JP3781821B2 - Gas generant fuel - Google Patents

Gas generant fuel Download PDF

Info

Publication number
JP3781821B2
JP3781821B2 JP11873996A JP11873996A JP3781821B2 JP 3781821 B2 JP3781821 B2 JP 3781821B2 JP 11873996 A JP11873996 A JP 11873996A JP 11873996 A JP11873996 A JP 11873996A JP 3781821 B2 JP3781821 B2 JP 3781821B2
Authority
JP
Japan
Prior art keywords
fuel
gas generant
gas
gas generating
glycidyl azide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11873996A
Other languages
Japanese (ja)
Other versions
JPH09301792A (en
Inventor
敏行 阿南
竜己 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP11873996A priority Critical patent/JP3781821B2/en
Publication of JPH09301792A publication Critical patent/JPH09301792A/en
Application granted granted Critical
Publication of JP3781821B2 publication Critical patent/JP3781821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • C06B45/105The resin being a polymer bearing energetic groups or containing a soluble organic explosive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス発生剤の主剤が、前記一般式で示される3,3−ビス(アジドメチル)オキセタンと3−ニトラトメチル−3−メチルオキセタンの共重合体とグリシジルアジドポリマーからなるガス発生剤用燃料に関するものである。
【0002】
【従来の技術】
一般にロケットモ−タの概念は、過塩素酸アンモニウムや硝酸アンモニウム等の酸化剤に、末端ポリブタジエンとジイソシアネ−トを反応させたポリウレタンバインダ−、さらに燃料成分としてアルミニウム等の金属粉を加えたいわゆるコンポジット推進薬を、金属製あるいは複合材製等のモ−タケ−スに装填し、モ−タケ−ス内で燃焼させ、ノズルより燃焼ガスを噴出させることによりロケットモ−タを飛翔させる特徴をもっている。このようなロケットモ−タでの飛翔性能は、推進薬のもつエネルギ−いわゆる比推力の大きさにより決定される。この比推力は、推進薬1Kgで同量1Kgの物体を何秒間持ち上げることができるかを示したものであり、前述したコンポジット推進薬組成では、酸化剤の量あるいは金属燃料の量によって、この比推力は大きく変化する。しかしながら、例えば過塩素酸アンモニウムの配合量が約95近くで最大値を示すものの、それ以上配合しても比推力は、むしろ低下してくるように理論的に得られる最大比推力は約260秒と言われている。このように、これまで述べてきたロケットモ−タでは、比推力を高めるには限界があることが判る。
【0003】
これに対し、近年、ラムロケット、あるいはラムジェット等のように燃焼したガス生成物をさらに空気中の酸素あるいは他の酸化剤等で2次燃焼で燃焼させ、比推力を従来の4〜5倍高めることができるロケットモ−タの研究が盛んに行われている。 これらのロケットモ−タの特徴は、1次燃焼室と2次燃焼室を有しており、この1次燃焼室に用いられるガス発生剤としては、一般に用いられる推進薬よりも酸化剤を不足にしたものや、最近ではアジドポリマ−を主剤としたポリウレタン等が用いられている。
【0004】
【発明が解決しようとする課題】
これらのロケットモ−タは、1次燃焼室で発生したガス成分を2次燃焼室に送る量を一般的には流量制御バルブによってコントロ−ルすることにより、飛翔制御する方式がとられており、この制御によってロケットモ−タの高度差に応じて推力を変化させている。すなわち、この流量制御バルブをわずかに変化させるだけで1次燃焼室内のガス発生量が大きく変化することが好ましく、このことは1次燃焼室内の圧力変化に対して、燃焼速度が大きく変化することを意味している。
【0005】
一般的に燃焼速度rは
r = aPn (a:定数 P:圧力 n:圧力指数)
の関係が成立することが、経験的に知られている。この意味することは、燃焼圧力を増加することにより、燃焼速度が増大するということであるが、nが大きい場合、わずかの圧力上昇で燃焼速度が大きく変わることを意味している。
従って、前述したように1次燃焼室に用いるガス発生剤は、この圧力指数が高いこと、および自由に変動させることが重要な要素となっている。圧力指数の好ましい範囲は、通常の推進薬では0〜0.5であるが、ラムロケット燃料等のような場合には0.3〜1.0程度である。1.0を超えると燃焼が不安定になりやすく、また制御しにくくなる傾向がある。
【0006】
本発明は、高い圧力指数をもちながら制御しやすいガス発生剤用固体燃料を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明のガス発生剤用燃料は、ガス発生剤用燃料の主剤が、一般式(I)
【0008】
【化2】

Figure 0003781821
【0009】
(式中のnは4〜10、mは2〜10を表す。)で示される3、3ビス(アジドメチル)オキセタンと3ーニトラトメチルー3ーメチルオキセタンの共重合体、およびグリシジルアジドポリマーからなることを特徴とする。
ガス発生剤用燃料中の前記共重合体およびグリシジルアジドポリマーの重量比率は、10対90から90対10が好ましい。グリシジルアジドポリマ−が10よりも少ないと圧力指数が1を超えてしまい、90よりも大きくなると圧力指数が0.3より小さくなってしまう。より好ましくは、60対40から80対20である。
【0010】
主剤の両者の分子量は、特に制約はないが、約4000以下のものが用いられる。4000以上の分子量になると、粘度が高くなり製造性が困難となる。より好ましくは1500〜3000である。
本発明のガス発生剤用固体燃料は、主剤である3,3−ビス(アジドメチル)オキセタンと3−ニトラトメチル−3−メチルオキセタンの共重合体およびグリシジルアジドポリマーに、架橋剤、硬化剤、必要に応じて硬化触媒を加えて真空混合し、この混合物を所定の容器に注型し、加温にて硬化させることにより製造される。
【0011】
3,3−ビス(アジドメチル)オキセタンと3−ニトラトメチル−3−メチルオキセタンの共重合体とグリシジルアジドポリマーの両者を、ウレタン反応によってポリウレタンにする際に用いられる 硬化剤、架橋剤は、一般的なものが広く使用でき、何ら制約されるものではないが、硬化剤としては、例えばヘキサメチレンジイソシアネ−ト、イソホロンジイソシアネ−ト、トリレンジイソシアネ−ト等のイソシアネ−ト化合物を用いることができ、架橋剤としては、トリメチロ−ルプロパン、1,6ヘキサンジオ−ル、ジクリセリン等の多官能水酸基化合物や1,3,5トリスジオ−ル、(6−イソシアネ−トヘキシル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(以下TIHという)等の多官能イソシアネ−ト化合物が用いられる。また必要に応じて、ジブチルチンジラウレ−ト、ブチルチントリクロライド、トリフェニルビスマス等の硬化触媒が用いられる。
【0012】
上記配合組成からなる本発明のガス発生剤用燃料は、両者の比率を変化させることにより圧力指数を一定の範囲内で自由に変えることができる
【0013】
【実施例】
以下、実施例について本発明を説明する。
【0014】
【実施例1〜7】
表1に示す組成により各ガス発生剤用固体燃料を製造した。
まず、主剤である3,3−ビス(アジドメチル)オキセタンと3−ニトラトメチル−3−メチルオキセタン(式(I)においてn=10、m=4.3)の共重合体およびグリシジルアジドポリマーの両者と、副剤として、硬化触媒、架橋剤及び硬化剤を室温で混合し、さらに50℃で混合・脱泡した。硬化は、60℃で約5日間行った。
【0015】
こうして得られたガス発生剤用燃料を用いて、以下の方法により燃焼速度を求めた。ガス発生剤用燃料を外径7mmφ、長さ70mmの円筒形に切り出し、側面に約1mm厚さの樹脂層(燃焼制御層)を形成し、試料を作成した。このような試料は、ストランド試料と一般に呼ばれる。
ストランド試料の一端より円筒の長さ方向約10mmの所に点火用のニクロム線を通し、さらに20mmと60mmの所にヒュ−ズ線を通して、圧力容器内にセットし密閉したのち窒素ガスによって加圧し着火させた。加圧圧力は、3〜11MPaの範囲で変化させ、先のヒュ−ズ線間で燃焼にかかった時間を測定し、燃焼速度を求めた。
【0016】
得られた各ガス発生剤の燃焼速度及び圧力指数を表2に示す。
【0017】
【表1】
Figure 0003781821
【0018】
【表2】
Figure 0003781821
【0019】
【発明の効果】
以上説明したように、本発明は、主剤である3,3−ビス(アジドメチル)オキセタンと3−ニトラトメチル−3−メチルオキセタンの共重合体およびグリシジルアジドポリマーの両者の比率を変えることにより、圧力指数を制御することが可能となる。従って、高い圧力指数を持ちながら制御しやすいので、ラムロケット、ラムジェット等の1次燃焼室に用いられるガス発生剤としての利用が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a fuel for a gas generating agent, wherein the main component of the gas generating agent is a copolymer of 3,3-bis (azidomethyl) oxetane and 3-nitratomethyl-3-methyloxetane represented by the above general formula and a glycidyl azide polymer. It is about.
[0002]
[Prior art]
In general, the concept of a rocket motor is a so-called composite propellant in which a polyurethane binder obtained by reacting terminal polybutadiene and diisocyanate with an oxidizing agent such as ammonium perchlorate or ammonium nitrate, and metal powder such as aluminum as a fuel component are added. Is loaded in a motor case made of metal or a composite material, burned in the motor case, and the combustion gas is ejected from the nozzle to fly the rocket motor. The flight performance of such a rocket motor is determined by the energy of the propellant, so-called specific thrust. This specific thrust shows how many seconds an object of the same amount of 1 kg can be lifted with 1 kg of propellant. In the composite propellant composition described above, this ratio depends on the amount of oxidizing agent or the amount of metal fuel. Thrust changes greatly. However, for example, although the compounding amount of ammonium perchlorate shows a maximum value when it is close to about 95, the maximum specific thrust theoretically obtained is about 260 seconds so that the specific thrust rather decreases even if it is added more. It is said. Thus, it can be seen that there is a limit to increasing the specific thrust in the rocket motors described so far.
[0003]
On the other hand, in recent years, burned gas products such as ram rockets or ram jets are further combusted by secondary combustion with oxygen in the air or other oxidants, etc., and the specific thrust is 4-5 times that of the past. There are many studies on rocket motors that can be enhanced. The characteristics of these rocket motors are that they have a primary combustion chamber and a secondary combustion chamber, and the gas generating agent used in the primary combustion chamber is less oxidant than the propellant generally used. Recently, polyurethanes mainly composed of azide polymers have been used.
[0004]
[Problems to be solved by the invention]
These rocket motors are generally controlled in flight by controlling the amount of gas components generated in the primary combustion chamber to the secondary combustion chamber by a flow control valve. This control changes the thrust according to the height difference of the rocket motor. In other words, it is preferable that the amount of gas generated in the primary combustion chamber changes greatly only by slightly changing the flow rate control valve. This means that the combustion speed changes greatly with respect to the pressure change in the primary combustion chamber. Means.
[0005]
Generally, the combustion speed r is r = aP n (a: constant P: pressure n: pressure index)
It is empirically known that this relationship is established. This means that the combustion speed increases by increasing the combustion pressure, but when n is large, it means that the combustion speed changes greatly with a slight pressure increase.
Therefore, as described above, the gas generating agent used in the primary combustion chamber has an important factor that the pressure index is high and that the gas generating agent can be freely changed. A preferable range of the pressure index is 0 to 0.5 for a normal propellant, but about 0.3 to 1.0 in the case of a ram rocket fuel or the like. If it exceeds 1.0, combustion tends to be unstable and tends to be difficult to control.
[0006]
An object of the present invention is to provide a solid fuel for a gas generant that is easy to control while having a high pressure index.
[0007]
[Means for Solving the Problems]
In the gas generating fuel of the present invention, the main component of the gas generating fuel is represented by the general formula (I).
[0008]
[Chemical 2]
Figure 0003781821
[0009]
(Wherein n represents 4 to 10 and m represents 2 to 10), a copolymer of 3,3 bis (azidomethyl) oxetane and 3-nitratomethyl-3-methyloxetane and glycidyl azide polymer It is characterized by becoming.
The weight ratio of the copolymer and the glycidyl azide polymer in the gas generant fuel is preferably 10:90 to 90:10. If the glycidyl azide polymer is less than 10, the pressure index exceeds 1, and if it exceeds 90, the pressure index is less than 0.3. More preferably, it is 60:40 to 80:20.
[0010]
The molecular weight of both of the main agents is not particularly limited, but those having a molecular weight of about 4000 or less are used. When the molecular weight is 4000 or more, the viscosity becomes high and the productivity becomes difficult. More preferably, it is 1500-3000.
The solid fuel for a gas generating agent of the present invention comprises a copolymer of 3,3-bis (azidomethyl) oxetane and 3-nitratomethyl-3-methyloxetane and glycidyl azide polymer, which are main components, a crosslinking agent, a curing agent, Accordingly, a curing catalyst is added and vacuum mixed, and the mixture is cast into a predetermined container and cured by heating.
[0011]
Curing agents and cross-linking agents used when 3,3-bis (azidomethyl) oxetane, 3-nitratomethyl-3-methyloxetane copolymer and glycidyl azide polymer are both converted into polyurethane by urethane reaction are commonly used. Although it can be widely used and is not limited at all, as the curing agent, for example, an isocyanate compound such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate is used. Examples of the crosslinking agent include polyfunctional hydroxyl compounds such as trimethylolpropane, 1,6 hexanediol and diglycerin, 1,3,5 trisdiol, and (6-isocyanatohexyl) -1,3,5. -Multifunctional isocyanates such as triazine-2,4,6- (1H, 3H, 5H) -trione (hereinafter referred to as TIH) A net compound is used. If necessary, a curing catalyst such as dibutyltin dilaurate, butyltin trichloride, or triphenylbismuth is used.
[0012]
The gas generating agent fuel of the present invention having the above composition can freely change the pressure index within a certain range by changing the ratio between the two.
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0014]
Examples 1-7
A solid fuel for each gas generant was produced according to the composition shown in Table 1.
First, both 3,3-bis (azidomethyl) oxetane and 3-nitratomethyl-3-methyloxetane (n = 10, m = 4.3 in the formula (I)) and glycidyl azide polymers as the main ingredients As a secondary agent, a curing catalyst, a crosslinking agent and a curing agent were mixed at room temperature, and further mixed and degassed at 50 ° C. Curing was carried out at 60 ° C. for about 5 days.
[0015]
Using the gas generant fuel thus obtained, the combustion rate was determined by the following method. The fuel for the gas generating agent was cut into a cylindrical shape having an outer diameter of 7 mmφ and a length of 70 mm, and a resin layer (combustion control layer) having a thickness of about 1 mm was formed on the side surface to prepare a sample. Such a sample is commonly referred to as a strand sample.
Pass the nichrome wire for ignition through one end of the strand sample about 10mm in the length direction of the cylinder, and then pass through the fuse wire at 20mm and 60mm, set it in the pressure vessel, seal it, and pressurize it with nitrogen gas. Ignited. The pressurizing pressure was changed in the range of 3 to 11 MPa, the time taken for combustion was measured between the previous fuse lines, and the combustion rate was obtained.
[0016]
Table 2 shows the burning rate and pressure index of each gas generant obtained.
[0017]
[Table 1]
Figure 0003781821
[0018]
[Table 2]
Figure 0003781821
[0019]
【The invention's effect】
As described above, the present invention provides a pressure index by changing the ratio of 3,3-bis (azidomethyl) oxetane and 3-nitratomethyl-3-methyloxetane, which are the main agents, and the ratio of glycidyl azide polymer. Can be controlled. Therefore, since it is easy to control while having a high pressure index, it can be used as a gas generating agent used in primary combustion chambers such as ram rockets and ram jets.

Claims (2)

ガス発生剤用燃料の主剤が、一般式(I)
Figure 0003781821
(式中のnは4〜10、mは2〜10を表す。)で示される3、3ビス(アジドメチル)オキセタンと3ーニトラトメチルー3ーメチルオキセタンの共重合体、及びグリシジルアジドポリマーからなることを特徴とするガス発生剤用燃料。
The main component of the fuel for the gas generating agent is the general formula (I)
Figure 0003781821
(Wherein n represents 4 to 10 and m represents 2 to 10), a copolymer of 3,3 bis (azidomethyl) oxetane and 3-nitratomethyl-3-methyloxetane, and glycidyl azide polymer represented by A fuel for a gas generant.
一般式(1)で示される共重合体とグリシジルアジドポリマ−の重量比率が10対90から90対10であることを特徴とする請求項1に記載のガス発生剤用燃料。2. The fuel for a gas generant according to claim 1, wherein the weight ratio of the copolymer represented by the general formula (1) to the glycidyl azide polymer is 10:90 to 90:10.
JP11873996A 1996-05-14 1996-05-14 Gas generant fuel Expired - Fee Related JP3781821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11873996A JP3781821B2 (en) 1996-05-14 1996-05-14 Gas generant fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11873996A JP3781821B2 (en) 1996-05-14 1996-05-14 Gas generant fuel

Publications (2)

Publication Number Publication Date
JPH09301792A JPH09301792A (en) 1997-11-25
JP3781821B2 true JP3781821B2 (en) 2006-05-31

Family

ID=14743877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11873996A Expired - Fee Related JP3781821B2 (en) 1996-05-14 1996-05-14 Gas generant fuel

Country Status (1)

Country Link
JP (1) JP3781821B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0421167D0 (en) * 2004-09-23 2004-10-27 Sec Dep For Defence Awe The Novel energetic polyphosphazenes

Also Published As

Publication number Publication date
JPH09301792A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
US4726919A (en) Method of preparing a non-feathering nitramine propellant
CA1039062A (en) Smokeless stable burning propellant
US6692655B1 (en) Method of making multi-base propellants from pelletized nitrocellulose
US4657607A (en) Process for the solvent-free manufacture of compound pyrotechnic products containing a thermosetting binder and products thus obtained
JP3370118B2 (en) Stable solid rocket propellant composition
US6916390B2 (en) Semi-continuous two-component process for producing a composite explosive charge comprising a polyurethane matrix
US3665862A (en) Caseless rocket containing silane polymer
JP2016064941A (en) Slurry for composite propellant, and composite propellant
JP5041467B2 (en) Composite propellant
US4658578A (en) Igniting rocket propellants under vacuum conditions
US4925909A (en) Gas-generating agent for use in ducted rocket engine
Whitaker et al. Incorporating energetic chain extenders to polymeric binders for solid propellants
KR20110110131A (en) Composite composition for solid propellants including a ferrocene derivative and a submicronic aluminum charge, solid propellant, and grain
US5509981A (en) Hybrid rocket fuel
JP3781821B2 (en) Gas generant fuel
US6632378B1 (en) Nitrate ester plasticized energetic compositions, method of making and rocket motor assemblies containing the same
US6080248A (en) Non-detonatable pyrotechnic materials for microsystems
KR100205832B1 (en) Solid propellant compositions having peg binder/nitramineoxydizers and manufacturing method threrof
JP2981592B2 (en) Azide and nitrato group-containing solid propellants
JPH0794359B2 (en) Ammonium perchlorate composite propellant
KR102335951B1 (en) High specific impuls, high burning rate, high performance nepe propellant composition
US20230035372A1 (en) Tri-regime composite solid propellant
JP3605879B2 (en) Gas generating agent
JP3132524B2 (en) Composite propellants
Wilkinson Evaluation of novel propellants manufactured from commercially available Thermoplastic Elastomers (TPE) using resonant acoustic mixing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees