JP3781072B2 - Sintering equipment - Google Patents

Sintering equipment Download PDF

Info

Publication number
JP3781072B2
JP3781072B2 JP14746097A JP14746097A JP3781072B2 JP 3781072 B2 JP3781072 B2 JP 3781072B2 JP 14746097 A JP14746097 A JP 14746097A JP 14746097 A JP14746097 A JP 14746097A JP 3781072 B2 JP3781072 B2 JP 3781072B2
Authority
JP
Japan
Prior art keywords
heating
sintering
temperature
raw material
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14746097A
Other languages
Japanese (ja)
Other versions
JPH10330804A (en
Inventor
和美 森
孝一 天野
智俊 望月
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP14746097A priority Critical patent/JP3781072B2/en
Publication of JPH10330804A publication Critical patent/JPH10330804A/en
Application granted granted Critical
Publication of JP3781072B2 publication Critical patent/JP3781072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、焼結型に充填したセラミックスや導電性の原料粉末を焼結する焼結装置に関する。
【0002】
【従来の技術】
セラミックスや金属、炭化物、窒化物などの導電性物体の原料粉末を、焼結型に充填して加熱し一対のパンチで加圧して焼結体の製造が行われる。この焼結体を製造する焼結装置は加熱方式によりいくつかの方式に分類される。ヒータによる間接加熱方式は焼結型の周囲に抵抗加熱ヒータなどのヒータを配置し焼結型を表面から加熱し、この中の原料粉末を間接的に加熱する。本方式はセラミックスと導電性物質の両方の焼結に適用でき広く用いられている。
【0003】
誘導加熱方式は、焼結型を電磁誘導により直接加熱する加熱方式である。従って、抵抗加熱方式に比較し、焼結体の加熱速度が速い。通電方式は一対のパンチを電極とし直流、または直流とパルス電流を原料粉末に通電し、原料粉末の抵抗熱で加熱する。通電方式については、特開昭64−55303,特開平5−70804,特開平5−117707に開示されている。
【0004】
【発明が解決しようとする課題】
ヒータ等の間接加熱方式では、焼結型へのエネルギ伝達は主としてヒータ表面温度とヒータを囲む断熱囲壁の内壁温度できまる。ヒータ材および断熱囲壁材の耐熱性には限界があるため、エネルギ伝達には限界があり、ある限度以上に加熱時間は短縮できない。近年の焼結体大型化に伴い焼結型やパンチなどの被加熱物も大型化している。間接加熱方式の場合、上記の理由によりエネルギ伝達には限界があるため、被加熱物の大型化は加熱時間の増大を招いている。誘導加熱方式は高周波電力発生装置が必要であり、電源設備に費用がかかり経済性に問題がある。
【0005】
通電方式は原料粉末を直接加熱するため加熱時間は短いが、原料粉末の種類により加熱条件が異なり、操業が難しい。また温度は原料粉末の中心温度が最も高くなる傾向にあり、焼結体温度制御が難しい。なお、間接加熱では焼結型表面が最も温度が高く、原料粉末が最も低い状況とまったく逆になっている。通電方式の場合、原料粉末中心に温度センサを設置すれば焼結体の温度制御も容易となるが、高温高圧下であるためこれに耐えるセンサはない。従って、一般的には、焼結型外表面、または焼結型内面を熱電対、放射温度計などのセンサにより計測することになる。温度制御は、原料粉末の最高温度を制御する必要がある。
【0006】
間接加熱による原料粉末の温度制御は焼結型に設けられたセンサの温度により行えばよく容易であるが、通電方式では焼結型に設けられたセンサの温度が原料粉末の温度より低いため、センサの温度は原料粉末の推定温度となる。従って直接温度制御には使用できず、計算などによる補償が必要になるが厳密な補償は一般に困難である。また原料粉末の大型化に伴い、センサ温度と粉末中心温度の温度差は拡大する。従って装置の大型化は通電方式の場合特に困難であった。
【0007】
本発明は、かかる問題点に鑑みてなされたもので、セラミックスと導電性物質の両方の焼結ができ、大型化にも対応できる焼結装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明では、焼結型の焼結空間に充填された原料粉末を一対のパンチよりなる電極で加圧し通電して焼結する焼結装置であって、前記電極と原料粉末の間には通電により発熱する発熱体が設けられており、前記焼結型は通電により発熱する導電体で構成されており、さらに、前記焼結型の周囲にはヒータが設けられており、前記ヒータに投入されるエネルギ量を前記通電により加熱される電極、発熱体および焼結型に投入されるエネルギ量よりも大きくし、焼結型の温度より原料粉末の温度が低くなるように加熱する。
【0009】
発熱体および焼結型に通電して各自の有する電気抵抗により発熱して原料粉末を加熱する。これにより原料粉末がセラミックスまたは導電性物質のいずれであっても焼結することができる。また原料粉末が導電性物質の場合は、この原料粉末にも通電され自己の有する電気抵抗によって発熱するので加熱能力が向上する。
原料粉末の温度設定、温度分布は焼結の重要な要因の1つである。特に温度条件の厳しい焼結体の処理、大型焼結体の処理などは、発熱体や焼結型に通電して加熱する通電方式では、焼結体の充分な温度制御ができない。ヒータによる間接加熱方式を採用することにより、焼結体の温度制御精度を高めることができる。
焼結型の周囲にヒータを設け焼結型の外面に温度センサを設けて温度を制御しながら加熱するとともに電極、発熱体および焼結型に通電して加熱する。ヒータに投入するエネルギ量を通電によるエネルギ量より大きくし原料粉末の温度が焼結型の温度より低くなるようなエネルギ比率とする。これによりヒータによる間接加熱方式と同程度の温度制御特性を保ちながら、放出される熱を通電により補償することにより、焼結体加熱を短時間で行うことを可能にする。
【0010】
請求項2の発明では、加熱開始から焼結型の外面温度Taが所定温度となるまでの期間を昇温加熱期間とし、前記焼結型の外面温度Taを前記所定温度に保持する期間を定常加熱期間とした場合、昇温加熱期間では、前記発熱体と前記焼結型に通電して加熱する通電過熱と、ヒータによる間接加熱を併用し、定常加熱期間では、間接加熱のみを行う。
定常加熱期間では間接加熱のみ行われるので、Ta>Tb>Tcの関係が保たれ、焼結型1の外面に取付けられた温度センサ11により温度Taを制御することにより原料粉末3の表面温度Tb,中心温度TcをTaより低い温度に確実に制御することができる。
【0011】
請求項3の発明では、前記発熱体の発熱量は前記電極の発熱量より大きくする。
発熱体の発熱量を電極の発熱量より大きくすることにより原料粉末を効果的に加熱することができる。
【0012】
請求項の発明では、前記焼結型は前記発熱体を経由して電極より通電される。
【0013】
一方の電極より流れる電流は、先ず一方の発熱体を通りこの発熱体を発熱させ、次に焼結型を通ってこれを発熱させる。ついで他方の発熱体を発熱させた後、他方の電極へ戻る。これにより発熱体の電気抵抗が焼結型の電気抵抗より大きくても発熱体に電流は確実に流れこれを発熱させる。
【0014】
請求項の発明では、前記焼結型は前記発熱体を経由して電極より通電され、さらに電極から直接にも通電されている。
【0015】
発熱体と焼結型の電気抵抗をそれぞれ適切な値に設定することにより、それぞれの発生する発熱量を設定することができる。焼結型には電極と発熱体の両方から電流が流れるようにすることにより、その発熱量の設定の自由度を大きくすることができる。
【0020】
【発明の実施の形態】
以下本発明の実施形態について、図面を参照して説明する。
図1は本発明の第1実施形態の焼結装置の構成図である。焼結型1は中空円筒状でグラファイトで構成されており、内部中央が原料粉末3を充填する焼結空間2となっている。この焼結型1の内部上下には、中実円筒状でグラファイトで構成された発熱体4a,4bが摺動自在に嵌合している。発熱体4a,4bの上下には電極5a,5bが設けられている。電極5a,5bは発熱体4a,4bを押圧するパンチを構成するとともに発熱体4a,4bに通電する。焼結型1の周囲には抵抗ヒータ6a,6bが設けられ、焼結型1を加熱する。焼結型1,発熱体4a,4b,電極5a,5bの発熱体4側,抵抗ヒータ6a,6bは断熱囲壁7により囲まれ断熱性を保持している。
【0021】
電極5a,5bの上下端には図示しない油圧装置が接続され発熱体4a,4bを加圧するようになっている。電源8は50または60Hzなどの商用電源を用いる。電源8よりの電力をサイリスタ9で制御し、トランス10で降圧した後、電極5a,5bおよび抵抗ヒータ6a,6bに通電する。焼結型1の内面または外面には温度センサ11が設けられており、焼結体の温度を計測する。制御部12はこの温度センサ11の計測値に基づきサイリスタ9を制御して電流を制御する。上記の説明は上下両方の電極5a,5bと発熱体4a,4bとを油圧装置で上下から加圧するとしたが、上下いずれかの電極5と発熱体4のみを加圧し、他方は固定するようにしてもよい。なおこの方式は以下に述べる実施形態にも適用できる。
【0022】
図2は図1のX−X断面図である。ヒータ6は焼結型1の周囲に一定間隔で同心状に配置されている。ヒータ6は図で右側のヒータ6aと左側のヒータ6bとにわけて通電され制御されている。なお、以降に示す実施形態の断面図も同様な構成となっている。
【0023】
発熱体4a,4bと焼結型1の電気抵抗はそれぞれに発生させる発熱量を考慮して設定される。発熱体4a,4bと電極5a,5bとの接合部は原料粉末3を加圧した状態で焼結型1の外側になるような構成となっており、電流は発熱体4a,4bを経由して焼結型1に流れる。これにより発熱体4a,4bの電気抵抗を焼結型1のものより大きくしても、電流は確実に発熱体4a,4bを通過してこれを発熱させる。原料粉末3がセラミックスの場合は加熱は発熱体4a,4b、焼結型1および必要に応じて抵抗ヒータ6a,6bにより行われる。電極5a,5bと抵抗ヒータ6a,6bへの電流の制御はサイリスタ9によって行われる。なお、抵抗ヒータ6a,6bの加熱制御は、抵抗ヒータ6a,6bを一本づつまたは複数のクループに分け、オン、オフするようにしてもよい。原料粉末3が金属、炭化物、窒化物などの導電性物質である場合は、原料粉末3にも通電され、その抵抗により発熱する。これにより加熱能力が増大する。
【0024】
次にヒータ6(6は6a,6bを表す。他の符号についても同様とする)による間接加熱と発熱体4,電極5,焼結型1による通電加熱とに供給する電力の割合についてその一例を説明する。図3はヒータ6による間接加熱の場合の温度分布と、温度と供給電力との関係を示す。(A)は原料粉末3の上下方向の中心を通る直線P上の温度分布を示す。a点は焼結型1の外面で温度センサ11が設けられている位置であり、b点は原料粉末3の表面、c点は原料粉末3の中心である。温度分布はa点より中心に行くに従い低くなっており、c点で最低となっている。(B)はa,b,c点の温度Ta,Tb,Tcの時間経過を示し、(C)はこのときの電力供給値の時間経過を示す。TaがMになるまでは電力P1が供給され、以降はMを維持する電力P0が供給される。TaがMになるまでの期間を昇温加熱期間、Taを温度Mに保持する期間を定常加熱期間とする。(B)において温度が飽和するf点以降では、Ta>Tb>Tcの関係が成立している。
【0025】
図4は通電加熱の場合の温度分布と、温度と供給電力との関係を示す。(A)は原料粉末3の上下方向の中心を通る直線P上の温度分布を示す。a点は焼結型1の外面で温度センサ11が設けられている位置であり、b点は原料粉末3の表面、c点は原料粉末3の中心である。温度分布はa点より中心に行くに従い高くなっており、c点で最高となっている。(B)はa,b,c,の温度Ta,Tb,Tcの時間経過を示し、(C)はこのときの電力供給値の時間経過を示す。Taが温度Nになるまでは電力Q1が供給され、以降はNを維持する電力Q0が供給される。なお、(B)において、原料粉末3の種類、焼結型1のサイズなどによって、Ta,Tb,Tcの関係が変わり、間接加熱のように一定の関係とはならない。
【0026】
図3、図4で示した間接加熱と通電加熱の特性を考慮して、両加熱方式を併用する場合の電力供給の割合の一例を説明する。図5はヒータ6による間接加熱を示す。図5は図3に示した内容と同様であり、本図では(C)の定常加熱期間の電極5と加熱体4からの熱損失を説明する。
P0≒Lw+Lr …(1)
P0:定常熱損失
Lw:焼結型1からの熱損失
Lr:加熱体4と電極5からの熱損失
【0027】
焼結型1の外面温度TaをMに保持するためには電力P0を供給しなければならない。このP0は定常熱損失と言われ、焼結型1から失われる損失Lwと、加熱体4と電極5から失われる損失Lrとから構成される。この損失Lrを計測する。計測方法としては、例えば、焼結型1を断熱的に遮蔽した状態でTaをMに維持するように加熱したときの電力P01を求めれば、このP01が損失Lrを表す。
【0028】
図6は間接加熱と通電加熱との供給電力の比率を説明する図である。加熱は次のように行う。
▲1▼ 昇温加熱期間:通電電力(焼結型1,発熱体4,電極5に供給される電力)を図5において計測した発熱体4と電極5からの損失Lrの電力とする。間接加熱のヒータ6への電力は、通電電力が供給されている状態で、Taが所定の昇温加熱期間Tで所定の温度Mになる電力とする。
▲2▼ 定常加熱期間:通電電力は零とし、定常損失電力P0はすべてヒータ6の間接加熱電力とする。
【0029】
以上の供給電力の配分により、昇温加熱時、間接加熱は通電加熱と同時に行われるので、間接加熱単独の場合と同じ電力の場合でも昇温加熱期間Tは短縮される。また定常加熱期間では間接加熱のみ行われるので、Ta>Tb>Tcの関係が保たれ、焼結型1の外面に取付けられた温度センサ11により温度Taを制御することにより原料粉末3の表面温度Tb,中心温度TcをTaより低い温度に確実に制御することができる。
【0030】
図6(A),(B)は以上のことを示しており、昇温加熱期間Tでは(B)の斜線部で示す通電電力が間接加熱電力に加算されるので、昇温加熱期間Tがヒータ6による間接加熱単独の場合と同じであれば、間接加熱電力は少なくなり、間接加熱電力を同じとすれば、昇温加熱期間Tは短縮される。また定常加熱期間は間接加熱のみ行われる。なお、通電加熱電力とヒータ6による間接加熱電力の比率は以降に述べる実施形態にも適用できる。
【0031】
次に第2実施形態を説明する。図7は第2実施形態の構成を示す。図7において使用される符号で図1と同一のものは、同一の機能を有する部材や機器を表す。第2実施形態は電極5a,5bと発熱体4a,4bの電流通過断面積を発熱体4a,4bの方が小さくなるようにして電気抵抗を大きくし、発熱するようにしたものであり、他は第1実施形態と同じである。電極5a,5bと発熱体4a,4bをグラファイトで構成し、電極5a,5bの形状を発熱体4a,4bより大きくして電気抵抗を少くし、発熱体4a,4bの形状を小さくして電気抵抗を大きくし発熱が大きくなるようにする。なお電極5a,5bと発熱体4a,4bの材質は同一としてもよいが、発熱体4a,4bの材質を電極5a,5bよりも抵抗値の大きなものとすると発熱体4a,4bの発熱量を多くすることができる。
【0032】
図8は第3実施形態を示す。本実施形態は図7に示す第2実施形態の変形例である。第2実施形態は電極5a,5bの直径を発熱体4a,4bの直径より大きくし、発熱体4a,4bとの接合部で絞って発熱体4a,4bの直径と同じくしたが、本実施形態は電極5a,5bは絞らず、加熱体4a,4bの電極5a,5bとの接合部を拡張したものである。このようにすると電極5a,5bの直径が同一であれば図1に示す第1実施形態の装置と互換性を持たせることができる。また電極5a,5bと加熱体4a,4bとの接触面積が大きくなるのでこの部分の接触抵抗が減少し無駄な発熱を減少し、かつ接触面の経時劣化を抑える効果がある。
【0033】
次に第4実施形態を説明する。図9は第4実施形態の構成を示す。図9において使用される符号で図1と同一のものは、同一の機能を有する部材や機器を表す。第4実施形態は焼結型1への通電を、発熱体4の経由に加え、電極5a,5bからも直接行なうようにしたもので、他は第1実施形態と同じである。焼結型1と発熱体4a,4bの抵抗値を適切な値に設定して発熱量を設定する。発熱体4a,4bの電気抵抗値を大きくして発熱量を大きくし、第1実施形態のように発熱体4a,4bを経由して焼結型1へ通電すると、焼結型1への電流が少くなりこの発熱量が少くなるが、バイパスを設け、電極5a,5bから電流の一部を流すことにより焼結型1の発熱量を適切な値とすることができる。
【0034】
上述した実施形態では、抵抗ヒータ6a,6bを設けたが、焼結体が大型でなかったり、焼結時間の短縮が要求されないような場合や正確な温度制御が要求されない場合は、設けなくてもよい。発熱体4a,4bと焼結型1の発熱、また原料粉末が導電性物質の場合は自身の抵抗発熱により焼結可能である。
【0035】
【発明の効果】
以上述べたように、本発明によれば、焼結型と発熱体に通電して加熱する通電加熱方式により、セラミックスまたは導電性物質のいずれでも焼結することができる。導電性物質の場合はこれに通電することにより発熱能力が増大する。さらにヒータによる間接加熱方式を併用することにより、通電加熱方式による装置大型化の障害となっていた、温度制御精度を間接加熱方式と同程度に確保でき、装置の大型化が可能になる。また、通電加熱方式の併用により原料粉末の加熱効率が向上し、通電加熱方式の装置大型化の課題であった加熱時間の増加を抑制することが可能となり、結果として供給エネルギも抑制できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の構成を示す図である。
【図2】図1のX−X断面図である。
【図3】ヒータによる間接加熱を示し、(A)は温度分布、(B)は温度変化曲線、(C)は供給電力を示す。
【図4】通電加熱を示し、(A)は温度分布、(B)は温度変化曲線、(C)は供給電力を示す。
【図5】ヒータによる間接加熱を示し、(A)は温度分布、(B)は温度変化曲線、(C)は供給電力を示す。
【図6】間接加熱と通電加熱の併用方式の一例を示す。
【図7】本発明の第2実施形態の構成を示す図である。
【図8】本発明の第3実施形態の構成を示す図である。
【図9】本発明の第4実施形態の構成を示す図である。
【符号の説明】
1 焼結型
2 焼結空間
3 原料粉末
4 発熱体
5 電極
6 抵抗ヒータ
7 断熱囲壁
8 電源
9 サイリスタ
10 トランス
11 温度センサ
12 制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintering apparatus that sinters ceramics and conductive raw material powder filled in a sintering mold.
[0002]
[Prior art]
A sintered body is manufactured by filling a raw material powder of a conductive object such as ceramics, metal, carbide, or nitride into a sintering mold and heating and pressing with a pair of punches. Sintering apparatuses for manufacturing this sintered body are classified into several systems depending on the heating system. In the indirect heating method using a heater, a heater such as a resistance heater is disposed around the sintering mold, the sintering mold is heated from the surface, and the raw material powder therein is indirectly heated. This method is applicable to the sintering of both ceramics and conductive materials and is widely used.
[0003]
The induction heating method is a heating method in which the sintered mold is directly heated by electromagnetic induction. Therefore, the heating rate of the sintered body is faster than that of the resistance heating method. In the energization method, a pair of punches are used as electrodes, and direct current or direct current and pulse current are passed through the raw material powder and heated by the resistance heat of the raw material powder. The energization method is disclosed in Japanese Patent Laid-Open Nos. 64-55303, 5-70804, and 5-117707.
[0004]
[Problems to be solved by the invention]
In an indirect heating system such as a heater, energy transmission to the sintering mold is mainly performed by the heater surface temperature and the inner wall temperature of the heat insulating enclosure surrounding the heater. Since there is a limit to the heat resistance of the heater material and the heat insulating wall material, there is a limit to energy transmission, and the heating time cannot be shortened beyond a certain limit. With the recent increase in size of sintered bodies, the objects to be heated such as sintering molds and punches are also increasing in size. In the case of the indirect heating method, there is a limit in energy transmission for the above-described reason, so that the increase in the size of the object to be heated causes an increase in the heating time. The induction heating method requires a high-frequency power generator, which is expensive in power supply facilities and has a problem with economy.
[0005]
In the energization method, since the raw material powder is directly heated, the heating time is short, but the heating conditions differ depending on the type of the raw material powder, and the operation is difficult. Further, the temperature tends to be the highest at the center temperature of the raw material powder, and it is difficult to control the temperature of the sintered body. Indirect heating is completely opposite to the situation where the surface of the sintered mold has the highest temperature and the raw material powder has the lowest. In the case of the energization method, if a temperature sensor is installed at the center of the raw material powder, the temperature of the sintered body can be easily controlled, but there is no sensor that can withstand this because it is under high temperature and pressure. Therefore, in general, the outer surface of the sintered mold or the inner surface of the sintered mold is measured by a sensor such as a thermocouple or a radiation thermometer. The temperature control needs to control the maximum temperature of the raw material powder.
[0006]
It is easy to control the temperature of the raw material powder by indirect heating, depending on the temperature of the sensor provided in the sintering mold, but in the energization method, the temperature of the sensor provided in the sintering mold is lower than the temperature of the raw material powder. The temperature of the sensor is the estimated temperature of the raw material powder. Therefore, it cannot be used for direct temperature control, and compensation by calculation or the like is required, but exact compensation is generally difficult. As the raw material powder becomes larger, the temperature difference between the sensor temperature and the powder center temperature increases. Therefore, the enlargement of the apparatus is particularly difficult in the case of the energization method.
[0007]
The present invention has been made in view of such problems, and an object of the present invention is to provide a sintering apparatus that can sinter both ceramics and conductive materials and can cope with an increase in size.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a sintering apparatus that sinters the raw material powder filled in the sintering space of the sintering die by applying pressure to the electrode made of a pair of punches and energizing it. A heating element that generates heat when energized is provided between the electrode and the raw material powder, the sintering mold is composed of a conductor that generates heat when energized , and a heater is provided around the sintering mold. The amount of energy input to the heater is larger than the amount of energy input to the electrode, the heating element, and the sintering mold heated by the energization, and the temperature of the raw material powder is higher than the temperature of the sintering mold. Heat to lower.
[0009]
The raw material powder is heated by energizing the heating element and the sintering mold and generating heat by the electric resistance of each. Thereby, it can sinter even if raw material powder is either ceramics or an electroconductive substance. Further, when the raw material powder is a conductive substance, the raw material powder is energized and generates heat due to its own electric resistance, so that the heating capability is improved.
The temperature setting and temperature distribution of the raw material powder are one of the important factors for sintering. In particular, the processing of a sintered body having a severe temperature condition, the processing of a large-sized sintered body, etc. cannot sufficiently control the temperature of the sintered body by an energization method in which a heating element and a sintering mold are energized and heated. By adopting an indirect heating method using a heater, the temperature control accuracy of the sintered body can be increased.
A heater is provided around the sintering die and a temperature sensor is provided on the outer surface of the sintering die to heat the temperature while controlling the temperature, and the electrode, the heating element and the sintering die are energized and heated. The amount of energy input to the heater is made larger than the amount of energy by energization so that the temperature of the raw material powder is lower than the temperature of the sintering mold. This makes it possible to heat the sintered body in a short time by compensating the released heat by energization while maintaining the same temperature control characteristics as the indirect heating method using a heater.
[0010]
According to the second aspect of the present invention, the period from the start of heating until the outer surface temperature Ta of the sintering mold reaches a predetermined temperature is defined as a heating and heating period, and the period during which the outer surface temperature Ta of the sintering mold is maintained at the predetermined temperature is steady. When the heating period is set, in the temperature rising heating period, energization overheating in which the heating element and the sintering mold are energized and heated and indirect heating by the heater are used together, and only indirect heating is performed in the steady heating period.
Since only indirect heating is performed in the steady heating period, the relationship of Ta>Tb> Tc is maintained, and the surface temperature Tb of the raw material powder 3 is controlled by controlling the temperature Ta by the temperature sensor 11 attached to the outer surface of the sintering mold 1. The center temperature Tc can be reliably controlled to a temperature lower than Ta.
[0011]
In a third aspect of the present invention, the heat generation amount of the heating element is made larger than the heat generation amount of the electrode.
The raw material powder can be effectively heated by making the calorific value of the heating element larger than the calorific value of the electrode.
[0012]
In the invention of claim 4, the sintering mold is energized from the electrode through the heating element.
[0013]
The current flowing from one of the electrodes first passes through one heating element to generate heat, and then passes through the sintering mold to generate heat. Then, after the other heating element is heated, the process returns to the other electrode. As a result, even if the electric resistance of the heating element is larger than the electric resistance of the sintered type, the current flows reliably in the heating element to cause it to generate heat.
[0014]
In the invention of claim 5, the sintered mold is energized from the electrode through the heating element, and is also energized directly from the electrode.
[0015]
By setting the electric resistances of the heating element and the sintered mold to appropriate values, the amount of generated heat can be set. By allowing current to flow from both the electrode and the heating element, the degree of freedom in setting the amount of heat generation can be increased.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of a sintering apparatus according to a first embodiment of the present invention. The sintering mold 1 is a hollow cylindrical shape made of graphite, and the inner center is a sintering space 2 filled with the raw material powder 3. Heating elements 4a and 4b made of graphite and made of graphite are slidably fitted on the upper and lower sides of the sintering die 1. Electrodes 5a and 5b are provided above and below the heating elements 4a and 4b. The electrodes 5a and 5b constitute punches for pressing the heating elements 4a and 4b and energize the heating elements 4a and 4b. Resistive heaters 6 a and 6 b are provided around the sintering mold 1 to heat the sintering mold 1. The sintered mold 1, the heating elements 4a and 4b, the heating elements 4 side of the electrodes 5a and 5b, and the resistance heaters 6a and 6b are surrounded by a heat insulating enclosure 7 and retain heat insulation.
[0021]
A hydraulic device (not shown) is connected to the upper and lower ends of the electrodes 5a and 5b so as to pressurize the heating elements 4a and 4b. The power source 8 uses a commercial power source such as 50 or 60 Hz. The electric power from the power source 8 is controlled by the thyristor 9 and stepped down by the transformer 10, and then the electrodes 5a and 5b and the resistance heaters 6a and 6b are energized. A temperature sensor 11 is provided on the inner surface or outer surface of the sintering mold 1 to measure the temperature of the sintered body. The control unit 12 controls the thyristor 9 based on the measured value of the temperature sensor 11 to control the current. In the above description, both the upper and lower electrodes 5a and 5b and the heating elements 4a and 4b are pressed from above and below with a hydraulic device. However, only one of the upper and lower electrodes 5 and the heating element 4 is pressed, and the other is fixed. It may be. This method can also be applied to the embodiments described below.
[0022]
2 is a cross-sectional view taken along the line XX of FIG. The heaters 6 are arranged concentrically at regular intervals around the sintering mold 1. The heater 6 is energized and controlled separately in the right side heater 6a and the left side heater 6b in the figure. The cross-sectional views of the embodiments described below have the same configuration.
[0023]
The electrical resistances of the heating elements 4a and 4b and the sintering die 1 are set in consideration of the amount of heat generated. The joints between the heating elements 4a and 4b and the electrodes 5a and 5b are configured to be outside the sintering mold 1 in a state where the raw material powder 3 is pressed, and the current passes through the heating elements 4a and 4b. Flow into the sintering mold 1. As a result, even if the electric resistance of the heating elements 4a and 4b is larger than that of the sintered mold 1, the current surely passes through the heating elements 4a and 4b to generate heat. When the raw material powder 3 is ceramic, heating is performed by the heating elements 4a and 4b, the sintering die 1, and resistance heaters 6a and 6b as necessary. The thyristor 9 controls the current to the electrodes 5a and 5b and the resistance heaters 6a and 6b. The heating control of the resistance heaters 6a and 6b may be turned on and off by dividing the resistance heaters 6a and 6b into one or a plurality of groups. When the raw material powder 3 is a conductive substance such as a metal, carbide, or nitride, the raw material powder 3 is also energized and generates heat due to its resistance. This increases the heating capacity.
[0024]
Next, an example of the ratio of the electric power supplied to the indirect heating by the heater 6 (6 represents 6a, 6b. The same applies to other symbols) and the heating by the heating element 4, the electrode 5 and the sintering die 1 is shown. Will be explained. FIG. 3 shows the temperature distribution in the case of indirect heating by the heater 6 and the relationship between temperature and supply power. (A) shows the temperature distribution on the straight line P passing through the center of the raw material powder 3 in the vertical direction. Point a is a position where the temperature sensor 11 is provided on the outer surface of the sintering mold 1, point b is the surface of the raw material powder 3, and point c is the center of the raw material powder 3. The temperature distribution is lower toward the center than point a, and is lowest at point c. (B) shows the passage of time at temperatures Ta, Tb, and Tc at points a, b, and c, and (C) shows the passage of time for the power supply value at this time. Electric power P1 is supplied until Ta becomes M, and thereafter electric power P0 for maintaining M is supplied. A period until Ta becomes M is a temperature raising heating period, and a period during which Ta is held at the temperature M is a steady heating period. The relationship of Ta>Tb> Tc is established after the point f at which the temperature is saturated in (B).
[0025]
FIG. 4 shows the temperature distribution in the case of current heating and the relationship between temperature and supply power. (A) shows the temperature distribution on the straight line P passing through the center of the raw material powder 3 in the vertical direction. Point a is a position where the temperature sensor 11 is provided on the outer surface of the sintering mold 1, point b is the surface of the raw material powder 3, and point c is the center of the raw material powder 3. The temperature distribution becomes higher from the point a toward the center, and is highest at the point c. (B) shows the time lapse of the temperatures Ta, Tb, Tc of a, b, c, and (C) shows the time lapse of the power supply value at this time. Electric power Q1 is supplied until Ta reaches temperature N, and thereafter electric power Q0 that maintains N is supplied. In (B), the relationship of Ta, Tb, and Tc varies depending on the type of raw material powder 3 and the size of the sintering die 1, and does not have a fixed relationship like indirect heating.
[0026]
Considering the characteristics of indirect heating and current heating shown in FIGS. 3 and 4, an example of the ratio of power supply when both heating methods are used will be described. FIG. 5 shows indirect heating by the heater 6. FIG. 5 is the same as the content shown in FIG. 3, and in this figure, the heat loss from the electrode 5 and the heating body 4 during the steady heating period (C) will be described.
P0≈Lw + Lr (1)
P0: steady heat loss Lw: heat loss from the sintering mold 1 Lr: heat loss from the heating element 4 and the electrode 5
In order to maintain the outer surface temperature Ta of the sintering mold 1 at M, the electric power P0 must be supplied. This P0 is said to be a steady heat loss, and is composed of a loss Lw lost from the sintering mold 1 and a loss Lr lost from the heating body 4 and the electrode 5. This loss Lr is measured. As a measuring method, for example, if electric power P01 when heating is performed so that Ta is maintained at M in a state where the sintered mold 1 is shielded adiabatically, this P01 represents the loss Lr.
[0028]
FIG. 6 is a diagram for explaining the ratio of supplied power between indirect heating and energization heating. Heating is performed as follows.
(1) Temperature rising heating period: The energization power (power supplied to the sintering mold 1, the heating element 4, and the electrode 5) is the power of the loss Lr from the heating element 4 and the electrode 5 measured in FIG. The power to the heater 6 for indirect heating is assumed to be a power at which Ta reaches a predetermined temperature M in a predetermined heating and heating period T in a state where energized power is supplied.
(2) Steady heating period: The energization power is zero, and the steady loss power P0 is all indirect heating power of the heater 6.
[0029]
Due to the above distribution of the supplied power, the indirect heating is performed simultaneously with the energization heating at the time of the temperature raising heating, so that the temperature raising heating period T is shortened even in the case of the same power as in the case of the indirect heating alone. Further, since only indirect heating is performed in the steady heating period, the relationship of Ta>Tb> Tc is maintained, and the surface temperature of the raw material powder 3 is controlled by controlling the temperature Ta by the temperature sensor 11 attached to the outer surface of the sintering mold 1. Tb and the center temperature Tc can be reliably controlled to a temperature lower than Ta.
[0030]
6 (A) and 6 (B) show the above. In the heating / heating period T, the energized power indicated by the hatched portion in (B) is added to the indirect heating power, so that the heating / heating period T is If it is the same as in the case of indirect heating alone by the heater 6, the indirect heating power is reduced, and if the indirect heating power is the same, the temperature raising heating period T is shortened. Further, only indirect heating is performed during the steady heating period. The ratio of the energization heating power and the indirect heating power by the heater 6 can also be applied to the embodiments described below.
[0031]
Next, a second embodiment will be described. FIG. 7 shows the configuration of the second embodiment. The same reference numerals used in FIG. 7 as those in FIG. 1 represent members and devices having the same functions. In the second embodiment, the current passage cross-sectional area of the electrodes 5a and 5b and the heat generating elements 4a and 4b is made smaller so that the heat generating elements 4a and 4b have a smaller electric resistance and heat is generated. Is the same as in the first embodiment. The electrodes 5a, 5b and the heating elements 4a, 4b are made of graphite, the electrodes 5a, 5b are made larger than the heating elements 4a, 4b to reduce the electrical resistance, and the heating elements 4a, 4b are made smaller to make the electricity Increase resistance to increase heat generation. The materials of the electrodes 5a and 5b and the heating elements 4a and 4b may be the same, but if the material of the heating elements 4a and 4b is larger in resistance than the electrodes 5a and 5b, the amount of heat generated by the heating elements 4a and 4b is reduced. Can do a lot.
[0032]
FIG. 8 shows a third embodiment. This embodiment is a modification of the second embodiment shown in FIG. In the second embodiment, the diameters of the electrodes 5a and 5b are made larger than the diameters of the heating elements 4a and 4b, and the diameters of the electrodes 5a and 5b are reduced to the same as the diameters of the heating elements 4a and 4b. The electrodes 5a and 5b are not restricted but the joints of the heating bodies 4a and 4b with the electrodes 5a and 5b are expanded. In this way, as long as the electrodes 5a and 5b have the same diameter, compatibility with the apparatus of the first embodiment shown in FIG. 1 can be achieved. Further, since the contact area between the electrodes 5a and 5b and the heating elements 4a and 4b is increased, the contact resistance of this portion is reduced, and unnecessary heat generation is reduced, and the contact surface is prevented from being deteriorated with time.
[0033]
Next, a fourth embodiment will be described. FIG. 9 shows the configuration of the fourth embodiment. The same reference numerals used in FIG. 9 as those in FIG. 1 represent members and devices having the same function. In the fourth embodiment, the energization to the sintering mold 1 is performed directly from the electrodes 5a and 5b in addition to the heating element 4, and the other is the same as the first embodiment. The heating value is set by setting the resistance values of the sintering mold 1 and the heating elements 4a and 4b to appropriate values. When the electric resistance value of the heating elements 4a and 4b is increased to increase the amount of heat generation, and the current is supplied to the sintering die 1 via the heating elements 4a and 4b as in the first embodiment, the current to the sintering die 1 However, the heat generation amount of the sintering mold 1 can be set to an appropriate value by providing a bypass and passing a part of the current from the electrodes 5a and 5b.
[0034]
In the above-described embodiment, the resistance heaters 6a and 6b are provided. However, the resistance heaters 6a and 6b are not provided when the sintered body is not large or when shortening of the sintering time is not required or when accurate temperature control is not required. Also good. The heating elements 4a and 4b and the sintering mold 1 can be heated, and when the raw material powder is a conductive material, the heating can be performed by its own resistance heating.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to sinter either ceramics or a conductive material by an energization heating method in which a sintering mold and a heating element are energized and heated. In the case of a conductive substance, the heat generation capacity is increased by energizing the conductive substance. Furthermore, by using the indirect heating method with a heater, the temperature control accuracy, which has been an obstacle to the enlargement of the device by the energization heating method, can be secured to the same level as the indirect heating method, and the device can be enlarged. Moreover, the heating efficiency of the raw material powder is improved by the combined use of the energization heating method, and it is possible to suppress an increase in heating time, which is a problem of increasing the size of the apparatus of the energization heating method. As a result, supply energy can be suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first exemplary embodiment of the present invention.
2 is a cross-sectional view taken along the line XX of FIG.
FIG. 3 shows indirect heating by a heater, (A) shows a temperature distribution, (B) shows a temperature change curve, and (C) shows a supplied power.
4A and 4B show current heating, (A) shows the temperature distribution, (B) shows the temperature change curve, and (C) shows the supplied power.
5A and 5B show indirect heating by a heater, where FIG. 5A shows a temperature distribution, FIG. 5B shows a temperature change curve, and FIG. 5C shows supplied power.
FIG. 6 shows an example of a combined method of indirect heating and current heating.
FIG. 7 is a diagram showing a configuration of a second exemplary embodiment of the present invention.
FIG. 8 is a diagram showing a configuration of a third exemplary embodiment of the present invention.
FIG. 9 is a diagram showing a configuration of a fourth exemplary embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sintering mold 2 Sintering space 3 Raw material powder 4 Heating element 5 Electrode 6 Resistance heater 7 Heat insulation surrounding wall 8 Power supply 9 Thyristor 10 Transformer 11 Temperature sensor 12 Control part

Claims (5)

焼結型の焼結空間に充填された原料粉末を一対のパンチよりなる電極で加圧し通電して焼結する焼結装置であって、
前記電極と原料粉末の間には通電により発熱する発熱体が設けられており、前記焼結型は通電により発熱する導電体で構成されており、
さらに、前記焼結型の周囲にはヒータが設けられており、
前記ヒータに投入されるエネルギ量を前記通電により加熱される電極、発熱体および焼結型に投入されるエネルギ量よりも大きくし、焼結型の温度より原料粉末の温度が低くなるように加熱する、
ことを特徴とする焼結装置。
A sintering apparatus that sinters by pressing and energizing raw material powder filled in a sintering space of a sintering mold with an electrode made of a pair of punches,
A heating element that generates heat when energized is provided between the electrode and the raw material powder, and the sintering mold is composed of a conductor that generates heat when energized .
Furthermore, a heater is provided around the sintering mold,
The amount of energy input to the heater is set to be larger than the amount of energy input to the electrode, heating element and sintering mold heated by the energization, and heating is performed so that the temperature of the raw material powder is lower than the temperature of the sintering mold. To
A sintering apparatus characterized by that.
加熱開始から焼結型の外面温度Taが所定温度となるまでの期間を昇温加熱期間とし、前記焼結型の外面温度Taを前記所定温度に保持する期間を定常加熱期間とした場合、When the period from the start of heating until the outer surface temperature Ta of the sintering mold reaches a predetermined temperature is a heating heating period, and the period of holding the outer surface temperature Ta of the sintering mold at the predetermined temperature is a steady heating period,
昇温加熱期間では、前記発熱体と前記焼結型に通電して加熱する通電過熱と、ヒータによる間接加熱を併用し、In the heating and heating period, the heating element and the sintering mold are energized and heated, and indirect heating with a heater is used in combination.
定常加熱期間では、間接加熱のみを行う、In the steady heating period, only indirect heating is performed.
ことを特徴とする請求項1に記載の焼結装置。The sintering apparatus according to claim 1.
前記発熱体の発熱量は前記電極の発熱量より大きいことを特徴とする請求項1又は2記載の焼結装置。The sintering apparatus according to claim 1 or 2, wherein the heating value of the heating element is larger than the heating value of the electrode. 前記焼結型は前記発熱体を経由して電極より通電されることを特徴とする請求項1又は2記載の焼結装置。The sintering apparatus according to claim 1 or 2, wherein the sintering mold is energized from an electrode through the heating element. 前記焼結型は前記発熱体を経由して電極より通電され、さらに電極からも直接に通電されていることを特徴とする請求項1又は2記載の焼結装置。 3. The sintering apparatus according to claim 1, wherein the sintering die is energized from an electrode through the heating element, and further energized directly from the electrode.
JP14746097A 1997-06-05 1997-06-05 Sintering equipment Expired - Fee Related JP3781072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746097A JP3781072B2 (en) 1997-06-05 1997-06-05 Sintering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746097A JP3781072B2 (en) 1997-06-05 1997-06-05 Sintering equipment

Publications (2)

Publication Number Publication Date
JPH10330804A JPH10330804A (en) 1998-12-15
JP3781072B2 true JP3781072B2 (en) 2006-05-31

Family

ID=15430877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746097A Expired - Fee Related JP3781072B2 (en) 1997-06-05 1997-06-05 Sintering equipment

Country Status (1)

Country Link
JP (1) JP3781072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144276A4 (en) * 2014-05-12 2017-12-13 IHI Corporation Graphitization furnace

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003559B1 (en) * 2007-04-10 2010-12-30 한국생산기술연구원 Hybrid hot press apparatus
JP5749473B2 (en) * 2009-11-25 2015-07-15 イビデン株式会社 Method for manufacturing ceramic fired body and method for manufacturing honeycomb structure
CN102765946B (en) * 2012-07-05 2013-12-25 中国科学院宁波材料技术与工程研究所 Current assisted method for quickly preparing powder
CN104289710B (en) * 2014-09-30 2016-08-31 许用华 A kind of graphite sintering box with aerofluxus and sealing function
KR102024680B1 (en) * 2018-12-21 2019-09-24 서울대학교산학협력단 Sintering apparatus for selectively applyung electric current
CN115711535A (en) * 2021-08-23 2023-02-24 株洲瑞德尔智能装备有限公司 Novel furnace door heating device and horizontal sintering furnace thereof
JP2023084424A (en) * 2021-12-07 2023-06-19 ミネベアミツミ株式会社 Manufacturing method of rare earth iron-sintered magnet, manufacturing apparatus of rare earth iron-sintered magnet and rare earth iron-sintered magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2106823B (en) * 1981-09-03 1985-08-14 Lucas Ind Plc Producing a friction element for a disc brake
JPH0492512U (en) * 1990-12-28 1992-08-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144276A4 (en) * 2014-05-12 2017-12-13 IHI Corporation Graphitization furnace

Also Published As

Publication number Publication date
JPH10330804A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
EP3737206B1 (en) Heater bundle for adaptive control
EP3237178B1 (en) Deposition print head
US4394564A (en) Solid plate heating unit
JP2715193B2 (en) Method and apparatus for controlling and limiting power on a heated surface made of glass ceramic or similar material
JP2732417B2 (en) Method and apparatus for indicating an abnormal thermal stress state on a heated surface made of glass ceramic or similar material
US7019269B2 (en) Heater
JPH0367315B2 (en)
JP3781072B2 (en) Sintering equipment
KR20060127034A (en) Heated trough for molten metal
US20180359818A1 (en) Susceptor Wire Array
JP7187082B2 (en) Selective current sintering equipment
US9907121B2 (en) Parallel wire conductor for use with a heating blanket
JPH06227822A (en) Outflow apparatus for glass preform
US20210190380A1 (en) Heater bundles having virtual sensing for thermal gradient compensation
EP2967249B1 (en) Liquid heater including wire mesh heating segment
US20210199345A1 (en) Heater bundles for thermal gradient compensation
JPH06345541A (en) Microwave sintering method and furnace therefor
JP2017141658A (en) Device for melting asphalt for waterproofing work
CN206094924U (en) Electric heating furnace based on multi -region temperature control
US3569602A (en) Temperature programming apparatus with a heating sensing arrangement
JP4163394B2 (en) Pressurized current sintering apparatus and punch temperature control method thereof
GB2099670A (en) Furnace elements and furnaces
CN216568387U (en) Composite ceramic heating body and heating smoking set comprising same
EP4339571A1 (en) Method for determining an output temperature of a fluid
JP3935696B2 (en) Cartridge heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees