JP3785347B2 - Torsional vibration device - Google Patents

Torsional vibration device Download PDF

Info

Publication number
JP3785347B2
JP3785347B2 JP2001332683A JP2001332683A JP3785347B2 JP 3785347 B2 JP3785347 B2 JP 3785347B2 JP 2001332683 A JP2001332683 A JP 2001332683A JP 2001332683 A JP2001332683 A JP 2001332683A JP 3785347 B2 JP3785347 B2 JP 3785347B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
driving body
outer induction
induction coil
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001332683A
Other languages
Japanese (ja)
Other versions
JP2003126776A (en
Inventor
隆正 荒木
陽一 舟橋
猛 万場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001332683A priority Critical patent/JP3785347B2/en
Publication of JP2003126776A publication Critical patent/JP2003126776A/en
Application granted granted Critical
Publication of JP3785347B2 publication Critical patent/JP3785347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ねじり振動特性計測、特に自動車の駆動系のねじり振動に対する応答性能計測等に好適なねじり加振装置に関するものである。
【0002】
【従来の技術】
従来、ねじり振動特性計測に使用される電磁式のねじり加振装置には、静止磁石とでねじり加振を行わせるためのコイルを、供試軸が連結される駆動体に直接巻き付け(駆動体とコイルとで電磁石を構成し)、そのコイルに電流を流すことにより、駆動体にトルクを発生させてねじり加振を行わせるというものがあった(実開昭62−197026号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら上記従来装置では、次のような問題点があった。
すなわち上述したように、コイルを駆動体に直接巻き付けているため、駆動体の慣性モーメントが大きくなり、この駆動体に連結する供試軸、ひいてはねじり振動に対する応答性能の計測対象であるトランスミッション等の供試体への加振トルクの伝達効率が低下する。このため、計測に必要なトルク(負荷)を与えての加振ができず、有効な計測が可能な加振周波数の低下を来してしまうことにもなった。
【0004】
こうした問題点を改善するには、負荷能力を高めることが挙げられる。しかし、負荷能力を高めるには上記コイルの巻き数を多くする必要があり、そうすると上述と同様の理由で慣性モーメントが増大した。このため、供試体(トランスミッション)への加振トルクの伝達効率が更に低下し、コイルの巻き数を増やす前以上に必要なトルクを与えての加振ができず、有効な計測が可能な加振周波数の低下の程度も大きくなった。
【0005】
したがって、このような従来のねじり加振装置を用いて、例えばトルク加振によるトランスミッションのギヤノイズ評価を実施したい場合でも、上述したように駆動体の慣性モーメントが大きいためトランスミッションに必要なトルクを与えることができず、評価(計測)が不可能となった。
トランスミッションのギヤノイズは、4kHz程度まで発生するので、最近では4kHz程度までのテストが要求されることもあるが、上記のように慣性モーメントが大きいことは、このような高周波域(4kHz程度)にわたってのギヤノイズ評価の実施にも障害となった。
【0006】
本発明は、上記のような実情に鑑みなされたもので、駆動体の慣性モーメントを増大させることなくトルクを高めることができて、供試体への加振トルクの伝達効率を高めることができ、従来実現できなかった評価・計測対象についても必要なトルクを与えての加振が可能となり、したがってまた加振周波数を高周波域まで広げての評価・計測も可能なねじり加振装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の本発明のねじり加振装置は、相互間に一定方向の磁束を発生させる一対の励磁用磁石と、軸方向を前記磁束の方向と交差する方向に向け、軸回り方向に振動自在に、前記一対の励磁用磁石相互間に円筒部を位置させた導電性の駆動体と、前記円筒部の内方に該円筒部と同軸的にかつ非接触で位置決め固定された内側誘導コイルと、前記円筒部及び励磁用磁石相互間に巻線外周部分が位置すると共に、前記円筒部と同軸的にかつ非接触で位置決め固定された外側誘導コイルと、前記内、外側誘導コイルに所望周波数の交流電流を供給する交流電源とを具備し、前記内、外側誘導コイルは、前記交流電源からの電流供給時に該内、外側誘導コイルによる誘導電流を前記駆動体に重畳する方向に与え、該駆動体を前記一対の励磁用磁石から発生する磁束との相互作用により軸回り方向に振動させることを特徴とする。
【0008】
請求項2に記載の発明のねじり加振装置は、請求項1に記載の発明において、外側誘導コイルは、その巻線外周部分が駆動体の円筒部ほぼ全周を囲む円筒形状をなし、かつ、前記駆動体の円筒部の回動軸位置を挟んでほぼ等分に2分割に構成されたことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明によるねじり加振装置の一実施形態の説明図である。
この図に示すように、本発明のねじり加振装置は、一対の励磁用磁石11,12、駆動体13、内側誘導コイル14、外側誘導コイル15及び内、外側誘導コイル14,15に所望周波数の交流電流を供給する交流電源16を備えて構成されている。一対の励磁用磁石11,12は永久磁石でもよいが、ここでは電磁石を用いているので、この一対の励磁用磁石11,12ヘの直流電源17も備えている。
【0010】
なお、18は直流電源17及び交流電源16を制御する制御装置、19は駆動体13に同軸的に取付固定された供試体接続治具(供試軸)、20は供試体、21は供試体20の支持台である。
ねじり振動検出用センサ22,23は、駆動体13の加速度(速度変化)を検出して制御装置18に与えるセンサである。歪みゲージ24は、供試体20への加振トルクの近似値を得て制御装置18に与えるセンサである。
【0011】
上記一対の励磁用磁石11,12、駆動体13、内側誘導コイル14及び外側誘導コイル15について、図2を併用して以下に説明する。
まず、一対の励磁用磁石11,12は、所定間隔おいて配置され、直流電源17から電源供給されて相互間に一定方向(矢印イ参照)の磁束を発生させる磁石である。
【0012】
駆動体13は、導電性材料を用いて、少なくとも円筒部13aを有した形状、ここでは円筒容器状に形成されている。この駆動体13は、軸方向を矢印イで示す上記磁束の方向と交差する方向に向けた状態で、軸回り方向に振動自在に、上記一対の励磁用磁石11,12相互間に円筒部13aを位置させてなる。
内側誘導コイル14は、駆動体13の円筒部13aの内方に、この円筒部13aと同軸的にかつ微小距離をおいて非接触に位置決め固定されている。
外側誘導コイル15は、その巻線外周をなす円筒状部15aを、駆動体13の円筒部13a及び励磁用磁石11,12相互間に位置させると共に、上記駆動体13の円筒部13aと同軸的にかつ微小距離をおいて非接触に位置決め固定されている。
【0013】
この場合、内、外側誘導コイル14,15は、交流電源16(図1参照)からの電流供給時にそれら両誘導コイル14,15による誘導電流を駆動体13に重畳する方向に与え、この駆動体13を、一対の励磁用磁石11,12から発生する磁束との相互作用により軸回り方向に振動(ねじり振動)させるように構成されている。
【0014】
これにより、駆動体13に連結された供試体接続治具(供試軸)19もねじり振動し(図1,図2中、矢印ロ参照)、供試体20がねじり加振される。
この際、駆動体13、ひいては供試体20は、両誘導コイル14,15に供給される交流電源16の周波数に応じた周波数で振動する。
図2中の矢印ハ,二は、ある時点における駆動体13の図示位置での誘導電流の方向を示す。この誘導電流の方向ハ,二は交流電源16の周波数と同周波数で各々反転し、これにより駆動力(トルク)が与えられて駆動体13が振動する。
【0015】
本発明では、従来装置のようにコイルを駆動体に直接巻き付けることはなく、駆動体13とは非接触の誘導コイル14,15で駆動体13にトルクを発生させ、ねじり振動させるようにしている。
これによれば、駆動体13に発生させるトルクを大きくするために、誘導コイル14,15の巻き数を増加させても駆動体13の慣性モーメントを大きくすることはない。したがって供試体接続治具19、すなわち供試体20、例えばねじり振動に対する応答性能の計測対象であるトランスミッション等への加振トルクの伝達効率を低下させずに、その加振トルクを増大させることができ、計測に必要なトルク(負荷)を与えての加振を高周波域まで広げることができる。
【0016】
また本実施形態では、コイルを内、外側誘導コイル14,15の2分割構成とし、両誘導コイル14,15を、巻き方向同一で並列に接続している。
このような構成によると、コイル全体のインダクタンスLを大きくすることなく、駆動体13に発生させるトルクを大きくすることができる。
すなわち、コイルに交流電流を流すとき、その周波数を高くするとインダクタンスが大きくなり、通電電流が減少して駆動体13に流れる誘導電流も減少し、加振トルクが低下する。したがって、高周波域まで加振トルクを低下させないためには、コイルのインダクタンスを極力小さくする必要がある。
【0017】
また、交流電流の周波数が一定の場合に、単にコイルの巻き数を増やすだけで加振トルクを高めようとしても、コイルのインダクタンスLはコイル巻き数の二乗に比例するため、加振トルクの増大には限界がある。すなわち、内、外側誘導コイル14,15のいずれか一方の誘導コイル14又は15のみを配置し、その巻き数をふやす構成では加振トルクの増大に限界がある。
【0018】
そこで本実施形態では、上述したように内、外側誘導コイル14,15の2分割構成とし、両誘導コイル14,15を、巻き方向同一で並列に接続することで、通電される交流電流の周波数が高域側に変化する場合でも、あるいは一定の場合でも、コイル全体のインダクタンスLを大きくすることなく、駆動体13に発生するトルクを増大可能とした。
【0019】
図3〜図5は、本発明のねじり加振装置の要部の具体例を示す図で、図3は平面図、図4は図3中のA−A線断面矢視図、図5は図3中のB−B線断面矢視図である。
各図において、図2と同一又は相当部分に同一符号を付して説明すると、一対の励磁用磁石11,12は、ほぼC字状に形成されたコア31の両端部に各別に固定され、このコア31によって磁気的に接続されている。
コア31には、駆動体13、内側誘導コイル14及び外側誘導コイル15部分の四方を囲むフレーム32が固定されている。このフレーム32の背面側端部の左右方向ほぼ中央部分には、上下方向にフレーム33が掛渡し固定されている。
【0020】
駆動体13は、このフレーム33にベアリング36を介して軸回り方向に振動自在に支持され、外側誘導コイル15はコア31に固定されている。
フレーム32に支持され、内側誘導コイル14を支持するフレーム35が、駆動体13の軸回り方向の振動(ねじり振動)の障害とならないように駆動体13及び外側誘導コイル15には窓37〜40が開けられている。
【0021】
外側誘導コイル15は、ここでは円筒容器状に形成され、また図5から分かるように、上下に等分に2分割(コイル部15b,15c参照)され、駆動体13外周への配置上の便宜が図られている。2分割構成によれば外側誘導コイル15の製造も容易になる。
外側誘導コイル15を、駆動体13の円筒部13aの全周を囲むように円筒状部15aを備えて構成すれば、駆動体13へ大きな駆動力(トルク)を与えることができるが、円筒容器状に形成した図示例によれば上記駆動力は更に大きくなる。なお、外側誘導コイル15の正面側中央部には、供試体接続治具19(図2参照)を通すための窓41が開けられている。
【0022】
内、外側誘導コイル14,15は、それらの平面図(図2参照)上で外形線(輪郭線)となる四角形の四辺に沿って各々上下方向(図2では図示面に対して垂直方向)に積層巻回されるので、四隅部の曲げ半径が小さく、巻回後のスプリングバックによる変形が生じやすくなっているので、樹脂等を用いて全体を固化している。
駆動体13と内、外側誘導コイル14,15との間隔は、できる限り狭くすれば、駆動体13に流れる誘導電流を大きくすることができる。
【0023】
上述構成において、一対の励磁用磁石11,12に直流電流が供給されると、それら相互間に一定方向の磁束が発生する。この状態で、内、外側誘導コイル14,15に交流電流が供給されると各々交流磁束を発生し、駆動体13には誘導電流が発生する。
この誘導電流は、一対の励磁用磁石11,12が発生する磁束中を、駆動体13の図3、図4における左、右側で逆方向に横切るので(図2中、矢印ハ,二参照)、駆動体13の同左、右側で上、下相反する方向の力が発生し、駆動体13にはトルクが同時発生する。このトルクの方向は交流電流の周波数に応じて交互に反転するので、駆動体13は交流電流の周波数に応じた周波数で軸回り方向に振動(ねじり振動)する。
この時の上記トルクの値及び加振周波数は、図1に示す制御装置18によって任意に制御可能である。
【0024】
【発明の効果】
以上述べたように請求項1に記載の発明によれば、相互間に一定方向の磁束を発生させる一対の励磁用磁石と、軸方向を上記磁束の方向と交差する方向に向け、軸回り方向に振動自在に、上記一対の励磁用磁石相互間に円筒部を位置させた導電性の駆動体と、上記円筒部の内方に該円筒部と同軸的にかつ非接触で位置決め固定された内側誘導コイルと、上記円筒部及び励磁用磁石相互間に巻線外周部分が位置すると共に、上記円筒部と同軸的にかつ非接触で位置決め固定された外側誘導コイルと、上記内、外側誘導コイルに所望周波数の交流電流を供給する交流電源とを備えてねじり加振装置を構成した。
そして、上記内、外側誘導コイルを、上記交流電源からの電流供給時にそれら両誘導コイルによる誘導電流を上記駆動体に重畳する方向に与え、該駆動体を前記一対の励磁用磁石から発生する磁束との相互作用により軸回り方向に振動させるように構成した。
【0025】
これによれば、駆動体の慣性モーメントを増大させることなくトルクを高めることができ、供試体への加振トルクの伝達効率を高めることができるようになった。したがって、従来実現できなかった評価・計測対象についても、必要なトルクを与えての加振が可能となり、これにより、加振周波数を高周波域、例えば4kHz程度まで広げての評価・計測も可能となった。
【0026】
また、請求項2に記載の発明では、外側誘導コイルは、その巻線外周部分が駆動体の円筒部ほぼ全周を囲む円筒形状をなし、かつ、上記駆動体の円筒部の回動軸位置を挟んでほぼ等分に2分割に構成した。
これによれば、駆動体に大きな駆動力(トルク)を与えることができ、加えて、駆動体周囲への外側誘導コイルの配置が容易になると共に、外側誘導コイルの製造も容易になった。
【図面の簡単な説明】
【図1】本発明のねじり加振装置の一実施形態の説明図である。
【図2】同上装置の要部を取り出し一部切断して示す平面図である。
【図3】同上装置の要部の具体例を示す平面図である。
【図4】図3中のA−A線断面矢視図である。
【図5】図3中のB−B線断面矢視図である。
【符号の説明】
11,12 励磁用磁石
13 駆動体
14 内側誘導コイル
15 外側誘導コイル
16 交流電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a torsional vibration apparatus suitable for measuring torsional vibration characteristics, particularly for measuring response performance to torsional vibrations of an automobile drive system.
[0002]
[Prior art]
Conventionally, in an electromagnetic torsional excitation device used for measuring torsional vibration characteristics, a coil for causing torsional excitation with a stationary magnet is directly wound around a drive body to which a test shaft is connected (drive body). And a coil constitute an electromagnet), and by causing a current to flow through the coil, a torque is generated in the driving body to cause torsional excitation (see Japanese Utility Model Laid-Open No. 62-97026).
[0003]
[Problems to be solved by the invention]
However, the conventional apparatus has the following problems.
That is, as described above, since the coil is wound directly on the driving body, the moment of inertia of the driving body increases, and the shaft to be connected to this driving body, and in addition, the transmission that is the measurement target of the response performance against torsional vibration, etc. The transmission efficiency of the excitation torque to the specimen decreases. For this reason, excitation with a torque (load) necessary for measurement cannot be performed, resulting in a decrease in the excitation frequency at which effective measurement is possible.
[0004]
One way to improve these problems is to increase the load capacity. However, to increase the load capacity, it is necessary to increase the number of turns of the coil, and the moment of inertia increases for the same reason as described above. For this reason, the transmission efficiency of the excitation torque to the specimen (transmission) is further reduced, and it is not possible to apply the necessary torque more than before increasing the number of turns of the coil. The degree of decrease in the oscillation frequency has also increased.
[0005]
Therefore, even if it is desired to perform transmission gear noise evaluation by torque excitation using such a conventional torsional excitation device, the required torque is applied to the transmission because the inertial moment of the driving body is large as described above. It was impossible to evaluate (measure).
Since transmission gear noise is generated up to about 4 kHz, recently a test up to about 4 kHz may be required, but the fact that the moment of inertia is large as described above is such a high frequency region (about 4 kHz). It was also an obstacle to conducting gear noise evaluation.
[0006]
The present invention has been made in view of the above situation, can increase the torque without increasing the moment of inertia of the drive body, can increase the transmission efficiency of the excitation torque to the specimen, To provide a torsional excitation device that enables excitation with the necessary torque applied to an evaluation / measurement target that could not be realized in the past, and therefore enables evaluation / measurement by extending the excitation frequency to a high frequency range. With the goal.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a torsional excitation device according to a first aspect of the present invention includes a pair of exciting magnets that generate a magnetic flux in a certain direction between each other, and an axial direction that intersects the direction of the magnetic flux. And a conductive driving body in which a cylindrical portion is positioned between the pair of exciting magnets so as to freely vibrate in a direction around the axis, and inwardly of the cylindrical portion and non-coaxially with the cylindrical portion. An inner induction coil that is positioned and fixed by contact, and an outer induction coil that is positioned and fixed coaxially and in a non-contact manner with the cylindrical portion, with a winding outer peripheral portion positioned between the cylindrical portion and the exciting magnet, An AC power source that supplies an AC current of a desired frequency to the inner and outer induction coils, and the inner and outer induction coils drive the induced current by the inner and outer induction coils when current is supplied from the AC power source. Given in the direction of overlapping Wherein the vibrating direction around the axis by the interaction between the magnetic flux for generating a driving member from the pair of exciting magnets.
[0008]
The torsional excitation device according to a second aspect of the present invention is the torsional excitation device according to the first aspect, wherein the outer induction coil has a cylindrical shape in which a winding outer peripheral portion surrounds substantially the entire circumference of the cylindrical portion of the driving body, and Further, the drive unit is configured to be divided into two substantially equally across the rotation axis position of the cylindrical portion of the drive unit.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of an embodiment of a torsional excitation device according to the present invention.
As shown in this figure, the torsional vibration exciter of the present invention has a desired frequency applied to a pair of exciting magnets 11 and 12, a driving body 13, an inner induction coil 14, an outer induction coil 15, and an inner and outer induction coils 14 and 15. The AC power supply 16 that supplies the AC current is provided. The pair of exciting magnets 11 and 12 may be permanent magnets, but since an electromagnet is used here, a DC power source 17 for the pair of exciting magnets 11 and 12 is also provided.
[0010]
In addition, 18 is a control device for controlling the DC power supply 17 and the AC power supply 16, 19 is a specimen connection jig (test shaft) coaxially attached and fixed to the drive body 13, 20 is a specimen, and 21 is a specimen. 20 support stands.
The torsional vibration detection sensors 22 and 23 are sensors that detect the acceleration (change in speed) of the driving body 13 and give it to the control device 18. The strain gauge 24 is a sensor that obtains an approximate value of the excitation torque applied to the specimen 20 and provides the control device 18 with the approximate value.
[0011]
The pair of exciting magnets 11 and 12, the driving body 13, the inner induction coil 14, and the outer induction coil 15 will be described below with reference to FIG.
First, the pair of exciting magnets 11 and 12 are magnets that are arranged at a predetermined interval and are supplied with power from the DC power source 17 to generate a magnetic flux in a certain direction (see arrow A).
[0012]
The driving body 13 is formed in a shape having at least a cylindrical portion 13a, here a cylindrical container, using a conductive material. The driving body 13 has a cylindrical portion 13a between the pair of exciting magnets 11 and 12 so as to freely vibrate in the direction around the axis in a state where the axial direction is in a direction crossing the direction of the magnetic flux indicated by the arrow A. Is located.
The inner induction coil 14 is positioned and fixed inside the cylindrical portion 13a of the driving body 13 coaxially with the cylindrical portion 13a and at a small distance in a non-contact manner.
The outer induction coil 15 has a cylindrical portion 15a that forms the outer periphery of the winding positioned between the cylindrical portion 13a of the driving body 13 and the exciting magnets 11 and 12, and is coaxial with the cylindrical portion 13a of the driving body 13. In addition, it is positioned and fixed in a non-contact manner at a minute distance.
[0013]
In this case, the inner and outer induction coils 14 and 15 apply an induced current generated by the induction coils 14 and 15 in a direction to be superimposed on the drive body 13 when current is supplied from the AC power supply 16 (see FIG. 1). 13 is configured to vibrate (torsional vibration) in the direction around the axis by the interaction with the magnetic flux generated from the pair of exciting magnets 11 and 12.
[0014]
As a result, the specimen connection jig (sample shaft) 19 connected to the drive body 13 is also torsionally vibrated (see arrows B in FIGS. 1 and 2), and the specimen 20 is torsionally vibrated.
At this time, the driving body 13 and thus the specimen 20 vibrate at a frequency corresponding to the frequency of the AC power supply 16 supplied to both induction coils 14 and 15.
2 indicate the direction of the induced current at the illustrated position of the driver 13 at a certain point in time. The directions C and 2 of the induced current are inverted at the same frequency as the frequency of the AC power supply 16, whereby a driving force (torque) is applied and the driving body 13 vibrates.
[0015]
In the present invention, the coil is not directly wound around the drive body as in the conventional device, and torque is generated in the drive body 13 by the induction coils 14 and 15 that are not in contact with the drive body 13 and torsionally vibrate. .
According to this, in order to increase the torque generated in the drive body 13, even if the number of turns of the induction coils 14 and 15 is increased, the inertia moment of the drive body 13 is not increased. Therefore, the excitation torque can be increased without reducing the transmission efficiency of the excitation torque to the specimen connection jig 19, that is, the specimen 20, for example, a transmission whose response performance is measured for torsional vibration. The excitation with the torque (load) necessary for the measurement can be extended to the high frequency range.
[0016]
In the present embodiment, the coil is divided into two inner and outer induction coils 14 and 15, and both induction coils 14 and 15 are connected in parallel with the same winding direction.
According to such a configuration, it is possible to increase the torque generated by the driving body 13 without increasing the inductance L of the entire coil.
That is, when an alternating current is passed through the coil, if the frequency is increased, the inductance increases, the conduction current decreases, the induced current flowing through the drive body 13 also decreases, and the excitation torque decreases. Therefore, in order not to reduce the excitation torque to the high frequency range, it is necessary to make the coil inductance as small as possible.
[0017]
In addition, when the frequency of the alternating current is constant, an attempt to increase the excitation torque simply by increasing the number of turns of the coil increases the excitation torque because the inductance L of the coil is proportional to the square of the number of turns of the coil. Has its limits. That is, in the configuration in which only one induction coil 14 or 15 of the inner and outer induction coils 14 and 15 is arranged and the number of turns is increased, there is a limit in increasing the excitation torque.
[0018]
Therefore, in the present embodiment, as described above, the outer induction coils 14 and 15 are divided into two parts, and both induction coils 14 and 15 are connected in parallel in the winding direction so that the frequency of the alternating current to be energized is the same. The torque generated in the driving body 13 can be increased without increasing the inductance L of the entire coil even when the frequency changes to the high frequency side or is constant.
[0019]
3-5 is a figure which shows the specific example of the principal part of the torsional vibration apparatus of this invention, FIG. 3 is a top view, FIG. 4 is the sectional view on the AA line in FIG. 3, FIG. FIG. 4 is a cross-sectional view taken along line B-B in FIG. 3.
In each figure, the same reference numerals are given to the same or corresponding parts as in FIG. 2, and the pair of exciting magnets 11 and 12 are fixed separately to both ends of the core 31 formed in a substantially C shape, The core 31 is magnetically connected.
A frame 32 is fixed to the core 31 so as to surround the drive body 13, the inner induction coil 14, and the outer induction coil 15. A frame 33 is stretched and fixed in the vertical direction at a substantially central portion in the left-right direction at the rear side end of the frame 32.
[0020]
The driving body 13 is supported by the frame 33 via a bearing 36 so as to be able to vibrate around the axis, and the outer induction coil 15 is fixed to the core 31.
Windows 37 to 40 are provided in the drive body 13 and the outer induction coil 15 so that the frame 35 supported by the frame 32 and supporting the inner induction coil 14 does not become an obstacle to vibration (torsional vibration) around the axis of the drive body 13. Is opened.
[0021]
Here, the outer induction coil 15 is formed in a cylindrical container shape, and as can be seen from FIG. 5, the outer induction coil 15 is equally divided into two in the vertical direction (see the coil portions 15 b and 15 c). Is planned. According to the two-part configuration, the outer induction coil 15 can be easily manufactured.
If the outer induction coil 15 includes the cylindrical portion 15a so as to surround the entire circumference of the cylindrical portion 13a of the driving body 13, a large driving force (torque) can be applied to the driving body 13, but the cylindrical container According to the illustrated example formed in a shape, the driving force is further increased. In addition, a window 41 through which the specimen connection jig 19 (see FIG. 2) is passed is opened in the front central portion of the outer induction coil 15.
[0022]
The inner and outer induction coils 14 and 15 are each in the vertical direction (perpendicular to the plane shown in FIG. 2) along the four sides of a quadrangle that is an outline (contour line) on their plan view (see FIG. 2). Since the layers are wound in layers, the bending radii at the four corners are small, and deformation due to springback after winding is likely to occur, so the whole is solidified using a resin or the like.
If the distance between the driving body 13 and the inner and outer induction coils 14 and 15 is made as narrow as possible, the induced current flowing through the driving body 13 can be increased.
[0023]
In the above configuration, when a direct current is supplied to the pair of exciting magnets 11 and 12, a magnetic flux in a certain direction is generated between them. In this state, when an alternating current is supplied to the inner and outer induction coils 14 and 15, an alternating magnetic flux is generated, and an induced current is generated in the driver 13.
This induced current crosses the magnetic flux generated by the pair of exciting magnets 11 and 12 in the opposite direction on the left and right sides of the driving body 13 in FIGS. 3 and 4 (see arrows C and 2 in FIG. 2). On the left and right sides of the drive body 13, forces are generated in directions opposite to each other, and torque is generated in the drive body 13 at the same time. Since the direction of this torque is alternately reversed according to the frequency of the alternating current, the drive body 13 vibrates around the axis (torsional vibration) at a frequency corresponding to the frequency of the alternating current.
The torque value and the excitation frequency at this time can be arbitrarily controlled by the control device 18 shown in FIG.
[0024]
【The invention's effect】
As described above, according to the first aspect of the present invention, the pair of exciting magnets that generate a magnetic flux in a fixed direction between each other and the axial direction in a direction intersecting the magnetic flux direction, A conductive driving body in which a cylindrical portion is positioned between the pair of exciting magnets, and an inner side which is positioned and fixed coaxially with the cylindrical portion in a non-contact manner inside the cylindrical portion. The outer periphery of the winding is positioned between the induction coil and the cylindrical portion and the magnet for excitation, and the outer induction coil is positioned and fixed coaxially and in a non-contact manner with the cylindrical portion, and the inner and outer induction coils. A torsional vibration exciter was configured with an AC power supply for supplying an AC current of a desired frequency.
Then, the inner and outer induction coils are applied in a direction in which induced currents from both induction coils are superimposed on the driving body when current is supplied from the AC power source, and the driving body generates magnetic flux generated from the pair of exciting magnets. It was configured to vibrate in the direction around the axis due to the interaction.
[0025]
According to this, the torque can be increased without increasing the moment of inertia of the driving body, and the transmission efficiency of the excitation torque to the specimen can be increased. Therefore, it is possible to apply the necessary torque to the evaluation / measurement object that could not be realized in the past, and this enables evaluation / measurement with the excitation frequency expanded to a high frequency range, for example, about 4 kHz. became.
[0026]
In the invention according to claim 2, the outer induction coil has a cylindrical shape in which the outer periphery of the winding surrounds substantially the entire circumference of the cylindrical portion of the driving body, and the rotational axis position of the cylindrical portion of the driving body. It was configured to be divided into two equal parts with a gap in between.
According to this, a large driving force (torque) can be applied to the driving body, and in addition, the outer induction coil can be easily arranged around the driving body, and the outer induction coil can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a torsional excitation device of the present invention.
FIG. 2 is a plan view showing a main part of the apparatus as shown in FIG.
FIG. 3 is a plan view showing a specific example of a main part of the apparatus.
4 is a cross-sectional view taken along line AA in FIG.
5 is a cross-sectional view taken along the line BB in FIG. 3. FIG.
[Explanation of symbols]
11, 12 Excitation magnet 13 Driver 14 Inner induction coil 15 Outer induction coil 16 AC power supply

Claims (2)

相互間に一定方向の磁束を発生させる一対の励磁用磁石と、軸方向を前記磁束の方向と交差する方向に向け、軸回り方向に振動自在に、前記一対の励磁用磁石相互間に円筒部を位置させた導電性の駆動体と、前記円筒部の内方に該円筒部と同軸的にかつ非接触で位置決め固定された内側誘導コイルと、前記円筒部及び励磁用磁石相互間に巻線外周部分が位置すると共に、前記円筒部と同軸的にかつ非接触で位置決め固定された外側誘導コイルと、前記内、外側誘導コイルに所望周波数の交流電流を供給する交流電源とを具備し、
前記内、外側誘導コイルは、前記交流電源からの電流供給時に該内、外側誘導コイルによる誘導電流を前記駆動体に重畳する方向に与え、該駆動体を前記一対の励磁用磁石から発生する磁束との相互作用により軸回り方向に振動させることを特徴とするねじり加振装置。
A pair of exciting magnets that generate a magnetic flux in a fixed direction between each other, and a cylindrical portion between the pair of exciting magnets so that the axial direction is in a direction intersecting with the direction of the magnetic flux and can be freely oscillated around the axis. A conductive driving body in which the cylindrical portion is positioned, an inner induction coil that is positioned and fixed coaxially with the cylindrical portion in a non-contact manner inside the cylindrical portion, and a winding between the cylindrical portion and the exciting magnet An outer induction coil that is positioned and fixed coaxially and in a non-contact manner with the cylindrical portion, and an AC power source that supplies an AC current having a desired frequency to the inner and outer induction coils
The inner and outer induction coils apply a current induced by the inner and outer induction coils in a direction to be superimposed on the driving body when current is supplied from the AC power source, and the driving body generates magnetic flux generated from the pair of exciting magnets. A torsional vibration device that vibrates in the direction around the axis by the interaction with the torsion.
外側誘導コイルは、その巻線外周部分が駆動体の円筒部ほぼ全周を囲む円筒形状をなし、かつ、前記駆動体の円筒部の回動軸位置を挟んでほぼ等分に2分割に構成されたことを特徴とする請求項1に記載のねじり加振装置。The outer induction coil has a cylindrical shape in which the outer peripheral portion of the winding surrounds almost the entire circumference of the cylindrical portion of the driving body, and is divided into two equal parts across the rotational axis position of the cylindrical portion of the driving body. The torsional vibration exciter according to claim 1.
JP2001332683A 2001-10-30 2001-10-30 Torsional vibration device Expired - Fee Related JP3785347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332683A JP3785347B2 (en) 2001-10-30 2001-10-30 Torsional vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332683A JP3785347B2 (en) 2001-10-30 2001-10-30 Torsional vibration device

Publications (2)

Publication Number Publication Date
JP2003126776A JP2003126776A (en) 2003-05-07
JP3785347B2 true JP3785347B2 (en) 2006-06-14

Family

ID=19148068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332683A Expired - Fee Related JP3785347B2 (en) 2001-10-30 2001-10-30 Torsional vibration device

Country Status (1)

Country Link
JP (1) JP3785347B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503491B1 (en) 2006-03-03 2008-03-15 Seibt Kristl & Co Gmbh DEVICE FOR GENERATING ROTATION VIBRATIONS
CN106483031B (en) * 2016-10-25 2023-09-12 杨斌堂 Torsional vibration testing system and combined device
CN106768981B (en) * 2017-01-20 2023-05-09 广西大学 Groove cam impact type alternating torque loading device
CN107063610B (en) * 2017-06-02 2023-07-21 南方英特空调有限公司 Four-axis electromagnetic torsional vibration comprehensive test platform
CN109038939B (en) * 2018-07-13 2021-04-20 浙江省东阳市东磁诚基电子有限公司 Permanent magnet alternating current flat vibration motor and use method
CN111044189B (en) * 2019-12-24 2021-10-22 中国第一汽车股份有限公司 Testing device and testing method for transmission efficiency of plug-in hybrid power transmission

Also Published As

Publication number Publication date
JP2003126776A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
US7661324B2 (en) Magnetostrictive torque sensor and electric power steering apparatus
US20060255664A1 (en) Drive unit generating an oscillatory motion for small electrical appliances
CN102308117A (en) Damping system and method for eliminating torsion vibrations
JP3785347B2 (en) Torsional vibration device
JP4058378B2 (en) Angular velocity sensor and angular velocity detector
JP2001087708A (en) Rotary vibration testing machine
JP3083242B2 (en) Vibration evaluation method of rotating body in static field
JP2007121042A (en) Machine and method for testing tire
JP2520199B2 (en) Large amplitude low frequency vibration device
JPH09304345A (en) Magnetic head device
JP2003348888A (en) Drive control unit for linear actuator and linear actuator using the same
US20040187606A1 (en) Torque sensing apparatus for picking up a magnetic flux
JP2002090109A (en) Rotating angle detector, torque detector and steering device
JP3157946B2 (en) Magnetostrictive stress measurement method and apparatus in planar biaxial stress field
JP2004191224A (en) Angular velocity sensor, manufacturing method for the same, method of measuring angular speed using angular velocity sensor
JP2004340792A (en) Angular velocity sensor and angular velocity detection apparatus
JP2003210492A (en) Electric toothbrush
JPH09304346A (en) Magnetic head device
JP2013017341A (en) Electromechanical device, robot and movable body
JP2008271765A (en) Brake for holding motor
JP2000266619A (en) Torque sensor and device for detecting torque of steering shaft
JPH0125305B2 (en)
JP3825157B2 (en) Exciter for dynamic viscoelasticity measuring device
JP2004219307A (en) Vibration testing machine
JPH08331828A (en) Linear vibrating motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees