JP3784041B2 - Estimation method of lower layer wiring structure using charge-up phenomenon - Google Patents

Estimation method of lower layer wiring structure using charge-up phenomenon Download PDF

Info

Publication number
JP3784041B2
JP3784041B2 JP11549299A JP11549299A JP3784041B2 JP 3784041 B2 JP3784041 B2 JP 3784041B2 JP 11549299 A JP11549299 A JP 11549299A JP 11549299 A JP11549299 A JP 11549299A JP 3784041 B2 JP3784041 B2 JP 3784041B2
Authority
JP
Japan
Prior art keywords
sample
charge
image
scanning
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11549299A
Other languages
Japanese (ja)
Other versions
JP2000306965A (en
JP2000306965A5 (en
Inventor
利昭 藤井
安彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP11549299A priority Critical patent/JP3784041B2/en
Publication of JP2000306965A publication Critical patent/JP2000306965A/en
Publication of JP2000306965A5 publication Critical patent/JP2000306965A5/ja
Application granted granted Critical
Publication of JP3784041B2 publication Critical patent/JP3784041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走査イオン顕微鏡や走査型電子顕微鏡を用いて試料の下層構造を推定する方法に関し、特に半導体素子の下層構造を推定する技術に関する。
【0002】
【従来の技術】
集束イオンビームを用いた走査イオン顕微鏡や走査型電子顕微鏡は基本的に試料表面の顕微鏡像しか得られない。したがって平坦化が進んだ半導体デバイスの内部の配線位置や断線個所などをこれらによって観察することは出来ない。従来は特開昭61−24136号公報に提案されているような、下層構造情報を持った光学顕微鏡画像やCADの設計図面等の異種画像を走査イオン顕微鏡や走査型電子顕微鏡の像と重ね合わせることで、内部構造を表示させる技術手段があった。しかしこの方法は異種画像を走査顕微鏡像の倍率と一致させるように適宜変倍し、目印を参考にするなりして位置合わせをして合成画像を得る必要があり、厄介な手間を要するものであった。そしてこの方法は事前に下層構造情報を持った光学顕微鏡画像やCADの設計図面等の画像を準備しなくてはならず、その画像は観察位置の移動に対処するため継ぎ目のない画像を準備する必要があった。たとえば、その画像が光学顕微鏡像であったとして、それを走査顕微鏡像の倍率と一致させるように適宜変倍して重ね合わせる際に画像の端に当たってしまった場合には、隣接領域画像と合成し継ぎ目を画像処理する必要があった。また、その画像がCADデータであった場合も、そのCADデータの形式が走査顕微鏡像の表示データ形式が同一であるとは限らず、形式が異なる場合にはデータを変換処理して一致させる必要があった。このように従来の方法は厄介な手間を要するものであった。
【0003】
【発明が解決しようとする課題】
本発明は、上記の従来技術の問題点を解決するものであって、表面画像を得る外観検査からでは発見することができない半導体素子の内部配線状態などの内部構造の推定を、異種画像の準備等に厄介な手間をかけずに簡便に実施できる方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の方法は、表面が絶縁材料で形成された試料の基板や配線端子をアースした状態で、前記試料表面に荷電粒子のビームを照射することにより所定量の電荷を注入して該試料表面に各照射部位とアース間のキャパシタンスの差に基づく電位差分布を発生させ、該電位差分布を検出して表面下の配線等導電材の存在の有無と位置といった下層構造を推定するものである。
【0005】
【発明の実施の形態】
試料表面に荷電粒子のビームを照射すると、荷電粒子の電荷が試料に注入されるとともに二次荷電粒子を放出しその差引電荷が帯電する。一般にこの現象をチャージアップと称し、試料表面のチャージアップの状況によってビーム照射に起因する二次荷電粒子の放出量が変化する。例えば、今荷電粒子のビームが正電荷をもつ集束イオンビームであったとし、該イオンビームを試料面に照射することによって該試料面が正電荷でチャージアップされたとする。するとそのことによって試料表面の電位が上がりそこから放出される負電荷の二次電子を拘束するように作用し、正電荷の二次イオンの場合には反対に反発して放出しやすくなるように作用する。そのため、二次電子や二次イオンを検出して表面画像を得る走査顕微鏡の分野ではこのチャージアップ現象というのは、二次荷電粒子の放出量が試料表面の材質とは無関係の表面の物理状況による影響を受けてしまい、ノイズとなるため好ましからざるものとされている。
【0006】
本発明は、このチャージアップ現象を逆に利用して半導体デバイスのような試料の内部構造の推定を行おうというものである。すなわち、試料表面に荷電粒子のビームが照射されると、その荷電粒子が試料内に注入されその電荷が与えられるが、その表面のチャージアップは必ずしも一様ではなく、例えば試料表面下に導電材が存在している部分と何も存在しない均質材料部分とではチャージアップの程度に差が生じることは知られていた。そこで、本発明では図1に示すように試料7の基板bならびに導線p1,p2の各端子をアースした状態で電荷ビームを照射し、積極的にチャージアップを生じさせるようにする。チャージアップされる電荷量Qはビーム電流の積算値となるので、Q=∫idtとなる。すると表面近傍に導電材(導線p1)のある部分と深い位置に導電材(導線p2)がある部分と下層に導電材が存在しないところでは表面電位に差が生じ、その電位差像から下層構造の推定ができるとの知見を得た。これは導電部分と表面間で一種のコンデンサを構成する形となり表面に近いところに導電材が存在する部分は容量が大きな性質を示すためと解させる。電荷量QはキャパシタンスCと電圧Vとの関係で Q=CV となり、基板と端子が接地されていればキャパシタンスCに依存して表面電位が変わることになる。すなわち、接地された導電体が表面に近いところに存在していればその部分のキャパシタンスは大きな値となり、表面電位は低くなる。従って、一定の集束イオンビームを照射した表面部分の電位の低いところは浅い部分に導電体が存在していると推定することができるので、試料の観察領域の各部位についての表面電位情報を集約して得た表面電位分布像を観察することで、試料内部の配線パターンや断線等を把握することができる。ちなみに配線パターンは100nmオーダーであり、ビーム径は数nmであるので十分な画像分解能を得ることができる。図1中Aは試料を上面から見た透視図であり、Bは断面図そしてCは正電荷のイオンビームを照射し二次電子を検出した場合の観察顕微鏡像を示している。
【0007】
なお。荷電粒子の入射角度や試料表面の材質が異なると二次荷電粒子の放出条件が変わってしまうため、本発明の推定方法はその影響がない表面が材質的に均一でかつ平坦な試料に対する観察に適している。
【0008】
この電位コントラスト像は表面の絶縁材料部への電荷ビームの照射に基づいて得るものであって、絶縁部分のチャージはその材質や表面状態により拡散する時間に違いがあるが、隣接する照射点間で干渉を生じることがあるため、ビーム走査は照射点を飛び越し形態で行うことが望ましい。拡散速度の速いものの場合にはある点の照射を一定時間実施してその点の電位を検出したら、主走査方向に所定距離離れた点への照射を実施するというようにステップ状に走査するようにして干渉を避ける。そのようにすることで後の走査で実行する隣接点の照射はその点のチャージが十分に拡散した後に行われるようにする。テレビのインターレース走査は走査線を副走査方向に飛ばすがこの場合は主走査方向に飛ばすようにするのである。これに対し拡散速度が遅いものの場合には主走査方向の隣接点に照射が移ったときにはまだ拡散は進んでおらず干渉は少ないが副走査方向の隣接点については影響を及ぼすことがある。そのような場合には副走査方向に飛ばすテレビ走査のインターレース方式が適することになる。要するに隣接点のビーム照射はその点のビーム照射による注入電荷が拡散する前か拡散しきった後で実行されるように設定することが肝要となる。この要件を満たすならば理屈上はランダムな走査であってもよいのであるが、観察領域を満遍なく走査するには規則性を持った走査の方が設計上簡便であり、例えば特開平6-38329号公報に紹介されているような主走査方向にも副走査方向にも所定間隔(ドット幅)を空けて行うビーム走査が広い拡散速度に対応できる走査方式として採用できる。
【0009】
上記の方法により得られた電位差コントラスト像から導電材の有無や深さに応じた差を観察することはできるが、その差はいわば相対量として把握することが出来るだけで、絶対量として深さを捉えることは出来ない。そこで、既に試料の下層構造すなわち導電材の深さが既知であるサンプルを用い、そのコントラスト像を得た上で既知の深さ情報をつきあわせ、コントラストに対応した深さ情報を基準値として得ておくことにより、未知の試料のコントラスト像についても、内部導電体の深さを割り出すことができ、観察精度を高めることができる。
【0010】
(実施例1)
図2は本発明の第1実施例の全体構成を示す図である。観察用兼電荷注入用集束イオンビーム2の照射鏡筒はイオン銃1,集束イオンビームの加速、集束の他にブランキング手段とを含むイオン光学系3、偏向走査手段4とからなっている。試料5が載置される試料ステージ6の面に対し、観察用兼電荷注入用集束イオンビーム2が照射されるように鏡筒が配置される。8は二次荷電粒子検出器として二次電子検出器を採用し、7は二次電子のエネルギーフィルターである。20は検出した二次電子の情報を信号処理する信号処理部であり、22は観察画像等を表示するディスプレイそして21はシステムを制御するコントローラである。
【0011】
試料ステージ6に図2に示したような半導体素子5を載置し、該半導体素子の表面の1点に低加速大電流の電荷注入用電子ビーム2を照射鏡筒より照射する。該試料の基板並びに配線端子がアースされた状態で行われる照射は半導体表面に帯電を起こさせその状態での二次電子顕微鏡像を得るためであり、イオン源としてGaイオンを使用すると、電気的には正の電荷が注入されることになる。本発明は電荷量Q、容量Cと電圧Vとの関係で Q=CV となる関係を基に電位を測定するものであるから、表面が平坦で均一である試料を対象とし、表面に注入される電荷Qは一定となるように加速電圧、照射時間、照射角度が等しくなるように制御する必要がある。試料表面に均一に電荷Qが注入されたとすると、集束イオンビームが照射された試料表面は該照射部分とアースされた導電体間の容量値に応じた電位を示すことになる。
【0012】
電荷注入用集束イオンビーム2は最初のt1時間照射点を照射し所定量の電荷が注入されたところで、ビーム照射位置の表面電位を測定するのであるがこの実施例ではグリッド状のエネルギーフィルタ7を前置した二次電子検出器8により表面電位が測定される。該エネルギーフィルタ7にはアースに対し所定の電圧がかけられることにより、二次荷電粒子に対し同極性であれば反発して排除するように、異極性であれば引き合って引き込むように作用する。この場合にはこのフィルター7を介して二次電子検出器8に取り込まれる二次電子の量が一定値となるようにコントローラ21によって該フィルター7への印加電圧を負帰還制御する。その際のフィルタ印加電圧は照射面の電位に感度よく依存するものとなる。照射点における電位の測定が終了したら、インターレース方式等で次の照射点にビームを偏向走査して同様の測定を実行する。観測領域についてすべての位置の検出値が得られたならば、これをコントローラ21によって各画素を総合して顕微鏡像を合成しディスプレイ22に表示する。この場合の顕微鏡像は図1Cに示したように、導電体が存在しない部分は暗く、浅い部分に導電体が存在する部分は明るく、深い部分に導電体が存在する部分は中間の明るさとなる表面電位のコントラスト像である。
【0013】
なお、この実施例では二次荷電粒子検出器8として二次電子検出器を用いたが、二次イオン検出器を用いて表面電位を観察することもできる。正電荷イオンの場合は、電位コントラストの像の明暗の関係が逆の形で得られることになる。また、飛び越し走査で所定量の電荷の注入を照射点毎に行い電位測定を実行したが、通常のラスター状の走査による走査顕微鏡像によっても試料表面の電位コントラスト像はそれなりに得ることが出来るので、簡便な方法としては有効である。また、本実施例で採用した二次荷電粒子検出器に取り込まれる二次荷電粒子の量が一定値となるようにフィルターへの印加電圧を負帰還制御することで得られるフィルタ印加電圧から照射面の電位を検出する方法はこの下層構造の推定にかぎらず、電位コントラスト像を得る手段等に広く応用できるものである。
【0014】
(実施例2)
次に観察用兼電荷注入用ビームとして電子ビーム12を使用する電子顕微鏡を用いた実施例を図3に示す。装置としては通常の電子顕微鏡と差異はない。11は電子銃,電子ビームの加速、集束の他にブランキング手段とを含む電子光学系14と偏向走査手段14とからなっている。試料5が載置される試料ステージ6の面に対し、観察用兼電荷注入用電子ビーム12が照射されるように鏡筒が配置される。8は二次電子検出器であり、7は二次電子のエネルギーフィルターである。20は検出した二次電子の情報を信号処理する信号処理部であり、22は観察画像等を表示するディスプレイそして21はシステムを制御するコントローラである。
【0015】
試料に電子ビームを照射すると電荷が注入されチャージアップ現象を起こす。絶縁体で被覆状態の試料の基板と配線端子をアースした状態で該試料表面に一様な電荷が注入されると、表面電位が下層の導電体の有無、位置に応じて電位差分布を生じることは先の実施例と同様である。電荷注入用電子ビーム12を所定時間照射し所定量の電荷が注入されたところで、ビーム照射位置の表面電位を測定するが、グリッド状のエネルギーフィルタ9を前置した二次電子検出器8を用いて表面電位を測定するのはこの実施例でも同様である。照射点における電位の測定が終了したら、インターレース方式等で次の照射点にビームを偏向走査して同様の測定を実行し、観測領域についてすべての位置の検出値が得られたならば、これをコントローラ21によって各画素を総合して顕微鏡像を合成しディスプレイ22に表示するのも同様である。
【0016】
【発明の効果】
本発明は、表面画像を得た外観検査からでは発見することができない半導体素子の内部構造を電位コントラスト像で推定する方法に関するものであり、従来試料の表面しか観察できない走査顕微鏡像に、光学顕微鏡像やCADによる設計図などの異質の画像について倍率・位置合わせや情報の整合といった厄介な事前作業を行った上で合成し観察していたものを、特別の走査顕微鏡を要することなく、準備に厄介な手間をかけることもなくその試料の内部構造の検査を容易に実施できる方法を提供することができた。
【0017】
また、試料の観察領域に対し飛び越し走査で照射点間の干渉を避けながら、各照射点に対し均一に所定量の電荷を注入した状態での電位分布を得るようにすれば、より精度の高い顕微鏡像を得ることが出来る。
更に、内部構造が既知であるサンプルについてのコントラスト値を基準としてもつことにより、相対的な位置判定ではなく絶対的な位置測定も精度よく行うことが出来る。
【0018】
エネルキフィルター付きの荷電粒子検出器の負帰還制御測定方法を用いることで下層構造の推定に限らず広く試料の表面電位分布を求める技術への応用が可能となる。
【図面の簡単な説明】
【図1】本発明の動作原理を概念的に示す図であり、Aは上面から見た透視図、Bは断面図、そしてCは観察顕微鏡像である。
【図2】本発明の実施に際し使用する走査型イオンビーム顕微鏡。
【図3】本発明の実施に際し使用する走査型電子顕微鏡。
【符号の説明】
1 イオン銃
2 イオンビーム
3 イオン光学系
4 偏向走査手段
5 試料
6 試料ステージ
7 エネルギーフィルター
8 二次荷電粒子検出器
11 電子銃
12 電子ビーム
13 電子光学系
14 偏向走査手段
20 信号処理部
21 コントローラー
22 ディスプレイ
b 半導体基板
p1,p2 配線パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for estimating a lower layer structure of a sample using a scanning ion microscope or a scanning electron microscope, and more particularly to a technique for estimating a lower layer structure of a semiconductor element.
[0002]
[Prior art]
A scanning ion microscope or a scanning electron microscope using a focused ion beam can basically only obtain a microscopic image of the sample surface. Therefore, it is impossible to observe the wiring position and the disconnection point inside the semiconductor device which has been flattened. Conventionally, a heterogeneous image such as an optical microscope image having a lower layer structure information or a CAD design drawing as proposed in Japanese Patent Laid-Open No. 61-24136 is superimposed on an image of a scanning ion microscope or a scanning electron microscope. Thus, there was a technical means for displaying the internal structure. However, in this method, it is necessary to scale the heterogeneous image appropriately so as to match the magnification of the scanning microscope image, and to obtain a composite image by aligning with reference to the mark, which is troublesome. there were. In this method, an image such as an optical microscope image having a lower layer structure information and a CAD design drawing must be prepared in advance, and the image prepares a seamless image to cope with the movement of the observation position. There was a need. For example, if the image is an optical microscopic image, if it is scaled appropriately so as to match the magnification of the scanning microscopic image and overlapped with the image, it is combined with the adjacent region image. It was necessary to image the seam. Also, even if the image is CAD data, the format of the CAD data is not necessarily the same as the display data format of the scanning microscope image. If the formats are different, the data must be converted and matched. was there. As described above, the conventional method is troublesome.
[0003]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and estimates the internal structure, such as the internal wiring state of a semiconductor element, which cannot be found by visual inspection that obtains a surface image. It is an object of the present invention to provide a method that can be easily carried out without troublesome work.
[0004]
[Means for Solving the Problems]
According to the method of the present invention, a predetermined amount of charge is injected by irradiating the surface of the sample with a beam of charged particles in a state where the substrate or wiring terminal of the sample whose surface is formed of an insulating material is grounded. A potential difference distribution based on a difference in capacitance between each irradiation site and the ground is generated, and the potential difference distribution is detected to estimate a lower layer structure such as presence / absence and position of a conductive material such as a wiring under the surface.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
When the surface of the sample is irradiated with a beam of charged particles, the charge of the charged particles is injected into the sample and the secondary charged particles are released, and the subtracted charge is charged. This phenomenon is generally referred to as charge-up, and the amount of secondary charged particles emitted due to beam irradiation varies depending on the state of charge-up on the sample surface. For example, it is assumed that the charged particle beam is a focused ion beam having a positive charge and that the sample surface is charged up with a positive charge by irradiating the sample surface with the ion beam. As a result, the potential on the sample surface rises and acts to restrain the negatively charged secondary electrons emitted from the sample surface, and in the case of positively charged secondary ions, it is repelled and easily released. Works. For this reason, in the field of scanning microscopes, where secondary electrons and ions are detected to obtain surface images, this charge-up phenomenon is due to the physical state of the surface where the amount of secondary charged particles released is independent of the material of the sample surface. It is considered to be unfavorable because it will be affected by and cause noise.
[0006]
The present invention is intended to estimate the internal structure of a sample such as a semiconductor device by using this charge-up phenomenon in reverse. That is, when a charged particle beam is irradiated on the sample surface, the charged particle is injected into the sample and given its charge, but the charge up of the surface is not necessarily uniform, for example, a conductive material below the sample surface. It has been known that there is a difference in the degree of charge-up between the portion where the slag exists and the homogeneous material portion where nothing exists. Therefore, in the present invention, as shown in FIG. 1, the charge beam is actively generated by irradiating the charge beam with the substrate b of the sample 7 and the terminals of the conductors p1 and p2 being grounded. Since the charge amount Q charged up is an integrated value of the beam current, Q = Qidt. Then, there is a difference in the surface potential where there is no conductive material (conductive wire p2) in the vicinity of the surface, where there is a conductive material (conductive wire p2) in the deep position, and where there is no conductive material in the lower layer. The knowledge that it was possible to estimate was obtained. This is because a kind of capacitor is formed between the conductive portion and the surface, and the portion where the conductive material exists near the surface exhibits a large capacity. The amount of charge Q is Q = CV due to the relationship between the capacitance C and the voltage V, and the surface potential changes depending on the capacitance C if the substrate and the terminal are grounded. That is, if a grounded conductor is present near the surface, the capacitance at that portion is large and the surface potential is low. Therefore, it is possible to estimate that a conductor exists in a shallow portion where the potential of the surface portion irradiated with a constant focused ion beam is low, so the surface potential information for each part of the observation region of the sample is aggregated. By observing the surface potential distribution image obtained in this manner, it is possible to grasp the wiring pattern, disconnection, and the like inside the sample. Incidentally, since the wiring pattern is on the order of 100 nm and the beam diameter is several nm, sufficient image resolution can be obtained. In FIG. 1, A is a perspective view of the sample as viewed from above, B is a cross-sectional view, and C is an observation microscope image when secondary electrons are detected by irradiation with a positively charged ion beam.
[0007]
Note that. If the incident angle of charged particles and the material of the sample surface are different, the emission conditions of secondary charged particles will change.Therefore, the estimation method of the present invention is suitable for observing a flat sample with a material that is not affected by this. Is suitable.
[0008]
This potential contrast image is obtained based on the irradiation of the charge beam to the insulating material part on the surface, and the charge of the insulating part has a difference in diffusion time depending on the material and surface state, but between adjacent irradiation points. Therefore, it is desirable to perform the beam scanning in a manner that skips the irradiation point. In the case of a fast diffusion speed, when a certain point is irradiated for a certain period of time and the potential at that point is detected, scanning is performed in a stepwise manner, such as irradiation to a point separated by a predetermined distance in the main scanning direction. And avoid interference. By doing so, the irradiation of the adjacent point executed in the subsequent scanning is performed after the charge at that point is sufficiently diffused. In the interlaced scanning of the television, the scanning lines are skipped in the sub-scanning direction. In this case, the scanning lines are skipped in the main scanning direction. On the other hand, when the diffusion speed is slow, when the irradiation moves to an adjacent point in the main scanning direction, diffusion does not proceed yet and interference is small, but the adjacent point in the sub scanning direction may be affected. In such a case, a television scanning interlace system that skips in the sub-scanning direction is suitable. In short, it is important to set the beam irradiation at the adjacent point to be executed before or after the injected charge due to the beam irradiation at that point is diffused. In theory, random scanning may be used as long as this requirement is satisfied, but scanning with regularity is simpler in design in order to scan the observation region uniformly, for example, Japanese Patent Laid-Open No. 6-38329. The beam scanning performed with a predetermined interval (dot width) in both the main scanning direction and the sub-scanning direction as introduced in the Japanese Patent Publication can be adopted as a scanning method capable of dealing with a wide diffusion rate.
[0009]
Although the difference according to the presence or absence of the conductive material and the depth can be observed from the potential difference contrast image obtained by the above method, the difference can only be grasped as a relative amount, and the depth as an absolute amount. Cannot be caught. Therefore, a sample whose layer structure, that is, the depth of the conductive material is already known, is used, a contrast image is obtained, and the known depth information is added to obtain the depth information corresponding to the contrast as a reference value. As a result, the depth of the internal conductor can be determined for the contrast image of an unknown sample, and the observation accuracy can be improved.
[0010]
Example 1
FIG. 2 is a diagram showing the overall configuration of the first embodiment of the present invention. The irradiation column of the focused ion beam 2 for observation and charge injection includes an ion gun 1, an ion optical system 3 including a blanking means in addition to acceleration and focusing of the focused ion beam, and a deflection scanning means 4. The lens barrel is arranged so that the focused ion beam 2 for observation and charge injection is irradiated onto the surface of the sample stage 6 on which the sample 5 is placed. 8 is a secondary electron detector as a secondary charged particle detector, and 7 is an energy filter for secondary electrons. Reference numeral 20 denotes a signal processing unit that performs signal processing on detected secondary electron information, 22 denotes a display that displays an observation image and the like, and 21 denotes a controller that controls the system.
[0011]
A semiconductor element 5 as shown in FIG. 2 is placed on the sample stage 6, and a charge accelerating electron beam 2 with a low acceleration and a large current is irradiated from one point on the surface of the semiconductor element from an irradiation column. Irradiation performed in a state where the substrate of the sample and the wiring terminal are grounded is for causing the semiconductor surface to be charged and obtaining a secondary electron microscope image in that state. When Ga ions are used as an ion source, A positive charge is injected into. In the present invention, the potential is measured based on the relationship of Q = CV in relation to the charge amount Q, the capacitance C, and the voltage V. Therefore, a sample having a flat and uniform surface is targeted and injected into the surface. It is necessary to control the acceleration voltage, irradiation time, and irradiation angle to be constant so that the charge Q is constant. If the charge Q is uniformly injected into the sample surface, the sample surface irradiated with the focused ion beam shows a potential corresponding to the capacitance value between the irradiated portion and the grounded conductor.
[0012]
The focused ion beam 2 for charge injection irradiates the irradiation point for the first t1 time, and when a predetermined amount of charge is injected, the surface potential at the beam irradiation position is measured. In this embodiment, a grid-like energy filter 7 is used. The surface potential is measured by the secondary electron detector 8 placed in advance. When a predetermined voltage is applied to the ground, the energy filter 7 acts to repel and eliminate secondary charged particles if they have the same polarity, and attracts and pulls them if they have different polarities. In this case, the controller 21 performs negative feedback control of the voltage applied to the filter 7 so that the amount of secondary electrons taken into the secondary electron detector 8 through the filter 7 becomes a constant value. The filter applied voltage at that time depends on the potential of the irradiated surface with high sensitivity. When the measurement of the potential at the irradiation point is completed, the beam is deflected and scanned to the next irradiation point by an interlace method or the like, and the same measurement is executed. If detection values at all positions in the observation area are obtained, the controller 21 combines the pixels to synthesize a microscope image and display it on the display 22. In this case, as shown in FIG. 1C, the portion where the conductor is not present is dark, the portion where the conductor is present in the shallow portion is bright, and the portion where the conductor is present in the deep portion is intermediate brightness. It is a contrast image of surface potential.
[0013]
In this embodiment, a secondary electron detector is used as the secondary charged particle detector 8, but the surface potential can also be observed using a secondary ion detector. In the case of positively charged ions, the light / dark relationship of the potential contrast image is obtained in the opposite form. In addition, a predetermined amount of charge was injected at each irradiation point by interlaced scanning, and the potential measurement was performed. However, a potential contrast image on the sample surface can be obtained as it is from a scanning microscope image obtained by normal raster scanning. It is effective as a simple method. Further, the irradiation surface is determined from the filter applied voltage obtained by negative feedback control of the voltage applied to the filter so that the amount of secondary charged particles taken into the secondary charged particle detector employed in the present embodiment becomes a constant value. The method of detecting the potential is not limited to the estimation of the lower layer structure, and can be widely applied to means for obtaining a potential contrast image.
[0014]
(Example 2)
Next, an embodiment using an electron microscope using an electron beam 12 as an observation and charge injection beam is shown in FIG. The apparatus is not different from a normal electron microscope. 11 includes an electron optical system 14 including an electron gun, electron beam acceleration and focusing, as well as blanking means, and a deflection scanning means 14. The lens barrel is disposed so that the surface of the sample stage 6 on which the sample 5 is placed is irradiated with the electron beam 12 for observation and charge injection. 8 is a secondary electron detector, and 7 is an energy filter for secondary electrons. Reference numeral 20 denotes a signal processing unit that performs signal processing on detected secondary electron information, 22 denotes a display that displays an observation image and the like, and 21 denotes a controller that controls the system.
[0015]
When a sample is irradiated with an electron beam, charges are injected and a charge-up phenomenon occurs. When a uniform charge is injected into the surface of a sample covered with an insulator while the substrate and wiring terminals are grounded, the surface potential generates a potential difference distribution depending on the presence and position of the underlying conductor. Is the same as in the previous embodiment. When a predetermined amount of charge is injected by irradiating the electron beam 12 for charge injection for a predetermined time, the surface potential at the beam irradiation position is measured. A secondary electron detector 8 in front of a grid-shaped energy filter 9 is used. The surface potential is measured in the same manner in this embodiment. When the measurement of the potential at the irradiation point is completed, the same measurement is performed by deflecting and scanning the beam to the next irradiation point by an interlace method or the like. Similarly, the controller 21 combines the respective pixels to synthesize a microscope image and display it on the display 22.
[0016]
【The invention's effect】
The present invention relates to a method for estimating the internal structure of a semiconductor element that cannot be found from a visual inspection obtained from a surface image by using a potential contrast image. Prepare images that have been synthesized and observed after performing complex prior work such as magnification / positioning and information alignment for images of different quality such as images and CAD design drawings, without requiring a special scanning microscope. It was possible to provide a method that can easily inspect the internal structure of the sample without troublesome work.
[0017]
In addition, it is possible to obtain a higher accuracy by obtaining a potential distribution in a state where a predetermined amount of charge is uniformly injected to each irradiation point while avoiding interference between the irradiation points by interlaced scanning with respect to the observation region of the sample. A microscopic image can be obtained.
Furthermore, by using the contrast value of a sample whose internal structure is known as a reference, it is possible to accurately perform absolute position measurement instead of relative position determination.
[0018]
By using a negative feedback control measurement method for a charged particle detector with an energy filter, it is possible to apply not only to the estimation of the lower layer structure but also to a technique for obtaining the surface potential distribution of a sample widely.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually showing the operation principle of the present invention, in which A is a perspective view seen from above, B is a cross-sectional view, and C is an observation microscope image.
FIG. 2 is a scanning ion beam microscope used in the practice of the present invention.
FIG. 3 is a scanning electron microscope used in the practice of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ion gun 2 Ion beam 3 Ion optical system 4 Deflection scanning means 5 Sample 6 Sample stage 7 Energy filter 8 Secondary charged particle detector 11 Electron gun 12 Electron beam 13 Electron optical system 14 Deflection scanning means 20 Signal processing unit 21 Controller 22 Display b Semiconductor substrate p1, p2 Wiring pattern

Claims (3)

表面が絶縁材料で形成されていて、前記絶縁材料内部に複数の配線を有する試料の基板及び前記複数の配線の各端子をアースした状態で、前記試料表面に荷電粒子のビームを照射することにより所定量の電荷を注入して該試料表面に各照射部位とアース間のキャパシタンスの差に基づく電位差分布を発生させ、該電位差分布を検出して下層配線構造を推定する方法。Surface be formed of an insulating material, wherein in a state in which the insulating material inside the grounded terminals of the substrate and the plurality of wires of a sample having a plurality of wires, by irradiating a beam of charged particles on the surface of the sample A method of injecting a predetermined amount of charge to generate a potential difference distribution based on a capacitance difference between each irradiation site and ground on the sample surface, and detecting the potential difference distribution to estimate a lower layer wiring structure. 前記試料表面上に照射する荷電粒子のビームを飛び越し方式で走査して近傍観察領域間の干渉を防止することを特徴とする請求項1に記載の下層配線構造を推定する方法。 2. The method of estimating a lower layer wiring structure according to claim 1, wherein a beam of charged particles irradiated on the sample surface is scanned by an interlace method to prevent interference between adjacent observation regions. 配線の深さが既知である第二の試料を用い、その表面電位差分布像を得た上で前記既知の配線の深さ情報とつきあわせ、表面電位に対応した深さ情報を基準値として得ておくことにより、前記試料の配線の深さを割り出すことを特徴とする請求項1または2に記載の下層配線構造を推定する方法。 Using a second sample with a known wiring depth, obtain the surface potential difference distribution image, match it with the known wiring depth information, and obtain the depth information corresponding to the surface potential as a reference value. by previously, a method of estimating the lower wiring structure according to claim 1 or 2 characterized by determining the depth of the wiring of the sample.
JP11549299A 1999-04-22 1999-04-22 Estimation method of lower layer wiring structure using charge-up phenomenon Expired - Fee Related JP3784041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11549299A JP3784041B2 (en) 1999-04-22 1999-04-22 Estimation method of lower layer wiring structure using charge-up phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11549299A JP3784041B2 (en) 1999-04-22 1999-04-22 Estimation method of lower layer wiring structure using charge-up phenomenon

Publications (3)

Publication Number Publication Date
JP2000306965A JP2000306965A (en) 2000-11-02
JP2000306965A5 JP2000306965A5 (en) 2004-07-15
JP3784041B2 true JP3784041B2 (en) 2006-06-07

Family

ID=14663863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11549299A Expired - Fee Related JP3784041B2 (en) 1999-04-22 1999-04-22 Estimation method of lower layer wiring structure using charge-up phenomenon

Country Status (1)

Country Link
JP (1) JP3784041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383095A (en) * 2017-11-29 2019-10-25 株式会社东芝 Evaluating apparatus, accumulating system, evaluation method and computer program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506588B2 (en) * 2001-07-12 2010-07-21 株式会社日立製作所 Charged particle beam irradiation method and charged particle beam apparatus
JP2008210715A (en) * 2007-02-27 2008-09-11 Ebara Corp Charged particle beam device, and sample surface observation method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383095A (en) * 2017-11-29 2019-10-25 株式会社东芝 Evaluating apparatus, accumulating system, evaluation method and computer program

Also Published As

Publication number Publication date
JP2000306965A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
US6211518B1 (en) Electron beam dose control for scanning electron microscopy and critical dimension measurement instruments
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
KR100382026B1 (en) Scanning Electron Microscope
JP3456999B2 (en) Detection system for high aspect ratio measurement
JP4093662B2 (en) Scanning electron microscope
WO1998032153A9 (en) Electron beam dose control for scanning electron microscopy andcritical dimension measurement instruments
JP4920385B2 (en) Charged particle beam apparatus, scanning electron microscope, and sample observation method
US10879037B2 (en) Charged particle beam device with distance setting between irradiation regions in a scan line
US9275829B2 (en) Image forming device and computer program
US6617579B2 (en) Scanning electronic beam apparatus
JP3497034B2 (en) Charged particle beam apparatus and sample image forming method
US8086022B2 (en) Electron beam inspection system and an image generation method for an electron beam inspection system
US7800062B2 (en) Method and system for the examination of specimen
JP3784041B2 (en) Estimation method of lower layer wiring structure using charge-up phenomenon
KR20190038298A (en) Charged particle beam device
KR102478945B1 (en) Irradiation condition determination method of charged particle beam device, and charged particle beam device
JP4272036B2 (en) Charged particle beam observation method
JP6995648B2 (en) Measurement inspection equipment
JP5823136B2 (en) Scanning charged particle microscope and sample observation method
WO1996008835A1 (en) Particle beam detector providing z-axis and topographic contrast
JP3110727B2 (en) Observation method of electron beam device
JP2009211961A (en) Scanning electron microscope
JP2005354085A (en) Inspection method and inspection device by means of electrically-charged particle beam
JP2000340628A (en) Method and device for detecting isolated pattern based on surface potential
JPH11224634A (en) Scanning image forming method and scanning image forming device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Ref document number: 3784041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees