御信号を発生できる。
【0020】
一方、本発明における制御信号発生部は位相制御方法として常用電圧による電流の供給を制御する。また、本発明では電圧による電流の位相を制御するためにトライアクまたは負温度計数器を使用する。
【0021】
電流制御部は位相制御信号に応答して電流の位相を制御すると共に、内部回路の構成を可変とすることにより、圧縮機の始動時には主巻線に常用電圧による電流を制限して供給し、始動後は常用電圧による電流を正常に供給する。
【0022】
一方、静電容量制御部は制御信号に応答して内部回路の構成を可変とすることにより、始動時には始動用補助巻線に始動用静電容量と運転用静電容量を供給し、
始動後は運転用静電容量のみを供給する。
【0023】
電流制御部及び静電容量制御部は、制御信号に応答して内部構成を可変とするために各々スイッチを備え、制御信号発生部は始動時及び始動後によって異なるようにスイッチング制御信号を発生し、そのスイッチング制御信号に応答してスイッチは反対に動作する。
【0024】
以下、本発明の実施例を詳細に説明する。
【0025】
図2は本発明による圧縮機への電源供給を制御する装置の概念図である。
【0026】
図2の装置は圧縮機の全動作を制御する第1制御部11と、常用電圧を提供する常用電圧源12と、第1制御部11の圧縮機駆動信号に応答して駆動するスイッチ13と、常用電圧源の状態及び、始動前後によって、圧縮機14の主巻線15及び補助巻線16へ供給される常用電圧源12を制御するための制御信号を提供する制御信号発生部17と、制御信号に応答して、始動中には主巻線に常用電圧による電流を制限して供給し、始動後は電流を正常に供給する電流制御部18と、そして、制御信号に応答して、始動中には始動用静電容量及び運転用静電容量を補助巻線に供給し、始動後は運転用静電容量のみを供給する静電容量制御部19とで構成されている。
【0027】
(第1実施例)
図3は本発明の第1実施例による圧縮機への電流及び静電容量の供給を制御する装置の構成を示すダイアグラムである。
【0028】
図3の装置は常用電圧源21と、圧縮機25の全体動作を制御し、使用者の選択によって圧縮機25の駆動オン/オフ信号を提供する第1制御部22と、圧縮機の駆動オン/オフ信号に応答してスイッチングされ、圧縮機25へ常用電圧による電流を供給する第1スイッチ23と、常用電圧の状態及び、圧縮機の始動時と始動後によって異なる位相制御信号及びスイッチング制御信号を発生する第2制御部24と、スイッチング制御信号に応答して内部回路の構成を変更し、位相制御信号に応答して常用電圧による電流の位相を制御することにより、圧縮機25の主巻線26に始動時には電流を制限して供給し、始動後は正常に電流を提供する電流制御部27と、そして、スイッチング制御信号に応答して内部回路を変更することで、圧縮機25の補助巻線28に始動時には始動用静電容量及び運転用静電容量を供給し、始動後は運転用静電容量のみを提供する静電容量制御部29とで構成されている。一方、電流制御部27は位相制御信号及びスイッチング制御信号に応答して、始動スタートから始動完了の間で、圧縮機26に次第に増加する方向に電流を供給する。また、電流制御部27は、スイッチング制御信号に応答して、第1スイッチ23の出力側と主巻線26との間でスイッチングオン/オフされる第2スイッチ31と、そして、第2スイッチ31の入力接点及び出力接点の間に並列接続され、第2スイッチ31のスイッチングオン/オフ状態及び位相制御信号に従って、主巻線26へ供給される電流の位相を制御する位相制御部30とで構成されている。静電容量制御部29は、スイッチング制御信号に応答して第2スイッチ31とは反対にスイッチングオン/オフされ、入力接点が位相制御部30の出力端子及び第2スイッチ31の出力接点に接続される第3スイッチ32と、そして、第1入力端子が第3スイッチ32の出力接点に、第2入力端子が第1スイッチ23の出力接点に、出力端子が補助巻線28の間に接続され、第3スイッチ32のスイッチングオンまたはオフ状態に応じて、補助巻線28に静電容量を提供する静電容量発生部35とで構成されている。一方、スイッチング制御信号に応答して、第2スイッチ31は、圧縮機25の始動時、位相制御部30を介して接続し、始動後時、第1のスイッチ23の出力接点および主巻線26を接続させるように動作可能である。始動時は、第3のスイッチ32は、スイッチング制御信号に応答してスイッチングされ、静電容量発生部35を介して、位相制御部30の出力端子および第1スイッチ23の出力接点を補助巻線28に接続させる。その結果、静電容量発生部35は、始動するための始動用静電容量および運転用静電容量を有する。これに対して、始動後では、第3のスイッチ32がスイッチングされ、静電容量発生部35を介して、第1スイッチ23の出力接触点を補助巻線28に接続させる。その結果、静電容量発生部35は、始動時と比較して小さい運転用静電容量のみを生成する。静電容量制御部29内の静電容量発生部35は、第3スイッチ32の出力接点と補助巻線28との間に接続された始動用キャパシタ33と、始動用キャパシタ33と並列接続された、第1スイッチ23の出力接点と補助巻線28との間に接続された運転用キャパシタ34とを備える。一方、スイッチング制御信号に応答して、第2スイッチ31は圧縮機25の始動時、第1スイッチ23の出力接点と主巻線26を位相制御部30を介して接続させ、始動後は第1スイッチ23の出力接点と主巻線26が直接接続するように電流制御部27の内部回路を変更する。そして、スイッチング制御信号に応答して、第3スイッチ32はスイッチングされ、始動時は静電容量発生部35が大きな静電容量を提供するように、始動後には相対的に少ない運転用静電容量を有するように静電容量制御部29の内部回路を変更させる。上述した通り、位相制御部としてのトライアク30は、第2制御部24の位相制御信号がそれのゲートに印加され、常用電圧による電流の位相を制御する。通常、ゲート電圧はパルス形態で提供され、印加された常用電圧が基準値より低いとき、パルス信号は大きなデューティレシオを有し、印加された常用電圧が基準値より高いとき、パルス信号は小さいデューティレシオを有する。静電容量発生部35は、圧縮機25の始動中には始動用キャパシタ33と運転用キャパシタ34は第3スイッチ32のスイッチング動作によって始動トルク容量を提供するために互いに並列接続されるが、始動後は運転用キャパシタ34のみが使用される。
【0029】
図4は図3の詳細な回路を示すダイアグラムである。
【0030】
図4で、トランス39は常用電圧源21から所望の大きさを有する電圧を得る。電圧感知部36は入力された常用電圧の大きさを感知して第2制御部24に提供する。周波数感知部37はトランスから提供された電圧から外部常用電圧の周波数を感知して第2制御部24に提供する。第2制御部24は電圧感知部36及び周波数感知部37を介して感知された外部常用電圧の大きさ及び周波数に基づき、異なる制御信号、つまりスイッチング制御信号及び位相信号を発生し、その制御信号を電流制御部27及び静電容量制御部29に提供する。結局、圧縮機25が始動される間、始動用補助巻線28には、電流制御部27の出力電流を用いた始動用静電容量及び、常用電圧による電流を用いた運転用静電容量が提供され、主巻線26へは常用電圧による電流が制限的に提供される。しかし、印加された常用電圧の大きさが変動すると、第2制御部24及び電流制御部27によって主巻線26には常に一定の電流が流れる。一方、圧縮機25の始動後は、始動用補助巻線28に運転用静電容量が提供され、主巻線26には常用電圧による電流が正常に提供される。上記始動時と同様に、印加された常用電圧の変動がある場合、第2制御部24は電流制御部27のトライアク30に位相制御信号を提供して、主巻線26へ流れる電流を常用電圧の変動に応じて変化させる。図4で、参照符号R1−R10は抵抗を、C1−C6はキャパシタを、D1−D6はダイオードを、Z1−Z2はツェナー・ダイオードを、PTはトライアク30のゲートに駆動電圧を提供するフォトトランジスタを示す。
【0031】
以下で、図3及び図4に基づいて本発明の第1実施例による装置の動作を詳細に説明する。
【0032】
まず、常用電圧源21を介して常用電圧が印加されると、トランス39は常用電圧から制御装置に必要な内部電圧を供給する。次いで、制御装置内の第2制御部(マイクロコンピュータ)24は初期化され、電圧感知部36は、感知された常用電圧の大きさを第2制御部24に提供する。一方、周波数感知部37は常用電圧の周波数を感知し、その感知した周波数を第2制御部24に提供する。第2制御部24はその常用電圧の大きさ及び周波数によって常用電圧の状態を判断する。次いで、第2制御部24は判断された常用電圧の状態に応じて、電流制御部27及び静電容量制御部29への提供のための位相制御信号及びスイッチング制御信号を発生させる。即ち、静電容量制御部29の始動用キャパシタ33に常用電圧を印加する始動時間を決定してスイッチング制御信号を発生し、そのスイッチング制御信号を第2スイッチ31及び第3スイッチ32に提供する。始動時このスイッチング制御信号に従って第3スイッチ32はオンされ、第2スイッチ31はオフされる。また、第2制御部24は圧縮機25の主巻線26に供給される常用電圧による電流の位相を制御するために位相制御信号を提供する。この位相制御信号に従ってトライアク30は駆動され、主巻線26に提供される電流は可変となる。前述したように、位相制御信号はトライアク30のゲートへ印加される矩形波信号として、電圧感知部36から提供された電圧によってその矩形波信号のデューティレシオが決定され、周波数感知部38から提供された周波数値によって矩形波信号の出力時点が決定される。圧縮機25の補助巻線28には始動特性を向上させるために、始動時に大きな始動用静電容量を提供することが必要である。従って、運転用キャパシタ34と始動用キャパシタ33は第3スイッチ32の動作によって互いに並列接続され、各々始動用静電容量及び運転用静電容量を形成し、これらの静電容量は始動中補助巻線28へ提供される。この際、始動用キャパシタ33には第3スイッチ32を経て電流制御部27の出力電流が提供され、運転用キャパシタ34には常用電圧による電流が提供される。一方、始動が終わると、圧縮機25の運転中、補助巻線28には第3スイッチ32のオフ(または開放)動作によって、運転用キャパシタ24による運転用静電容量のみが補助巻線28に提供される。圧縮機25の位相制御信号とスイッチング制御信号は、前述したように、入力される常用電圧の状態に応じて決定される。即ち、常用電圧が既設定過電圧より低い場合は、トライアク30のオン時間と第3スイッチ32のオン時間はより長く決定され、従って、圧縮機25は低電圧状態でも始動が良くかかる。反面、入力された常用電圧が既設定過電圧より高い場合には、トライアク30のオン時間と第3スイッチ32のオン時間はより短く決定され、これにより、主巻線26に過度な電流が流れることが防止される。位相制御信号は、周波数感知部37を介して感知された周波数信号に従ってトライアク30に供給され始める。即ち、周波数感知部37の出力信号が’0V’から’5V’に上昇した時点から第2制御部24内のタイマー(図示せず)が駆動し、常用電圧の状態により決定された矩形波形態の位相制御信号に従ってトライアク30は動作する。一方、トライアク30の位相制御信号は始動初期には制限された第1大きさの電流が流れるように、始動中期の間は、主巻線26に次第に増加電流が流れるように、そして、始動末期には常用電圧による第2大きさ(>第1大きさ)の電流が主巻線26に流れるように、トライアク30のゲートには該電圧値が位相制御信号として印加される。前述したように、第3スイッチ32がオンされ、トライアク30が一定の時間動作することで圧縮機25の始動が完了すると、第3スイッチ32はオフされ開放されるし、始動用キャパシタ33を介して補助巻線28に供給される静電容量は遮断される。従って、圧縮機25の運転中には運転用キャパシタ34を介してのみ補助巻線28へ運転用静電容量が供給される。一方、第3スイッチ32がオフされ一定の時間が経過すると、第2スイッチ31がオンされ、常用電圧による電流はトライアク30の代わりにターンオンした第2スイッチ31を介して主巻線26に流れる。この際、トライアク30は装置の安定した動作のために、第3スイッチ32がオフされ、第2スイッチ31がターンオンとなった後も一定の時間の間ターンオン状態を維持する。その後、電流はターンオンされた第2スイッチ31のみを介して主巻線26に提供される。従って、この際の電流は始動時の制限した大きさではなく、常用電圧による正常の大きさを有する。一方、図3に示す主制御部としての第1制御部22からの圧縮機駆動制御信号によって第1スイッチ23がオフされ開放されると、常用電圧はそれ以上圧縮機25へ供給されず、圧縮機25の運転は停止される。
【0033】
上述したように、第1実施例の装置によれば次の効果を有する。
【0034】
入力される常用電圧の状態に応じて始動時間と位相制御信号の大きさが制御される。また、始動時補助巻線には電流制御部からの出力電流を用いた静電容量及び常用電圧による電流を用いた運転用静電容量が提供される。従って、大容量の圧縮機を始動するに有利である。位相制御のためにトライアクが使用され、このトライアクのゲート駆動信号は始動中、制限された大きさの一定の電圧値から次第に増加する値を有する。従って、圧縮機の始動時、主巻線に過度な電流が流れることを防止することができ、圧縮機の始動特性を大きく向上できる。更に、圧縮機に不必要な電源が供給されることを遮断し、周辺機器への悪影響を防止することができる。
【0035】
(第2実施例)
図5は本発明の第2実施例による装置を示すダイアグラムである。
【0036】
図5の装置は圧縮機47の全体動作を制御し、使用者の選択によって圧縮機47の駆動オン/オフ信号を提供する第1制御部45と、圧縮機の駆動オン/オフ信号に応答して、圧縮機47へ常用電圧を供給したりまたは供給を中断する第1スイッチ42と、第1スイッチ42の出力接点に接続され、常用電圧の大きさ及び周波数を感知し、感知した電圧値及び周波数値に基づいて常用電圧による電流の位相制御信号及び、始動時と始動後によって異なるスイッチング制御信号を発生する第2制御部44と、スイッチング制御信号に応答して内部回路を変更し、圧縮機47の主巻線54に始動時には常用電圧による電流を制限して供給し、始動後は正常に電流を提供する電流制御部45と、そして、スイッチング制御信号に応答して内部回路を変更し、圧縮機47の始動用補助巻線55に始動時には電流制御部45からの出力電流を用いた始動用静電容量及び常用電圧による電流を用いた運転用静電容量を提供し、始動後は運転用静電容量のみを提供し、瞬間的な放電による突入電流を防止するための機能を有する静電容量制御部46とで構成されている。図5の電流制御部45は、スイッチング制御信号及び位相制御信号に応答して、始動スタートから始動完了の間で、主巻線54に次第に増加する方向に電流を供給する。電流制御部45は、スイッチング制御信号に応答して、第1スイッチ42の出力接点と主巻線54との間でスイッチングオン/オフされる第2スイッチ49と、そして、第2スイッチ49の入力接点及び出力接点の間に並列接続され、第2スイッチ49のスイッチングオン/オフ状態及び位相制御信号に従って、主巻線54へ供給される電流の位相を制御する位相制御部48とで構成される。静電容量制御部46は、スイッチング制御信号に応答して第2スイッチ49とは反対にスイッチングオン/オフされ、入力接点が位相制御部48の出力端子及び第2スイッチ49の出力接点に接続される第3スイッチ50と、入力端子が第3スイッチ50の出力接点に接続される負温度計数器51、そして、第1入力端子が負温度計数器51の出力端子に、第2入力端子が第1スイッチ42の出力接点に、そして、出力端子が補助巻線55に接続され、第2スイッチ49及び第3スイッチ50のスイッチングオンまたはオフ状態に応じて、補助巻線55に静電容量を提供する静電容量発生部56とで構成される。
【0037】
第2スイッチ49はスイッチング制御信号に応答して、始動時、第1スイッチ42の出力接点と主巻線54が位相制御部48を介して接続され、始動後は第1スイッチ42の出力接点と主巻線54が直接接続されるように動作する。一方、第3スイッチ50はスイッチング制御信号に応答して、始動時は位相制御部48の出力端子が第1スイッチ42の出力接点と共に静電容量発生部56を経て補助巻線55に連結され、静電容量発生部56が大きな静電容量を提供するように、始動後には第1スイッチ42の出力接点のみが静電容量発生部56を経て補助巻線55に連結され、静電容量発生部56が相対的に少ない静電容量を発生するように動作する。電流制御部45内の位相制御部48は位相制御信号によって駆動され、主巻線54に供給される電流の位相を制御するトライアクである。以下で、位相制御部はトライアク48と称する。静電容量制御部46で静電容量発生部56は、負温度計数器51の出力端子と補助巻線55との間に接続される始動用キャパシタ52と、そして、第1スイッチ42の出力接点と補助巻線55との間に接続され、第1キャパシタ52とは並列に接続される運転用キャパシタ53とで構成される。負温度計数器51は第3スイッチ50と始動用キャパシタ52との間に設けられ、圧縮機47の始動初期時、始動用キャパシタ52と運転用キャパシタ53との間で瞬間的な放電によって突入電流が第3スイッチ50に流れることを防止することにより、第3スイッチ47の融着を防ぐ。図5で、静電容量発生部56は、第3スイッチ47の出力接点と補助巻線53との間に接続され、始動時及び始動後に補助巻線53に常に一定の大きさの静電容量を提供する運転用キャパシタ49と、負温度計数器50と補助巻線53との間に直列接続され、運転用キャパシタ49とは並列に接続され、始動時始動トルクを高めるために補助巻線へ始動用静電容量を提供する始動用キャパシタ48とで構成されている。
【0038】
以下で、図5による装置の動作を詳細に説明する。
【0039】
まず、常用電圧源43を介して常用電圧が印加されると、第2制御部(マイクロコンピュータ)46は初期化の後、常用電圧の大きさ及び周波数を感知して、その感知電圧及び周波数によって常用電圧の状態を判断する。次いで、第2制御部46は判断された常用電圧の状態に応じて、電流制御部45及び静電容量制御部46に提供されるための位相制御信号及びスイッチング制御信号を発生させる。即ち、静電容量制御部46の始動用キャパシタ52に常用電圧を印加する始動時間を決定してスイッチング制御信号を発生し、そのスイッチング制御信号を第2スイッチ49及び第3スイッチ50に提供する。このスイッチング制御信号に従って始動時第3スイッチ50はオンされ、第2スイッチ46はオフされる。また、第2制御部46は圧縮機47の主巻線54に供給される常用電圧による電流の位相を制御するために位相制御信号を提供する。この位相制御信号に従ってトライアク48は駆動され、主巻線54に提供される電流は可変となる。前述したように、位相制御信号はトライアク48のゲートへ印加される矩形波信号として、感知された常用電圧の状態に応じてデューティレシオが決定され、常用電圧の周波数値によって矩形波信号の出力時点が決定される。圧縮機47の補助巻線55には始動特性を向上させるために、始動時に大きな静電容量を提供することが必要である。従って、運転用キャパシタ53と始動用キャパシタ52は第3スイッチ50の動作によって互いに並列接続され、始動用静電容量及び運転用静電容量を形成し、これらの容量は始動中補助巻線55へ提供される。この際、始動用キャパシタ52には第3スイッチ50を介して電流制御部45の出力電流が提供され、運転用キャパシタ53には常用電圧による電流が提供される。
【0040】
一方、始動が完了すると、圧縮機51の運転中、補助巻線55には第3スイッチ50のオフ(または開放)動作により、運転用キャパシタ53を介して運転用静電容量のみが補助巻線55へ提供される。圧縮機51の位相制御信号とスイッチング制御信号は、前述したように、入力される常用電圧の状態(大きさ及び周波数)に応じて決定される。即ち、常用電圧が既設定過電圧より低い場合は、トライアク48のオン時間と第3スイッチ50のオン時間はより長く決定され、従って、圧縮機47は低電圧状態でも始動が良くかかる。一方、入力された常用電圧が設定過電圧より高い場合には、トライアク48のオン時間と第3スイッチ50のオン時間はより短く決定され、これにより、主巻線54に過度な電流が流れることが防止される。一方、トライアク48がオンとなる前数秒の間は、運転用キャパシタ53の充電電流と始動用キャパシタ48の充電電流とが共に突入電流として補助巻線55に流れることがある。この際、始動用キャパシタ52を用いるために第3スイッチ50がオンとなるとき、瞬間放電による突入電流が発生しうる。しかし、負温度計数器51が始動用キャパシタ52と運転用キャパシタ53との間に設けられているので、突入電流による第3スイッチ50の融着を防止することができる。即ち、負温度計数器51はその特性のため、発熱時に抵抗値が次第に小さくなる。このように大きな初期抵抗値によって、突入電流による第3スイッチ50の破損が防止される。位相制御信号は、感知された周波数信号に従ってトライアク48に供給され始める。即ち、周波数信号が’0V’から’5V’に上昇した時点から第2制御部46内のタイマーが駆動し、常用電圧の状態により決定された矩形波形態の位相制御信号を駆動信号としてトライアク48が動作する。言い換えると、トライアク48の駆動信号として、始動初期の間には、主巻線54に制限された第1大きさの電流が流れるように、一定の電圧値がトライアク48のゲートに印加され、始動中期の間は、主巻線54に次第に増加電流が流れるように、次第に増加する電圧値がトライアク48のゲートに印加される。次いで、始動末期以後は第2大きさ(>第1大きさ)の電圧値がトライアク48のゲートに印加され、主巻線54には第2大きさの電流値が流れるようになる。前述したように、第3スイッチ50がオンされ、トライアク48が動作して圧縮機47が始動されると、一定時間の後に第3スイッチ50はオフされ開放されるし、始動用キャパシタ48を介して補助巻線55に供給される電流は遮断される。従って、圧縮機47の運転中には運転用キャパシタ53を介してのみ補助巻線55へ電流が供給される。一方、第3スイッチ47がオフされ一定の時間が経過すると、第2スイッチ49がオンされ、常用電圧による電流はトライアク48の代わりにターンオンした第2スイッチ49を介して主巻線54に流れる。この際、トライアク48は装置の安定した動作のために、第3スイッチ50がオフされ、第2スイッチ49はターンオンとなった後も一定時間の間ターンオン状態を維持する。その後電流はターンオンされた第2スイッチ49のみを介して主巻線54に提供される。従って、この際の電流は始動時の制限された大きさではなく、常用電圧による正常の大きさを有する。一方、図5に示す主制御部としての第1制御部41からの圧縮機駆動オフ信号によって第1スイッチ42がオフされ開放されると、常用電圧はそれ以上圧縮機47へ供給されず、圧縮機47の運転は停止される。
【0041】
上述したように、第2実施例の装置によれば次の効果を有する。
【0042】
始動用キャパシタと運転用キャパシタとの間に、大きな初期抵抗値を有し、発熱によって次第に小さくなる抵抗値を有する負温度計数器が設けられる。従って、始動初期トライアクがターンオンされる瞬間、始動キャパシタと運転支援用キャパシタとの間で突入電流が発生することが防止され、更に、近接したスイッチの接点が融着されたり、始動用キャパシタが破損することを防ぐことができる。また、始動時静電容量制御部には常用電圧による電流及び電流制御部の出力電流が共に提供され、大きな静電容量が形成されるので、本発明は大容量の圧縮機への適用が有利である。
【0043】
(第3実施例)
図6は本発明の第3実施例による装置を示すダイアグラムである。
【0044】
図6の装置は使用者の選択によって圧縮機76の駆動オン/オフ信号を提供する第1制御部61と、その駆動オン/オフ信号に応答して、圧縮機76に常用電圧を供給したりまたは供給を中断する第1スイッチ62と、圧縮機76の外部温度を感知して、その温度値を提供する温度感知部67と、入力された常用電圧の大きさ、周波数、及び室外温度に基づき圧縮機76の始動時と始動後によって異なる位相制御信号及びスイッチング制御信号を発生する第2制御部64と、スイッチング制御信号及び位相制御信号に応答して内部回路を変更し、圧縮機76の主巻線73に始動時には常用電圧による電流を制限して提供し、始動後は常用電圧による正常の大きさの電流を提供する電流制御部65と、そして、スイッチング制御信号に応答して内部回路を変更し、圧縮機76の始動用補助巻線74に始動時には電流制御部65からの出力電流を用いた始動用静電容量及び常用電圧による電流を用いた運転用静電容量を提供し、始動後は運転用静電容量のみを提供する静電容量制御部66とで構成されている。図6で、電流制御部65はスイッチング制御信号に応答して、始動スタートから始動完了の間で、主巻線に次第に増加するように電流を供給する。一方、図6の電流制御部65は、スイッチング制御信号に応答して、第1スイッチ62の出力接点と主巻線73との間でスイッチングオン/オフされる第2スイッチ49と、そして、第2スイッチ69の入力接点及び出力接点の間に並列接続され、第2スイッチ69のスイッチングオン/オフ状態及び位相制御信号に従って、主巻線73へ供給される電流の位相を制御する位相制御部68とで構成される。図6の静電容量制御部66は、スイッチング制御信号に応答して第2スイッチ69とは反対にスイッチングオン/オフされ、入力接点が位相制御部の出力端子及び第2スイッチ69の出力接点に接続される第3スイッチ70と、第1入力端子が第2スイッチ69の出力接点に、第2入力端子が第1スイッチ62の出力接点に、そして、出力端子が補助巻線74に接続され、第3スイッチ70のスイッチングオンまたはオフ状態に応じて、補助巻線74に静電容量を提供する静電容量発生部75とで構成されている。
【0045】
第2スイッチ69はスイッチング制御信号に応答して、始動時、第1スイッチ62の出力接点と主巻線73を位相制御部68を介して接続させ、始動後は第1スイッチ62の出力接点と主巻線73が直接接続されるように動作する。第3スイッチ70はスイッチング制御信号に応答して、始動時は位相制御部68の出力端子と第1スイッチ62の出力接点とを共に静電容量発生部75を経て補助巻線74に連結させ、静電容量発生部75が始動用静電容量及び運転用静電容量を提供するように、始動後には第1スイッチ62の出力接点のみを静電容量発生部75を経て補助巻線74に連結させ、静電容量発生部75が運転用静電容量のみを発生するように動作する。電流制御部65内の位相制御部68は位相制御信号によって駆動され、主巻線73に供給される電流の位相を制御するトライアクである。以下ではトライアク68と称する。静電容量発生部75は第3スイッチ70の出力接点と補助巻線74との間に接続される始動用キャパシタ71と、そして、第1スイッチ62の出力接点と補助巻線74との間に接続され、始動用キャパシタ71とは並列に接続される運転用キャパシタ72とで構成されている。一方、温度感知部67は室外温度値を電圧値に変換するサーミスタである。
【0046】
以下で、図6を参照にして第3実施例の構成による装置の動作を詳く説明する。
【0047】
まず、常用電圧源63を介して常用電圧が印加されると、第2制御部(マイクロコンピュータ)64は初期化され、第2制御部64は常用電圧の状態、つまり電圧値及び周波数を判断する。一方、温度感知部67は圧縮機76の室外温度を感知して第2制御部64に提供する。次いで、第2制御部64は判断された常用電圧の状態及び室外温度値に応じて、電流制御部65及び静電容量制御部66に提供されるための位相制御信号及び、スイッチング制御信号を発生させる。即ち、静電容量制御部66の始動用キャパシタ71に電流制御部65の出力電流を印加するための始動時間を決定してスイッチング制御信号を発生し、そのスイッチング制御信号を第2スイッチ69及び第3スイッチ70に提供する。このスイッチング制御信号に従って第3スイッチ70はオンされ、第2スイッチ69はオフされる。即ち、第2スイッチ69と第3スイッチ70はスイッチング制御信号に応答して反対に動作する。また、第2制御部64は圧縮機76の主巻線73に供給される常用電圧による位相を制御するために位相制御信号を提供する。この位相制御信号は温度感知部67から入力された温度値によって可変となりうる。即ち、第2制御部64は現在の室外温度値と既設定された基準温度値とを互いに比較して、現在の室外温度値に当たる季節を探し、その季節に合うよう位相制御信号を発生する。前記位相制御信号はパルス形態の信号として、トライアク68のゲートに印加される。例えば、室外温度値が夏の基準設定温度のT1以上である場合は、トライアク68に印加される位相制御信号のパルス幅を夏に当たるP3に設定し、室外温度が冬の基準設定温度のT3以下であれば、位相制御信号のパルス幅を冬に当たるP1に設定し、そして、室外温度値が春と秋の基準温度のT2に当たると、位相制御信号のパルス幅は春と冬に当たるP2に設定される。参考に、圧縮機93の始動時外部の温度が低いと、圧縮機の冷媒の粘度が落ち、モータ拘束が激しくなるので、位相制御信号に当たるパルスの幅を広くしなければならない。従って、P1のパルス幅が最も大きく、P2、P3の順にパルス幅を有する。
前記季節により設定された位相制御信号に従って、トライアク68は駆動され、主巻線73に提供される電流は可変となる。前述したように、位相制御信号はトライアク68のゲートに印加される矩形波信号として、室外温度値だけでなく、他の実施例で説明した通り、既感知された常用電圧の大きさによってそれのデューティレシオが決定され、周波数値によってパルスの出力時点が決定される。一方、圧縮機76の補助巻線74には始動特性を向上させるために、始動時に大きな始動容量を提供する必要がある。従って、運転用キャパシタ72と始動用キャパシタ71は第3スイッチ70の動作によって互いに並列接続され、始動用静電容量及び運転用静電容量を形成し、これらの静電容量は始動中に補助巻線74へ提供される。この際、始動用キャパシタ71には電流制御部65の出力電流が提供され、運転用キャパシタには常用電圧による電流が提供される。
【0048】
一方、始動が完了すると、圧縮機76の運転中、補助巻線74には第3スイッチ70のオフ(または開放)動作により、運転用キャパシタ72で発生する運転用静電容量のみが補助巻線74へ提供される。この際、運転用キャパシタ72には常用電圧による電流が提供される。圧縮機76の位相制御信号とスイッチング制御信号は、前述したように、入力される常用電圧の大きさ及び周波数に応じて決定される。即ち、常用電圧が既設定基準電圧より低い場合は、トライアク68のオン時間と第3スイッチ70のオン時間はより長くなり、従って、圧縮機76は低電圧状態でも始動がよくかかる。一方、入力された常用電圧が既設定基準電圧より高い場合には、トライアク68のオン時間と第3スイッチ70のオン時間は更に短く決定され、主巻線73に過度な電流が流れることが防止される。一方、トライアク68に印加される位相制御信号は、圧縮機76の始動時、主巻線73に過電流が流れることを防止するために、始動初期時には主巻線73に制限された大きさの一定の電流が流れるように、一定の電圧値がトライアク68のゲートに印加され、始動中期の間は、主巻線73に次第に増加電流が流れるように、次第に増加する電圧値がトライアク68のゲートに印加される。次いで、始動末期には正常の大きさの一定の電圧値がゲートに印加され、主巻線73には正常の大きさの一定の電圧値が流れるようになる。前述したように、第3スイッチ70がオンされ、トライアク68が動作して圧縮機76の始動が完了すると、第3スイッチ70はオフされ開放されるし、始動用キャパシタ71を介して補助巻線74に供給される始動用静電容量は遮断される。従って、圧縮機76の運転中には運転用キャパシタ72を介してのみ補助巻線74へ運転用静電容量が供給される。一方、第3スイッチ70がオフされ一定の時間が経過すると、第2スイッチ69がオンされ、常用電圧による電流はトライアク68の代わりに前記ターンオンされた第2スイッチ69を介して主巻線73に流れる。この際、トライアク68は装置の安定した動作のために、第3スイッチ70がオフされ、第2スイッチ69がターンオンとなった後も一定の時間ターンオン状態を維持する。その後電流はターンオンされた第2スイッチ69のみを介して主巻線73に提供される。従って、この際の電流は始動時のように制限されず、常用電圧による正常の大きさを有する。一方、主制御部の第1制御部61からの圧縮機駆動オフ信号に従って第1スイッチ62がオフされ開放されると、常用電圧はそれ以上圧縮機76へ供給されず、圧縮機76の運転は停止される。上述した通り、第3実施例によれば、トライアクに提供される位相制御信号が季節により適切に変化するので、圧縮機の始動を最適化させることができる。また、始動時静電容量制御部には常用電圧による電流及び電流制御部の出力電流が共に提供され、これにより、補助巻線に始動用静電容量及び運転用静電容量が提供されるので、本発明は大容量の圧縮機への適用が有利である。
【0049】
(第4実施例)
図7は本発明の第4実施例による装置の構成を示すダイアグラムである。
【0050】
図7の装置は使用者の選択によって圧縮機88の駆動オン/オフ信号を発生する第1制御部81と、その駆動オン/オフ信号に応答して、圧縮機88に常用電圧を供給したりまたは供給を中断する第1スイッチ82と、常用電圧の大きさ及び周波数に基づき、圧縮機88の始動時と始動後によって異なるように位相制御信号及びスイッチング制御信号を発生し、主巻線95に流れる電流値の状態をディスプレイするためのディスプレイ信号を提供する第2制御部84と、スイッチング制御信号及び位相制御信号に応答して内部回路を変更し、圧縮機88の主巻線95に始動時には常用電圧による電流を制限して供給し、始動後は電流を正常に提供する電流制御部85と、そして、電流制御部85の出力側に接続され、圧縮機88の主巻線95に流れる電流を検出して第2制御部84に提供する電流検出部90と、ディスプレイ信号に応答して、主巻線95に流れる電流の状態をディスプレイするディスプレイ部87と、そして、スイッチング制御信号に応答して内部回路を変更し、圧縮機88の始動用補助巻線96に始動時には電流制御部85からの出力電流を用いた始動静電容量及び、常用電圧による電流を用いた運転用静電容量を供給し、始動後は運転用静電容量のみを提供する静電容量制御部86とで構成されている。電流検出部90は電流制御部85と主巻線95との間に接続された抵抗であり、ディスプレイ部87はLED(light emitting diode)、または他の素子が使用されることもできる。本実施例で、LED87はディスプレイ信号に応答して、検出した主巻線95の電流が既設定第1過度電流以上であれば点滅され、第1過度電流以下であり、第2過度電流(第1過度電流>第2過度電流)以上であれば点灯され、そして、第2過度電流以下であればターンオフされる。図7で、電流制御部85はスイッチング制御信号に応答して、始動スタートから始動完了の間で、主巻線に次第に増加するように電流を供給する。また、電流制御部85は、スイッチング制御信号に応答して、第1スイッチ82の出力接点と主巻線95との間でスイッチングオン/オフされる第2スイッチ91と、そして、第2スイッチ91の入力接点及び出力接点の間に並列接続され、第2スイッチ91のスイッチングオン/オフ状態及び位相制御信号に従って、主巻線95へ供給される電流の位相を制御する位相制御部89とで構成されている。一方、静電容量制御部86は、スイッチング制御信号に応答して第2スイッチ91とは反対にスイッチングオン/オフされ、入力接点が位相制御部89の出力端子及び第2スイッチ91の出力接点に接続される第3スイッチ92と、第1入力端子が第2スイッチ91の出力接点に、第2入力端子が第1スイッチ82の出力接点に、そして、出力端子が補助巻線96に接続され、第3スイッチ92のスイッチングオン/オフ状態に応じて、補助巻線96に静電容量を提供する静電容量発生部97とで構成されている。第2スイッチ91はスイッチング制御信号に応答して、始動時、第1スイッチ82の出力接点と主巻線95を位相制御部68を介して接続させ、始動後は第1スイッチ82の出力接点と主巻線95が直接接続されるように動作する。第3スイッチ92はスイッチング制御信号に応答して、始動時は位相制御部89の出力端子と第1スイッチ82の出力接点とを共に静電容量発生部97を経て補助巻線96に連結させ、静電容量発生部97が始動用静電容量及び運転用静電容量を提供するように、始動後には第1スイッチ82の出力接点のみを静電容量発生部97を経て補助巻線96に連結させ、静電容量発生部97が運転用静電容量のみを発生するように動作する。位相制御部89は位相制御信号によって駆動され、主巻線95に供給される電流の位相を制御するトライアクである。以下で、位相制御部はトライアク89と称する。静電容量制御部86の静電容量発生部97は、第3スイッチ92の出力接点と補助巻線96との間に接続される始動用キャパシタ93と、そして、第1スイッチ82の出力接点と補助巻線96との間に接続され、始動用キャパシタ93とは並列に接続される運転用キャパシタ94とで構成されている。静電容量発生部97には始動時電流制御部85の出力電流と共に、常用電圧による電流が提供され、大きな静電容量を提供できる。以下で、図7を参照して第4実施例の構成による動作を詳細に説明する。まず、常用電圧源83を介して常用電圧が印加されると、第2制御部(マイクロコンピュータ)84は初期化され、第2制御部84は常用電圧の電圧値及び周波数を判断する。一方、電流検出部90は圧縮機88の主巻線95に流れる電流値を感知して、第2制御部84に提供する。次いで、第2制御部84は判断された常用電圧の状態及び主巻線の現在の電流値に基づき、電流制御部85及び静電容量制御部86に提供されるための位相制御信号及びスイッチング制御信号を発生させる。即ち、静電容量制御部86の始動用キャパシタ93に常用電圧を印加するための始動時間を決定してスイッチング制御信号を発生し、そのスイッチング制御信号を第2スイッチ91及び第3スイッチ92に提供する。このスイッチング制御信号に従って第3スイッチ92はオンされ、第2スイッチ91はオフされる。即ち、第2スイッチ91と第3スイッチ92はスイッチング制御信号に応答して反対に動作する。言い換えると、第2スイッチ91の開放時、第3スイッチ92は閉路される。また、第2制御部84は圧縮機88の主巻線95に流れる現在電流値の状態を使用者に知らせるためのディスプレイ信号を提供する。このディスプレイ信号は、前述したように、主巻線95に流れる電流値に基づき可変となりうる。即ち、第2制御部84は主巻線95の現在の電流値と既設定基準電流値とを互いに比較して、現在電流値の状態に合うようにディスプレイ信号を発生する。例えば、主巻線95の電流が既設定第1過度電流以上である場合は、LED87を点滅させ、使用者にこれを警告する。また、検出電流が第1過度電流以下であり、第2過度電流以上であれば、LED87を点灯させ、サービス呼出が可能であるようにする。一方、第2過度電流以下であれば第2制御部84はこれを正常状態と見なし、LED87をターンオフさせる。従って、使用者はこの状態を正常として認識できる。このようなディスプレイ方法は他の方法によっても行われることができる。前述したように、位相制御信号はトライアク89のゲートに印加される矩形波信号として、他の実施例で説明した通り、既感知された常用電圧の大きさに応じてそれのデューティレシオが決定され、既感知された常用電圧の周波数値によってパルスの出力時点が決定される。圧縮機88の補助巻線96には始動特性を向上させるために、始動時に大きな始動容量を提供する必要がある。従って、運転用キャパシタ94と始動用キャパシタ93は第3スイッチ92の動作によって互いに並列接続され、各々始動用静電容量及び運転用静電容量を発生し、これらの静電容量は始動中に補助巻線96へ提供される。この際、本発明の特徴として、始動用キャパシタ93には電流制御部85の出力電流が提供され、運転用キャパシタ94には常用電圧による電流が提供される。
【0051】
一方、圧縮機88の始動が完了すると、圧縮機88の運転中、補助巻線96には第3スイッチ92のオフ(または開放)動作により、運転用キャパシタ94で発生する運転用静電容量のみが補助巻線96へ提供される。圧縮機88の位相制御信号とスイッチング制御信号は、前述したように、入力される常用電圧の状態に応じて決定される。即ち、常用電圧が既設定基準電圧より低い場合は、トライアク89のオン時間と第3スイッチ92のオン時間はより長くなり、従って、圧縮機88は低電圧状態でも始動がよくかかる。一方、入力された常用電圧が既設定基準電圧より高い場合には、トライアク89のオン時間と第3スイッチ92のオン時間は更に短く決定され、主巻線95に過度な電流が流れることが防止される。一方、トライアク89に印加される位相制御信号は、圧縮機88の始動時、主巻線95に過電流が流れることを防止するために、始動初期時は主巻線95に制限された第1大きさの電流が流れるように一定の電圧値がトライアク89のゲートに印加され、始動中期の間は、主巻線95に次第に増加電流が流れるように、次第に増加する電圧値がトライアク89のゲートに印加される。次いで、始動末期には主巻線95に第2大きさの電流値が流れるように、ゲートに一定の電圧値が印加される。前述したように、第3スイッチ92がオンされ、トライアク89が動作して圧縮機88の始動が完了すると、第3スイッチ92はオフされ開放されるし、始動用キャパシタ93を介して補助巻線96に供給される電流は遮断される。従って、圧縮機88の運転中には運転用キャパシタ94を介してのみ補助巻線96へ電流が供給される。一方、主制御部の第1制御部81からの圧縮機駆動オフ信号に従って第1スイッチ82がオフされ開放されると、常用電圧による電流はそれ以上圧縮機88へ供給されず、圧縮機88の運転は停止される。
【0052】
上述した通り、第4実施例によれば、主巻線に流れる電流が常に感知され、その感知値が外部にディスプレイされることにより、主巻線に過度な電流が流れる場合、使用者がこれを認識できるようになる。また、本発明は静電容量発生部に常用電圧による電流及び電流制御部の出力電流が共に提供されるので、始動時大きな静電容量を補助巻線に提供できる。従って、本発明は大容量の圧縮機に適したものである。
【0053】
(第5実施例)
図8は本発明の第5実施例による装置の構成を示すダイアグラムである。
【0054】
図8の装置は使用者の選択によって圧縮機107の駆動オン/オフ信号を発生する第1制御部101と、その駆動オン/オフ信号に応答して、圧縮機107に常用電圧を供給したりまたは供給を中断する第1スイッチ102と、圧縮機107の主巻線114に流れる電流及び常用電圧の状態(大きさ及び周波数)に基づき、可変的な位相制御信号及びスイッチング制御信号を圧縮機107の始動時と始動後によって異なるように発生する第2制御部104と、スイッチング制御信号及び位相制御信号に応答して内部回路が変更し、圧縮機107の主巻線114に始動時には常用電圧による電流を制限して提供し、始動後は常用電圧による正常の大きさの電流を提供する電流制御部105と、電流制御部105の出力側に接続され、圧縮機107の主巻線114に流れる電流を検出して第2制御部104に提供する電流検出部110と、そして、スイッチング制御信号に応答して内部回路を変更し、圧縮機107の始動用補助巻線115に始動時には電流制御部105からの出力電流を用いた始動用静電容量及び常用電圧による電流を用いた運転用静電容量を提供し、始動後は運転用静電容量のみを提供する静電容量制御部106とで構成されている。図8で電流検出部110は電流制御部105と主巻線114との間に接続された抵抗である。一方、電流制御部105はスイッチング制御信号に応答して、始動スタートから始動完了の間で、主巻線114に次第に増加するように電流を供給する。また、電流制御部105は、スイッチング制御信号に応答して、第1スイッチ102の出力接点と主巻線114との間でスイッチングオン/オフされる第2スイッチ109と、そして、第2スイッチ109の入力接点及び出力接点の間に並列接続され、第2スイッチ109のスイッチングオン/オフ状態及び位相制御信号に従って、主巻線114へ供給される電流の位相を制御する位相制御部108とで構成される。静電容量制御部106は、スイッチング制御信号に応答してスイッチングオン/オフされ、入力接点が位相制御部108の出力端子及び第2スイッチ109の出力接点に接続される第3スイッチ111と、そして、第1入力端子が第2スイッチ109の出力接点に、第2入力端子が第1スイッチ102の出力接点に、そして、出力端子が補助巻線115に接続され、第3スイッチ111のスイッチングオンまたはオフ状態に応じて、補助巻線115に静電容量を提供する静電容量発生部116とで構成される。
第2スイッチ109はスイッチング制御信号に応答して、始動時、第1スイッチ102の出力接点と主巻線114を位相制御部108を介して接続させ、始動後は第1スイッチ102の出力接点と主巻線114が直接接続されるように動作する。第3スイッチ111はスイッチング制御信号に応答して、始動時は位相制御部108の出力端子と第1スイッチ102の出力接点とを共に静電容量発生部1165を経て補助巻線115に連結させ、静電容量発生部116が大きな静電容量を有するように動作し、始動後には第1スイッチ102の出力接点のみを静電容量発生部116を経て補助巻線115に連結させ、静電容量発生部116が相対的に少ない静電容量を有するように動作する。この際、本発明の特徴として、静電容量制御部106の静電容量発生部116には始動時電流制御部105の出力電流と常用電圧による電流が共に提供される。従って、大きな静電容量が始動時補助巻線115に提供されうる。電流制御部114で、位相制御部108は位相制御信号によって駆動され、主巻線114に供給される電流の位相を制御するトライアクである。以下で、位相制御部はトライアク108と称する。このトライアク108は常用電圧が基準常用電圧より低いと、可変位相制御制御信号によってより長くターンオンされ、基準常用電圧より高いと、可変位相制御制御信号によってより短くターンオンされる。従って、常に安定して主巻線114に電流を提供することができる。一方、静電容量発生部116は、第3スイッチ111の出力接点と補助巻線115との間に接続され、始動時、補助巻線115に始動トルクのために該始動用静電容量を提供する始動用キャパシタ112と、そして、第1スイッチ102の出力接点と補助巻線115との間に直列接続され、始動用キャパシタ112とは並列に接続され、始動時及び運転時に運転用静電容量を提供する運転用キャパシタ113とで構成される。始動時、始動用キャパシタ112には電流制御部105の出力電流が提供され、運転用キャパシタ113には常用電圧による電流が提供される。
【0055】
以下で、図8を参照して本発明の第5実施例による動作を詳細に説明する。
【0056】
まず、常用電圧源103を介して常用電圧が印加されると、第2制御部(マイクロコンピュータ)104は初期化され、常用電圧の大きさ及び周波数を判断する。一方、電流検出部110は圧縮機107の主巻線114に流れる電流値を感知して、第2制御部104に提供する。次いで、第2制御部104は判断された常用電圧の状態及び主巻線114の現在の電流値に基づき、電流制御部105及び静電容量制御部106に提供されるための位相制御信号及びスイッチング制御信号を発生させる。即ち、静電容量制御部106の始動用キャパシタ112に常用電圧を印加するための始動時間を決定して、スイッチング制御信号を発生し、そのスイッチング制御信号を第2スイッチ109及び第3スイッチ111に提供する。このスイッチング制御信号に従って第3スイッチ111はオンされ、第2スイッチ109はオフされる。即ち、第2スイッチ109と第3スイッチ111はスイッチング制御信号に応答して反対に動作する。また、第2制御部104は圧縮機107の主巻線114に流れる現在電流値と電流検出部110(以下で抵抗110)の抵抗値とを掛け、主巻線114での始動電圧値を求める。位相制御信号は主巻線114に流れる電流値、または始動電圧値に基づき可変となりうる。即ち、第2制御部104は主巻線114の現在の始動電流値と既設定過度電流値とを互いに比較して、主巻線114の現在電流値の状態に合うように位相制御信号を変化させる。例えば、主巻線114の現在電流が既設定された第1過度電流以上である場合は、第2制御部104はこれを第1制御部101に知らせ、圧縮機107が現在拘束状態であることを認識する。次いで、第1制御部101は第1スイッチ102に駆動オフ信号を送り、第1スイッチ102をオフ、つまり開放させる。従って、圧縮機107にはそれ以上常用電圧が供給されず、圧縮機107は動作を中止する。一方、検出した主巻線114の電流が第1過度電流以下であり、第2過度電流以上であれば、第2制御部104は主巻線107に過度な電流が流れると見なし、トライアク108のゲートにパルス形態に印加される位相制御信号の幅を減少させる。即ち、位相制御信号の大きさを減少させる。一方、第2過度電流以下であれば第2制御部104はこれを正常状態と見なし、初期の位相制御値をそのまま維持してトライアク108へ提供する。このような位相制御信号の可変方法は他の方法によって行われることができる。前述したように、位相制御信号はトライアク108のゲートに印加される矩形波信号として、他の実施例で説明した通り、既感知された常用電圧の大きさに応じてそれのデューティレシオが決定され、前記常用電圧の周波数値によってパルスの出力時点が決定される。一方、圧縮機107の補助巻線115には始動特性を向上させるために、始動時に大きな始動容量を提供することが必要である。従って、運転用キャパシタ113と始動用キャパシタ112は第3スイッチ111の動作によって互いに並列接続され、各々始動用静電容量及び運転用静電容量を形成し、これらの静電容量は始動中に補助巻線115へ提供される。この際、始動時静電容量制御部106の静電容量発生部116には二つの電流が流れる。第3スイッチ111がオンされ、閉路となり、電流制御部105の出力電流が始動用キャパシタ112に流れる。従って、始動用キャパシタ112には始動用静電容量が発生する。また、第1スイッチ102の出力接点に連結された運転用キャパシタ113には常用電圧による電流が流れ、従って、運転用キャパシタ113には運転用静電容量が発生する。このように、本実施例では二つの電流によって静電容量が発生するので、補助巻線115には始動中大きな静電容量が提供される。結局、本発明は大容量の圧縮機への適用が有利である。
【0057】
一方、圧縮機107の始動が完了すると、圧縮機107の運転中、補助巻線116には第3スイッチ111のオフ(または開放)動作により、運転用キャパシタ113で発生する運転用静電容量のみが補助巻線115へ提供される。圧縮機107の動作初期に位相制御信号とスイッチング制御信号は、前述したように、入力される常用電圧の状態に応じて決定される。即ち、常用電圧が既設定基準電圧より低い場合は、トライアク108及び第3スイッチ111のオン時間はより長くなり、従って、圧縮機107は低電圧状態でも始動がよくかかる。一方、前記常用電圧が既設定基準電圧より高い場合には、トライアク108と第3スイッチ111のオン時間は更に短く決定され、主巻線114に過度な電流が流れることが防止される。一方、トライアク108に印加される位相制御信号は、圧縮機107の始動時、主巻線114に過電流が流れることを防止するために、始動初期には主巻線114に制限された第1大きさの電流が流れるように、一定の電圧値がトライアク108のゲートに印加され、始動中期の間は、主巻線114に次第に増加電流が流れるように、次第に増加する電圧値がトライアク108のゲートに印加される。次いで、始動末期には第2大きさの電流値が主巻線95に流れるように、一定の電流値がゲートに印加される。前述したように、第3スイッチ111がオンされ、トライアク108が動作して圧縮機107の始動が完了すると、第3スイッチ111はオフされ開放されるし、始動用キャパシタ112を介して補助巻線115に供給される電流は遮断される。従って、圧縮機107の運転中には運転用キャパシタ113を介してのみ補助巻線115へ運転用静電容量が供給される。一方、主制御部としての第1制御部101からの圧縮機駆動オフ信号によって第1スイッチ102がオフされ開放されると、常用電圧はそれ以上圧縮機107へ供給されず、圧縮機107の運転は停止される。
【0058】
上述した通り、第5実施例によれば、始動時圧縮機に供給される始動電圧を電流検出部を介して検出し、その検出した始動電圧が正常水準を超えると判断される場合は、圧縮機の運転を中止させたり、位相制御信号を変化させることにより、超過始動電圧を調節することができる。一方、始動時補助巻線には常用電圧による電流及び電流制御部の出力電流が共に提供され、大きな静電容量が形成されるので、本発明は大容量の圧縮機への適用が有利である。
【0059】
(第6実施例)
図9は本発明の第6実施例による装置の構成を示すダイアグラムである。
【0060】
図9の装置は使用者の選択によって圧縮機127の駆動オン/オフ信号を提供第1制御部121と、その駆動オン/オフ信号に応答して、圧縮機127に常用電圧を供給したりまたは供給を中断する第1スイッチ122と、常用電圧の大きさ及び周波数に基づき、そして、圧縮機127の始動時と始動後によって異なるようにスイッチング制御信号を発生する第2制御部124と、温度に反比例の抵抗値を有し、スイッチング制御信号に従って始動時と始動後に内部回路が変更され、圧縮機127の主巻線133に始動時には常用電圧による電流を提供する電流制御部125と、そして、スイッチング制御信号に応答して内部回路が変更され、圧縮機127の始動用補助巻線134に始動時に始動用静電容量及び運転用静電容量を提供し、始動後は運転用静電容量を提供する静電容量制御部126とで構成されている。図9で電流制御部125はスイッチング制御信号に応答して、始動スタートから始動完了の間で、主巻線133に次第に増加するように電流を供給する。また、電流制御部125は、第2スイッチ129と負温度計数器128とで構成される。第2スイッチ129は入力接点が第1スイッチ122の出力接点に接続され、出力接点は主巻線133に接続され、スイッチング制御信号に応答して第1スイッチ122の出力接点と主巻線133の間でスイッチングされる。負温度計数器128は入力端子が第1スイッチ122の出力接点に、出力端子は主巻線133の間に接続され、入力端子と出力端子が第2スイッチ129の入力接点と出力接点に各々並列接続され、圧縮機127の始動時、主巻線133に供給される電流の大きさを制限する。一方、静電容量制御部126は、第3スイッチ130と静電容量発生部135とで構成される。第3スイッチ130は入力接点が第2スイッチ129の出力接点に接続され、スイッチング制御信号に応答して第2スイッチ129とは反対にスイッチングされる。この際、安定化のために第2スイッチ129と第3スイッチ130とは共にオンされる一定の重畳の時間を有する。静電容量発生部135は第3スイッチ130の出力接点と補助巻線115との間に接続され、第3スイッチ130のスイッチング状態に応じて、補助巻線115に始動時には電流制御部125の出力電流と常用電圧による電流が用いられた静電容量を、始動後は常用電圧による電流を用いた静電容量を提供する。第2スイッチ129はスイッチング制御信号に応答して、始動時、第1スイッチ122の出力接点と主巻線133を位相制御部の負温度計数器128を介して接続させ、始動後は第1スイッチ122の出力接点と主巻線133が直接接続されるように電流制御部125の内部回路を変更する。第3スイッチ130はスイッチング制御信号に応答して、始動時は静電容量発生部135が大きな静電容量を有するように、始動後は制限した少ない静電容量を有するように静電容量制御部126の内部回路を変更する。即ち、始動時、第3スイッチ130はオンされ、負温度計数器128によって制限電流を常用電圧による電流に付加し、静電容量発生部135に入力させる。一方、静電容量発生部135は、第3スイッチ130の出力接点と補助巻線134との間に接続され、始動時、補助巻線115に始動トルクのために該始動用静電容量を補助巻線134に提供する始動用キャパシタ131と、そして、第1スイッチ122の出力接点と補助巻線134との間に接続され、始動用キャパシタ131とは並列に接続され、始動時及び運転時に運転用静電容量を補助巻線134に提供する運転用キャパシタ132とで構成される。
【0061】
以下で、図9を参照して本発明の第6実施例による動作を詳細に説明する。
【0062】
まず、常用電圧源123を介して常用電圧が印加されると、第2制御部(マイクロコンピュータ)124は初期化され、常用電圧の電圧値及び周波数を判断する。次いで、第2制御部124は判断された常用電圧の状態に応じて、電流制御部125及び静電容量制御部126に提供されるためのスイッチング制御信号を発生させる。即ち、静電容量制御部126の始動用キャパシタ131に常用電圧を印加するための始動時間を決定して、スイッチング制御信号を発生し、そのスイッチング制御信号を第2スイッチ129及び第3スイッチ130に提供する。このスイッチング制御信号に従って第3スイッチ130はオンされ、第2スイッチ129はオフされる。即ち、第2スイッチ129と第3スイッチ130はスイッチング制御信号に応答して反対に動作する。
【0063】
一方、圧縮機127の補助巻線134には始動特性を向上させるために、始動時に大きな始動容量を提供することが必要である。従って、運転用キャパシタ132と始動用キャパシタ131は第3スイッチ130のスイッチングオン動作によって互いに並列接続され、始動用静電容量及び運転用静電容量を形成し、この大静電容量は始動中に補助巻線134へ提供される。この際、始動用キャパシタ131には電流制御部125の出力電流が提供され、運転用キャパシタ132には常用電圧による電流が提供される。圧縮機127の始動が完了すると、圧縮機127の運転中、補助巻線134には第3スイッチ130のオフ(または開放)動作により、運転用キャパシタ132で発生する運転用静電容量のみが補助巻線134へ提供される。圧縮機127の動作初期にスイッチング制御信号は、前述したように、入力される常用電圧の状態に応じて決定される。即ち、常用電圧が既設定基準電圧より低い場合は、第3スイッチ111のオン時間はより長くなり、従って、圧縮機127は低電圧状態でも始動がよくかかる。一方、前記常用電圧が既設定基準電圧より高い場合には、第3スイッチ130のオン時間は更に短く決定され、主巻線133に過度な電流が流れることが防止される。一方、始動初期時、第2スイッチ129がオフされ開放され、負温度計数器128に常用電圧が印加されると、負温度計数器128は常用電圧を制限し、圧縮機127の主巻線133に過電流が流れることを防止する。また、負温度計数器128は圧縮機127の始動時に主巻線133へ供給される始動電流が所望の始動電流値を超えないように、大きな初期抵抗値を有している。
【0064】
より詳しくは、図10に示すように、負温度計数器128は温度が高くなるほど抵抗が小さくなるので、圧縮機127の主巻線133に流れる初期始動電流は大きな初期抵抗値によって制限する。次いで、負温度計数器128へ常用電圧による電流が供給されると、負温度計数器128自体には熱が発生し、初期抵抗値は、図10に示すように、急激に低下する。それから始動が完了すると、スイッチング制御信号に従って第2スイッチ129がオンされ、閉路されるので、常用電圧による電流は負温度計数器128を経ず、第2スイッチ129を介して正常の大きさを有して主巻線133に流れるようになる。
【0065】
前述したように、圧縮機127の始動が完了すると、第3スイッチ130はオフされ開放されるし、始動用キャパシタ131を介して補助巻線134に供給される電流制御部125の出力電流は遮断される。従って、圧縮機127の運転中には運転用キャパシタ132を介してのみ補助巻線134へ運転用静電容量が供給される。前述したように、運転用キャパシタ132には常用電圧による電流のみが提供される。一方、主制御部としての第1制御部121からの圧縮機駆動オフ信号によって第1スイッチ122がオフされ開放されると、常用電圧はそれ以上圧縮機127へ供給されず、圧縮機127の運転は停止される。
【0066】
上述した通り、第6実施例によれば、始動時圧縮機に供給される始動電流は大きな初期抵抗値を有し、温度と反比例の可変抵抗特性を有する負温度計数器を介して、始動初期時に制限電流を圧縮機へ供給することにより、主巻線に過電流が流れることを防ぐことができ、また、静電容量発生部に電流制御部の出力電流だけでなく、常用電圧による電流が同時に印加されるので、圧縮機の始動効果を高めることができる。
【図面の簡単な説明】
【図1】 従来技術による圧縮機への電流及び静電容量の供給を制御する装置を示すダイアグラムである。
【図2】 本発明による圧縮機への電流及び静電容量の供給を制御する装置の概念図である。
【図3】 本発明の第1実施例による圧縮機への電流及び静電容量の供給制御装置を示すダイアグラムである。
【図4】 図3の詳細な回路を示すダイアグラムである。
【図5】 本発明の第2実施例による圧縮機への電流及び静電容量の供給制御装置を示すダイアグラムである。
【図6】 本発明の第3実施例による圧縮機への電流及び静電容量の供給制御装置を示すダイアグラムである。
【図7】 本発明の第4実施例による圧縮機への電流及び静電容量の供給制御装置を示すダイアグラムである。
【図8】 本発明の第5実施例による圧縮機への電流及び静電容量の供給制御装置を示すダイアグラムである。
【図9】 本発明の第6実施例による圧縮機への電流及び静電容量の供給制御装置を示すダイアグラムである。
【図10】 図9で負温度計数器の抵抗特性を示すグラフである。

Claims (40)

  1. 始動時と始動後によって異なるように圧縮機の主巻線及び補助巻線への外部常用電圧による電流及び静電容量を制御するための制御信号を提供する制御信号発生部;
    前記制御信号に応答して始動中には前記主巻線に常用電圧による電流を制限して供給し、始動後は前記電流を正常に供給する電流制御部;そして、
    前記制御信号に応答して始動中には前記電流制御部の出力電流を用いた始動用静電容量及び、前記常用電圧を用いた運転用静電容量を前記始動用補助巻線に供給し、始動後は前記常用電圧を用いた運転用静電容量を供給する静電容量制御部で構成されることを特徴とする圧縮機への電流及び静電容量の供給を制御する装置。
  2. 前記制御信号発生部は
    常用電源から少なくとも一つの電圧値を得るトランス部;
    前記得られた少なくとも一つの電圧値を通じて、前記印加された外部常用電圧の大きさを感知する電圧大きさの感知部;そして、
    前記感知電圧の大きさに基づいて前記制御信号を発生し、その制御信号を前記電流制御部及び前記静電容量制御部に提供する制御部で構成されることを特徴とする請求項1記載の圧縮機への電流及び静電容量の供給を制御する装置。
  3. 使用者の選択によって圧縮機の駆動オン/オフ信号を発生する第1制御部;
    前記駆動オン/オフ信号に応答して、前記圧縮機に常用電圧を供給したり、または中断する第1スイッチ;
    前記常用電圧の大きさに基づいて、前記常用電圧による位相制御信号及びスイッチング制御信号を発生する第2制御部;
    前記スイッチング制御信号及び位相制御信号に応答して内部回路を変更し、前記圧縮機の主巻線に始動時には前記常用電圧による電流を制限して提供し、始動後は前記電流を正常に提供する電流制御部;そして、
    前記スイッチング制御信号に応答して内部回路を変更し、前記圧縮機の補助巻線に始動時には前記電流制御部から出力電流を用いた始動用静電容量及び、前記常用電圧を用いた運転用静電容量を供給し、始動後は運転用静電容量を供給する静電容量制御部で構成されることを特徴とする圧縮機への電流及び静電容量の供給を制御する装置。
  4. 使用者の選択によって圧縮機の駆動オン/オフ信号を発生する第1制御部;
    前記駆動オン/オフ信号に応答して、前記圧縮機に常用電圧を供給したり、または中断する第1スイッチ;
    前記常用電圧の大きさに基づいて、前記常用電圧の位相制御信号及びスイッチング制御信号を発生する第2制御部;
    前記スイッチング制御信号及び位相制御信号に応答して内部回路を変更し、前記圧縮機の主巻線に始動時には前記位相制御信号による電流を制限して提供し、始動後は前記常用電圧に当たる大きな電流を提供する電流制御部;そして、
    前記スイッチング制御信号に応答して内部回路を変更し、前記圧縮機の補助巻線に始動時には前記電流制御部からの出力電流を用いた始動用静電容量及び、前記常用電圧を用いた運転用静電容量を供給し、始動後は前記常用電圧による電流を用いた運転用静電容量を供給し、内部に瞬間放電による突入電流を防止するための機能を有する静電容量制御部で構成されることを特徴とする圧縮機への電流及び静電容量の供給を制御する装置。
  5. 使用者の選択によって圧縮機の駆動オン/オフ信号を発生する第1制御部;
    前記駆動オン/オフ信号に応答して、前記圧縮機に常用電圧を供給したり、または中断する第1スイッチ;
    前記室外温度を感知して、その感知温度値を提供する温度感知部;
    前記常用電圧の大きさ及び前記室外温度に基づいて、前記常用電圧の位相制御信号及びスイッチング制御信号を発生する第2制御部;
    前記スイッチング制御信号及び位相制御信号に応答して内部回路を変更し、前記圧縮機の主巻線に始動時には前記位相制御信号による電流を制限して提供し、始動後は前記常用電圧に当たる電流を提供する電流制御部;そして、
    前記スイッチング制御信号に応答して内部回路を変更し、前記圧縮機の補助巻線に始動時には前記電流制御部からの出力電流を用いた始動用静電容量及び、前記常用電圧を用いた運転用静電容量を供給し、始動後は前記常用電圧による電流を用いた運転用静電容量を供給する静電容量制御部で構成されることを特徴とする圧縮機への電流及び静電容量の供給を制御する装置。
  6. 使用者の選択によって圧縮機の駆動オン/オフ信号を発生する第1制御部;
    前記駆動オン/オフ信号に応答して、前記圧縮機に常用電圧を供給したり、または中断する第1スイッチ;
    前記常用電圧の大きさに基づいて、前記常用電圧による位相制御信号及びスイッチング制御信号を発生し、前記主巻線の電流値に基づいて前記電流値の状態をディスプレイするための信号を提供する第2制御部;
    前記スイッチング制御信号及び位相制御信号に応答して内部回路を変更し、前記圧縮機の主巻線に始動時には前記位相制御信号による電流を制限して提供し、始動後は前記常用電圧に当たる電流を正常に提供する電流制御部;
    前記電流制御部の出力側に接続され、前記圧縮機の主巻線に流れる電流を検出して前記第2制御部に提供する電流検出部;
    前記ディスプレイ信号に応答して前記主巻線に流れる電流の状態をディスプレイするディスプレイ部;
    前記スイッチング制御信号に応答して内部回路を変更し、前記圧縮機の始動用補助巻線に始動時には前記電流制御部からの出力電流を用いた始動用静電容量及び、前記常用電圧による電流を用いた運転用静電容量を供給し、始動後は前記運転用静電容量のみを供給する静電容量制御部で構成されることを特徴とする圧縮機への電流及び静電容量の供給を制御する装置。
  7. 使用者の選択によって圧縮機の駆動オン/オフ信号を発生する第1制御部;
    前記駆動オン/オフ信号に応答して、前記圧縮機に常用電圧を供給したり、または中断する第1スイッチ;
    前記圧縮機の主巻線に流れる電流及び前記常用電圧の大きさに基づき、可変的な位相制御信号及びスイッチング制御信号を発生する第2制御部;
    前記スイッチング制御信号及び位相制御信号に応答して内部回路を変更し、前記圧縮機の主巻線に始動時には前記位相制御信号による電流を制限して提供し、始動後は前記常用電圧に当たる電流を正常に提供する電流制御部;
    前記電流制御部の出力側に接続され、前記圧縮機の主巻線に流れる電流を検出して前記第2制御部に提供する電流検出部;
    前記スイッチング制御信号に応答して内部回路を変更し、前記圧縮機の補助巻線に始動時には前記電流制御部からの出力電流を用いた始動用静電容量及び、前記常用電圧を用いた運転用静電容量を供給し、始動後は前記常用電圧による電流のみを用いた運転用静電容量を供給する静電容量制御部で構成されることを特徴とする圧縮機への電流及び静電容量の供給を制御する装置。
  8. 使用者の選択によって圧縮機の駆動オン/オフ信号を発生する第1制御部;
    前記駆動オン/オフ信号に応答して、前記圧縮機に常用電圧を供給したり、または中断する第1スイッチ;
    前記圧縮機の始動時と始動後によって異なるようにスイッチング制御信号を発生する第2制御部;
    大きな初期抵抗値を有して温度に反比例する可変抵抗特性を有し、前記スイッチング制御信号に従って内部回路が変更され、前記圧縮機の主巻線に始動時には前記常用電圧による電流を制限して提供し、始動後は前記常用電圧による電流を正常に提供する電流制御部;
    前記スイッチング制御信号に応答して内部回路が変更され、前記圧縮機の補助巻線に始動時には前記電流制御部からの出力電流を用いた始動用静電容量及び、前記常用電圧による電流を用いた運転用静電容量を供給し、始動後は前記常用電圧による電流のみを用いた運転用静電容量を供給する静電容量制御部で構成されることを特徴とする圧縮機への電流及び静電容量の供給を制御する装置。
  9. 前記電流制御部は前記スイッチング制御信号に応答して、前記始動スタートから始動完了の間で、前記主巻線に次第に増加する方向に電流を供給することを特徴とする請求項3乃至8記載の圧縮機への電流及び静電容量の供給を制御する装置。
  10. 前記電流制御部は前記スイッチング制御信号に応答して、前記第1スイッチの出力接点と前記主巻線との間でスイッチングオンまたはオフされる第2スイッチ;そして、
    前記第2スイッチの入力接点及び出力接点の間に並列接続され、前記第2スイッチのスイッチングオンまたはオフ状態及び、前記位相制御信号に従って、前記主巻線に供給される電圧の位相を制御する位相制御部で構成され、
    前記静電容量制御部は前記スイッチング制御信号に応答して動作し、入力接点が前記電流制御部の出力側に接続される第3スイッチ;そして、
    第1入力端子が前記第3スイッチの出力接点に、第2入力端子が前記第1スイッチの出力接点に、出力端子は前記補助巻線に接続され、前記第2スイッチ及び前記第3スイッチのスイッチングオン/オフ状態に応じて、前記補助巻線に静電容量を提供する静電容量発生部で構成されることを特徴とする請求項3及び5乃至7記載の圧縮機への電流及び静電容量の供給を制御する装置。
  11. 前記位相制御部は前記印加された常用電圧が基準常用電圧より低いと、位相制御信号に従ってより長くターンオンし、前記印加された常用電圧が前記基準常用電圧より高いと、より短くターンオンすることを特徴とする請求項10記載の圧縮機への電流及び静電容量の供給を制御する装置。
  12. 前記スイッチング制御信号に応答して、前記第2スイッチは始動時に前記第1スイッチの出力接点と前記主巻線を前記位相制御部を介して接続させ、始動後は前記第1スイッチの出力接点と前記主巻線が直接接続されるように動作し、
    前記スイッチング制御信号に応答して、前記第3スイッチは始動時、前記位相制御部の出力端子と前記第1スイッチの出力接点を前記静電容量発生部を経て前記補助巻線に連結させ、前記静電容量発生部が前記始動用静電容量及び運転用静電容量を有するように、そして、始動後には前記第1スイッチの出力接点が前記静電容量提供部を経て、前記補助巻線に連結され、前記静電容量発生部が前記運転用静電容量のみを有するように動作することを特徴とする請求項10記載の圧縮機への電流及び静電容量の供給を制御する装置。
  13. 前記位相制御部は前記位相制御信号によって駆動され、前記主巻線に供給される電圧の位相を制御するトライアクであることを特徴とする請求項10記載の圧縮機への電流及び静電容量の供給を制御する装置。
  14. 前記静電容量発生部は前記第3スイッチの出力接点と前記補助巻線との間に接続される始動用キャパシタ;そして、
    前記第1スイッチの入力接点と前記補助巻線との間に接続され、前記始動用キャパシタとは並列に接続される運転用キャパシタで構成されることを特徴とする請求項10記載の圧縮機への電流及び静電容量の供給を制御する装置。
  15. 前記電流制御部は前記スイッチング制御信号に応答して、前記第1スイッチの出力接点と前記主巻線との間でスイッチングオンまたはオフされる第2スイッチ;そして、
    前記第2スイッチの入力接点及び出力接点の間に並列接続され、前記第2スイッチのスイッチングオンまたはオフ状態及び、前記位相制御信号に従って、前記主巻線に供給される電圧の位相を制御する位相制御部で構成され、
    前記静電容量制御部は前記スイッチング制御信号に応答してスイッチングオンまたはオフされ、入力接点が前記位相制御部の出力端子及び前記第2スイッチの出力接点に接続される第3スイッチ;
    入力端子が前記第3スイッチの出力接点に接続される負温度計数器、そして、第1入力端子が前記負温度計数器の出力端子に、第2入力端子が前記第1スイッチの出力接点に、そして、出力端子が前記補助巻線に接続され、前記第2スイッチ及び第3スイッチのスイッチングオンまたはオフ状態に応じて、前記補助巻線に静電容量を提供する静電容量発生部で構成されることを特徴とする請求項4記載の圧縮機への電流及び静電容量の供給を制御する装置。
  16. 前記位相制御部は前記印加された常用電圧が基準常用電圧より低いと、位相制御信号に従ってより長くターンオンし、前記印加された常用電圧が前記基準常用電圧より高いと、より短くターンオンすることを特徴とする請求項15記載の圧縮機への電流及び静電容量の供給を制御する装置
  17. 前記スイッチング制御信号に応答して、前記第2スイッチは始動時に前記第1スイッチの出力接点と前記主巻線を前記位相制御部を介して接続させ、始動後は前記第1スイッチの出力接点と前記主巻線が直接接続されるように動作し、
    前記スイッチング制御信号に応答して、前記第3スイッチは始動時に前記位相制御部の出力端子と前記第1スイッチの出力接点を前記静電容量発生部を経て前記補助巻線に連結させ、前記静電容量発生部が前記始動用静電容量及び運転用静電容量を発生するように、そして、始動後には前記第1スイッチの出力接点のみが前記静電容量提供部を経て、前記補助巻線に連結され、前記静電容量発生部が相対的に少ない運転用静電容量のみを発生するように動作することを特徴とする請求項15記載の圧縮機への電流及び静電容量の供給を制御する装置。
  18. 前記位相制御部は前記位相制御信号によって駆動され、前記主巻線に供給される電圧の位相を制御するトライアクであることを特徴とする請求項15記載の圧縮機への電流及び静電容量の供給を制御する装置。
  19. 前記静電容量発生部は前記負温度計数器の出力端子と前記補助巻線との間に接続される始動用キャパシタ;そして、
    前記第1スイッチの出力接点と前記補助巻線との間に接続され、前記始動用キャパシタとは並列に接続される運転用キャパシタで構成されることを特徴とする請求項15記載の圧縮機への電流及び静電容量の供給を制御する装置。
  20. 前記温度感知部は前記室外温度値を電圧値に変換するサーミスタであることを特徴とする請求項5記載の圧縮機への電流及び静電容量の供給を制御する装置。
  21. 前記電流検出部は前記電流制御部と前記主巻線との間に接続された抵抗であることを特徴とする請求項6及び7記載の圧縮機への電流及び静電容量の供給を制御する装置。
  22. 前記ディスプレイ部はLEDであることを特徴とする請求項6記載の圧縮機への電流及び静電容量の供給を制御する装置。
  23. 前記LEDは前記ディスプレイ信号に応答して、前記検出された主巻線の電流が既設定第1過度電流以上であれば点滅され、前記第1過度電流以下であり、第2過度電流(第1過度電流>第2過度電流)以上であれば点灯され、そして、前記第2過度電流以下であればターンオフされることを特徴とする請求項22記載の圧縮機への電流及び静電容量の供給を制御する装置。
  24. 前記電流制御部は入力接点が前記第1スイッチの出力接点に、出力接点は前記主巻線に接続され、前記スイッチング制御信号に応答して、前記第1スイッチの出力接点と前記主巻線との間でスイッチングされる第2スイッチ;そして、
    入力端子が前記第1スイッチの出力接点に、出力端子と前記主巻線の間に接続され、前記入力端子と出力端子が前記第2スイッチの入力接点と出力接点に各々並列接続され、始動時前記主巻線に供給される電流の大きさを制限する負温度計数器で構成され、
    前記静電容量制御部は入力接点が前記第2スイッチの出力接点に接続され、前記スイッチング制御信号に応答してスイッチングされる第3スイッチ;そして、前記第3スイッチの出力接点と前記補助巻線との間に接続され、前記第3スイッチのスイッチング状態に応じて、前記補助巻線に前記始動時には前記電流制御部の出力電流と前記常用電圧による電流とを用いた静電容量及び、前記常用電圧による電流を用いた運転用静電容量を発生し、始動後は前記常用電圧による電流を用いた運転用静電容量のみを発生する静電容量発生部で構成されることを特徴とする請求項8記載の圧縮機への電流及び静電容量の供給を制御する装置。
  25. 前記第2スイッチは前記スイッチング制御信号に応答して、始動時に前記第1スイッチの出力接点と前記主巻線を前記位相制御部を介して接続させ、始動後は前記第1スイッチの出力接点と前記主巻線が直接接続されるように前記電流制御部の内部回路を変更し、前記第3スイッチは前記スイッチング制御信号に応答して、始動時に前記静電容量発生部が大きな静電容量を有するように、始動後は制限した少ない静電容量を有するように前記静電容量制御部の内部回路を変更することを特徴とする請求項24記載の圧縮機への電流及び静電容量の供給を制御する装置。
  26. 前記静電容量発生部は前記第3スイッチの出力接点と前記補助巻線との間に接続され、始動時に前記補助巻線に始動トルクのために前記電流制御部の出力電流による前記始動用静電容量を前記補助巻線に提供する始動用キャパシタ;そして、
    前記第1スイッチと前記補助巻線との間に接続され、前記始動用キャパシタとは並列に接続され、始動時及び運転時に前記常用電圧による電流を用いた前記運転用静電容量を前記補助巻線に提供する運転用キャパシタで構成されることを特徴とする請求項24記載の圧縮機への電流及び静電容量の供給を制御する装置。
  27. 常用電圧を前記圧縮機内に入力するステップ;
    前記圧縮機の始動時には主巻線に常用電圧による電流を制限して提供し、前記補助巻線には前記主巻線に提供された電流を共に用いた始動用静電容量及び、前記常用電圧を用いた運転用静電容量を提供するステップ;そして、前記圧縮機の始動後は補助巻線に前記常用電圧による電流を用いて前記運転用静電容量を提供し、前記主巻線には前記入力された常用電圧による電流をそのまま提供するステップを備えることを特徴とする圧縮機への電流及び静電容量の供給を制御する方法。
  28. 前記主巻線に提供される電流は前記常用電圧による電流の位相を制御することにより得られることを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  29. 前記始動時間を始動初期、始動中期、及び始動末期に区分時、前記始動初期には前記主巻線に提供される電流は第1大きさの制限値を有し、始動中期には前記第1大きさから前記常用電圧による第2大きさの電流値まで次第に増加し、そして、始動末期からは前記圧縮機が動作する限り、前記第2大きさを持続的に維持することを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  30. 前記圧縮機の運転前に前記常用電圧の大きさを感知するステップ;そして、前記感知した常用電圧の大きさによって前記常用電圧による電流の位相を制御し、前記主巻線に流れる電流を制限するステップを更に備えることを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  31. 室外温度を感知するステップ;そして、前記感知された室外温度によって前記圧縮機の主巻線に流れる電流の位相を可変的に制御するステップを更に備えることを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  32. 前記圧縮機の主巻線に流れる電流の位相を可変的に制御するステップは、前記感知温度値と季節により既設定された基準値とを比較するステップ;そして、前記比較結果に応じて、前記主巻線に流れる電流の位相を制御するステップで構成されることを特徴とする請求項31記載の圧縮機への電流及び静電容量の供給を制御する方法。
  33. 前記始動時に前記主巻線に流れる電流を感知するステップ、
    前記感知電流を設定された少なくとも一つの基準値と比較するステップ;そして、前記比較結果に応じて、前記主巻線に流れる電流の状態を外部にディスプレイするステップを更に備えることを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  34. 前記ディスプレイ素子はLEDであることを特徴とする請求項33記載の圧縮機への電流及び静電容量の供給を制御する方法。
  35. 前記電流の状態をディスプレイするステップは、前記感知した電流が既設定第1過度電流以上であればディスプレイ素子を点滅させ、前記第1過度電流より小さく、第2過度電流(第1過度電流>第2過度電流)以上であれば前記ディスプレイ素子を点灯させ、そして、第2過度電流以下であれば正常状態として見なし、前記ディスプレイ素子を動作させないことを特徴とする請求項33記載の圧縮機への電流及び静電容量の供給を制御する方法。
  36. 前記始動中前記主巻線に流れる電流値を検出するステップ、
    前記検出した電流値から始動電圧値を求めるステップ;
    前記始動電圧値を既設定された少なくとも一つの基準電圧値と比較するステップ;そして、
    前記比較結果に応じて、前記主巻線に流れる電流の位相を制御するステップを更に備えることを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  37. 前記位相制御ステップは、前記始動電圧値が既設定第1基準電圧以上であれば、前記圧縮機の駆動が停止されるように前記電流の供給を中断し、前記始動電圧値が前記第1基準電圧より低く、第2基準電圧値より大きいときは、前記電流の大きさが小さくなるように前記電流の位相を制御し、そして、前記始動電圧値が前記第2基準電圧値以下であれば、前記電流の初期位相をそのまま維持することを特徴とする請求項36記載の圧縮機への電流及び静電容量の供給を制御する方法。
  38. 前記始動中前記主巻線に流れる電流の大きさは負温度計数器により制限されることを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  39. 前記始動中前記主巻線に流れる電流の大きさはトライアクにより制限されることを特徴とする請求項27記載の圧縮機への電流及び静電容量の供給を制御する方法。
  40. 前記トライアクは前記印加された常用電圧が基準常用電圧より低いと、位相制御信号に従ってより長くターンオンし、前記印加された常用電圧が前記基準常用電圧より高いと、より短くターンオンすることを特徴とする請求項39記載の圧縮機への電流及び静電容量の供給を制御する装置。
JP2001537157A 1999-11-12 2000-10-18 圧縮機への電流及び静電容量の供給を制御する装置並びに方法 Expired - Fee Related JP3785367B2 (ja)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
KR1019990050263A KR100335381B1 (ko) 1999-11-12 1999-11-12 압축기의 시동전류 제어장치 및 그 제어방법
KR1999/50263 1999-11-12
KR2000/37563 2000-07-01
KR10-2000-0037570A KR100371342B1 (ko) 2000-07-01 2000-07-01 압축기의 시동전류 제어장치 및 그 제어방법
KR2000/37570 2000-07-01
KR10-2000-0037563A KR100371339B1 (ko) 2000-07-01 2000-07-01 압축기의 시동전류 제어장치 및 그 방법
KR10-2000-0037562A KR100371338B1 (ko) 2000-07-01 2000-07-01 압축기의 시동전류 제어장치 및 그 방법
KR2000/37564 2000-07-01
KR2000/37566 2000-07-01
KR1020000037564A KR100347923B1 (ko) 2000-07-01 2000-07-01 압축기의 시동전류 제어방법
KR10-2000-0037565A KR100371340B1 (ko) 2000-07-01 2000-07-01 압축기의 시동전류 제어장치 및 그 제어방법
KR1020000037566A KR100347924B1 (ko) 2000-07-01 2000-07-01 압축기의 시동전류 제어방법
KR2000/37562 2000-07-01
KR2000/37565 2000-07-01
PCT/KR2000/001168 WO2001035521A1 (en) 1999-11-12 2000-10-18 Device and method for controlling supply of current and static capacitance to compressor

Publications (2)

Publication Number Publication Date
JP2003515306A JP2003515306A (ja) 2003-04-22
JP3785367B2 true JP3785367B2 (ja) 2006-06-14

Family

ID=27567140

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2000304222A Pending JP2001140764A (ja) 1999-11-12 2000-10-03 圧縮機への電流及び静電容量の供給を制御する装置並びに方法
JP2001537157A Expired - Fee Related JP3785367B2 (ja) 1999-11-12 2000-10-18 圧縮機への電流及び静電容量の供給を制御する装置並びに方法
JP2004124800A Pending JP2004229499A (ja) 1999-11-12 2004-04-20 圧縮機への電流及び静電容量の供給を制御する装置並びに方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000304222A Pending JP2001140764A (ja) 1999-11-12 2000-10-03 圧縮機への電流及び静電容量の供給を制御する装置並びに方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2004124800A Pending JP2004229499A (ja) 1999-11-12 2004-04-20 圧縮機への電流及び静電容量の供給を制御する装置並びに方法

Country Status (10)

Country Link
US (2) US6407530B1 (ja)
EP (2) EP1234372B1 (ja)
JP (3) JP2001140764A (ja)
CN (2) CN1190000C (ja)
AU (1) AU772836B2 (ja)
BR (1) BRPI0015642B1 (ja)
MX (2) MXPA00009805A (ja)
MY (1) MY125213A (ja)
TR (1) TR200003339A3 (ja)
WO (1) WO2001035521A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681199C1 (ru) * 2018-03-12 2019-03-05 Акционерное общество "Научно-технический комплекс "Криогенная техника" Способ регулирования и работы двигателя судового спирального компрессора с частотным регулированием оборотов

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844698B1 (en) * 1999-11-12 2005-01-18 Lg Electronics Inc. Device and method for controlling supply of current and static capacitance to compressor
MY125213A (en) * 1999-11-12 2006-07-31 Lg Electronics Inc "device and method for controlling supply of current and static capacitance to compressor"
US7023167B2 (en) * 2002-05-02 2006-04-04 Smith Otto J M Control arrangement for an induction motor compressor having at least three windings, a torque-augmentation circuit a starting capacitor and a resistive element
KR100474330B1 (ko) * 2002-05-13 2005-03-08 엘지전자 주식회사 냉장고용 왕복동식 압축기의 운전제어장치
EP1508195A1 (en) * 2002-05-29 2005-02-23 Bristol Compressors Inc. System and method for soft starting a three phase motor
CN100390414C (zh) 2002-10-11 2008-05-28 Lg电子株式会社 压缩机的过载保护装置及其过载保护方法
CH695976A5 (de) * 2002-12-02 2006-10-31 Roland Weigel Vorrichtung und Verfahren zum Reduzieren der Stromaufnahme während des Anlaufens eines Einphasen-Wechselstrom-Asynchron-Motors.
US6798159B1 (en) * 2003-04-14 2004-09-28 Carrier Corporation VSD control
EP1494346B1 (en) 2003-07-04 2013-01-30 B.D.G. El. S.P.A. A controller device, in particular for induction motors and more particularly for compressors in refrigerating apparatuses.
KR100524726B1 (ko) * 2003-08-14 2005-10-31 엘지전자 주식회사 왕복동식 압축기의 구동회로
BR0305905A (pt) * 2003-12-11 2005-08-16 Brasil Compressores Sa Sistema de partida para motor a indução monofásico
US6873131B1 (en) * 2004-01-15 2005-03-29 A. O. Smith Corporation Dual voltage electric motors
US6982539B1 (en) 2004-03-11 2006-01-03 Diversitech Corporation Motor starting device
FR2872968B1 (fr) * 2004-07-08 2006-10-20 Electricite De France Moyens de limitation de chute de tension au demarrage dans un appareil electrique domestique
KR20060055046A (ko) * 2004-11-17 2006-05-23 삼성전자주식회사 단상유도전동기 및 그 소음 저감 방법
KR100677530B1 (ko) 2004-11-26 2007-02-02 엘지전자 주식회사 왕복동식 압축기의 운전제어장치 및 방법
KR100619766B1 (ko) * 2005-01-07 2006-09-11 엘지전자 주식회사 용량 가변형 왕복동식 압축기의 구동제어장치 및 방법
CN100340058C (zh) * 2005-04-01 2007-09-26 上海匣承机电科技有限公司 三相交流电动机节电器
US8156751B2 (en) * 2005-05-24 2012-04-17 Emerson Climate Technologies, Inc. Control and protection system for a variable capacity compressor
JP4955705B2 (ja) * 2006-02-02 2012-06-20 エルジー エレクトロニクス インコーポレイティド リニア圧縮機の制御装置
KR100756719B1 (ko) * 2006-02-02 2007-09-07 엘지전자 주식회사 리니어 압축기의 제어장치
BRPI0703332A2 (pt) * 2007-08-15 2009-03-31 Whirlpool Sa sistema e método de acionamento de enrolamento auxiliar de motor elétrico e motor elétrico
CN101932836B (zh) * 2008-01-08 2015-06-03 Lg电子株式会社 用于控制压缩机的运行的装置及方法
US20110279097A1 (en) * 2010-05-13 2011-11-17 David Wise System and method for using condition sensors/switches to change capacitance value
KR101766243B1 (ko) 2010-07-06 2017-08-08 엘지전자 주식회사 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
KR101766244B1 (ko) * 2010-07-06 2017-08-08 엘지전자 주식회사 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
US20130271102A1 (en) * 2012-04-12 2013-10-17 Roger Lin Power supply control structure
GB2504577A (en) * 2012-06-04 2014-02-05 Secop Gmbh A motor system with a relay disconnecting the start winding at a voltage threshold
US8896334B2 (en) * 2012-06-28 2014-11-25 Eaton Corporation System for measuring soft starter current and method of making same
GB2503671B (en) * 2012-07-03 2014-12-17 Dyson Technology Ltd Control of a brushless motor
GB2503670B (en) 2012-07-03 2014-12-10 Dyson Technology Ltd Method of preheating a brushless motor
CN104005943B (zh) * 2013-02-27 2016-03-02 珠海格力电器股份有限公司 压缩机的控制***及方法、空调机
CN103939321B (zh) * 2014-04-02 2016-08-10 邯郸美的制冷设备有限公司 一种空调压缩机启动控制方法及装置
CN104747425A (zh) * 2015-03-05 2015-07-01 海信容声(广东)冰箱有限公司 一种压缩机、冰箱及控制方法
KR102105405B1 (ko) 2018-03-21 2020-04-28 엘에스일렉트릭(주) 고압 인버터 초기충전 시스템 및 그 제어방법
CN109209850B (zh) * 2018-09-29 2021-03-23 青岛海尔智能技术研发有限公司 压缩机启动驱动电路、驱动方法、装置及计算机存储介质
CN111969894A (zh) * 2020-09-21 2020-11-20 浙江星控信息技术有限公司 一种硬启动、软启动、变频启动整合切换模块
US11722090B2 (en) * 2021-04-21 2023-08-08 Emerson Electric Co. Control circuits for compressor motors including multiple capacitors

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE276956C (ja)
US3855509A (en) * 1972-04-18 1974-12-17 Gen Electric Control system for induction motors
US3882364A (en) * 1972-08-18 1975-05-06 Gen Electric Induction motor control system
US4037316A (en) * 1974-09-23 1977-07-26 General Electric Company Method of assembling temperature responsive resistance member
US4012678A (en) * 1975-04-04 1977-03-15 Texas Instruments Incorporated Starting circuit for single phase motor
US4107583A (en) * 1977-04-07 1978-08-15 General Electric Company Dynamoelectric machine winding arrangements, dynamoelectric machines incorporating same and methods of operating such dynamoelectric machines
DE2848281A1 (de) * 1978-11-07 1980-05-08 Bosch Siemens Hausgeraete Steuervorrichtung fuer einen in geschirrspuelmaschinen eingesetzten umwaelzpumpenmotor
GB2067370B (en) 1979-12-28 1984-01-25 Myson Group Ltd Electric motor start up control
US4465960A (en) * 1982-08-09 1984-08-14 Lennox Industries, Inc. Starting arrangement for two-speed single-phase refrigerant compressor motor
US4465962A (en) * 1983-03-28 1984-08-14 Westinghouse Electric Corp. Permanent split capacitor single phase electric motor system
DE3820267A1 (de) * 1988-06-14 1989-12-21 Siemens Ag Schaltungsanordnung zum ansteuern eines einphasen-asynchronmotors
DD276956A1 (de) * 1988-11-08 1990-03-14 Grunhain Elektromotorenwerk Schaltungsanordnung fuer einen elektronischen hilfsphasenschalter
US5162718A (en) * 1989-08-31 1992-11-10 Schroeder Fritz H Starting device and circuit for starting single phase motors
US5103154A (en) * 1990-05-25 1992-04-07 Texas Instruments Incorporated Start winding switch protection circuit
CA2085202C (en) * 1992-03-24 1996-10-22 Ricky L. Bunch Positive temperature coefficient start winding protection
US5300871A (en) * 1992-08-21 1994-04-05 Chien Luen Industries Company, Ltd., Inc. Dual capacitor speed control apparatus and method for electric motor
US5296795A (en) * 1992-10-26 1994-03-22 Texas Instruments Incorporated Method and apparatus for starting capacitive start, induction run and capacitive start, capacitive run electric motors
JP3272493B2 (ja) * 1992-12-05 2002-04-08 山田電機製造株式会社 単相誘導電動機の起動装置
FR2717641B1 (fr) * 1994-03-16 1996-05-15 Somfy Dispositif indicateur de l'état d'un moteur asynchrone monophasé.
JP3126895B2 (ja) * 1994-08-31 2001-01-22 三菱電機株式会社 単相誘導電動機並びに該単相誘導電動機を用いた冷蔵庫
US5561357A (en) * 1995-04-24 1996-10-01 Schroeder; Fritz H. Starting device and circuit for starting single phase motors
US5559418A (en) * 1995-05-03 1996-09-24 Emerson Electric Co. Starting device for single phase induction motor having a start capacitor
JPH09285168A (ja) * 1996-04-16 1997-10-31 Murata Mfg Co Ltd モータ起動用回路
JP3684719B2 (ja) * 1996-11-27 2005-08-17 松下電器産業株式会社 暖冷房機
US6122154A (en) * 1997-04-24 2000-09-19 Damerow; Robert William Motor starting device and protector module with motor starter cut-out switch
US6034503A (en) * 1997-06-17 2000-03-07 Pertessis; John Method and apparatus for starting motors
FR2772524B1 (fr) * 1997-12-12 2000-05-12 Legrand Sa Dispositif de protection contre des surintensites, notamment pour la protection rearmable d'un interrupteur controle
US6020702A (en) * 1998-01-12 2000-02-01 Tecumseh Products Company Single phase compressor thermostat with start relay and motor protection
US6040679A (en) * 1998-02-06 2000-03-21 Bristol Compressors, Inc. Variable capacity compressor having two-step motor strength adjustability
US6320348B1 (en) * 1999-06-14 2001-11-20 Andrew S. Kadah Time rate of change motor start circuit
US6249104B1 (en) * 1999-07-01 2001-06-19 General Electric Company Cutout start switch heating
MY125213A (en) * 1999-11-12 2006-07-31 Lg Electronics Inc "device and method for controlling supply of current and static capacitance to compressor"

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681199C1 (ru) * 2018-03-12 2019-03-05 Акционерное общество "Научно-технический комплекс "Криогенная техника" Способ регулирования и работы двигателя судового спирального компрессора с частотным регулированием оборотов

Also Published As

Publication number Publication date
AU7968000A (en) 2001-06-06
CN1190000C (zh) 2005-02-16
MY125213A (en) 2006-07-31
BRPI0015642B1 (pt) 2015-08-18
EP1100190A3 (en) 2002-09-25
EP1234372A1 (en) 2002-08-28
JP2004229499A (ja) 2004-08-12
US6407530B1 (en) 2002-06-18
MXPA00009805A (es) 2002-10-04
MXPA02004634A (es) 2002-09-02
TR200003339A2 (tr) 2001-07-23
WO2001035521A1 (en) 2001-05-17
US6747428B1 (en) 2004-06-08
EP1100190A2 (en) 2001-05-16
AU772836B2 (en) 2004-05-06
BR0015642A (pt) 2002-08-06
CN1296333A (zh) 2001-05-23
JP2003515306A (ja) 2003-04-22
TR200003339A3 (tr) 2001-07-23
EP1234372B1 (en) 2013-07-17
JP2001140764A (ja) 2001-05-22
CN1390381A (zh) 2003-01-08
EP1100190B1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP3785367B2 (ja) 圧縮機への電流及び静電容量の供給を制御する装置並びに方法
JP3785366B2 (ja) 圧縮機への電流及び静電容量の供給を制御する装置並びに方法
JPWO2003085265A1 (ja) 圧縮機ユニットおよびそれを用いた冷凍機
JPH05168248A (ja) 空気調和機
JP2001124450A (ja) インバータ冷蔵庫のモータ保護装置及びその保護方法
AU5652800A (en) Device and method for controlling supply of current and static capacitance to compressor
AU2003235058B2 (en) Device and method for controlling supply of current and static capacitance to compressor
JPH09130960A (ja) 突入電流遮断回路
KR100347924B1 (ko) 압축기의 시동전류 제어방법
KR0136081Y1 (ko) 공기조화기의 압축기 보호장치
KR100371340B1 (ko) 압축기의 시동전류 제어장치 및 그 제어방법
JP4168517B2 (ja) 直流ファンモ−タの制御装置
KR100347923B1 (ko) 압축기의 시동전류 제어방법
KR970003142Y1 (ko) 전원전압 오사용시 안전장치
KR100347925B1 (ko) 압축기의 시동전류 제어장치
KR100371338B1 (ko) 압축기의 시동전류 제어장치 및 그 방법
KR100371341B1 (ko) 압축기의 시동전류 제어장치 및 그 제어방법
KR100371342B1 (ko) 압축기의 시동전류 제어장치 및 그 제어방법
JPH0260419A (ja) 直流モータ駆動回路
JPH08196079A (ja) 電源装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees