JP3780999B2 - Manufacturing method of non-tempered steel hot forged member - Google Patents

Manufacturing method of non-tempered steel hot forged member Download PDF

Info

Publication number
JP3780999B2
JP3780999B2 JP2002302577A JP2002302577A JP3780999B2 JP 3780999 B2 JP3780999 B2 JP 3780999B2 JP 2002302577 A JP2002302577 A JP 2002302577A JP 2002302577 A JP2002302577 A JP 2002302577A JP 3780999 B2 JP3780999 B2 JP 3780999B2
Authority
JP
Japan
Prior art keywords
steel
hot forging
hot
strength
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002302577A
Other languages
Japanese (ja)
Other versions
JP2004137542A (en
Inventor
豊 根石
達也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002302577A priority Critical patent/JP3780999B2/en
Publication of JP2004137542A publication Critical patent/JP2004137542A/en
Application granted granted Critical
Publication of JP3780999B2 publication Critical patent/JP3780999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高強度でかつ高降伏比を示す非調質鋼熱間鍛造部材の製造方法に関し、より詳しくは、熱間鍛造時の鍛造温度を低温にすることなく高強度・高降伏比の非調質鋼熱間鍛造部材を安定製造する方法に関するものである。
【0002】
【従来の技術】
自動車部品等に適用される機械構造用鋼材は、従来、焼入れ及び焼き戻しの熱処理(以降“調質処理”と称す)を施して所望の機械的特性に調整してから使用に供するのが一般的であった。
しかし、近年、製造コスト削減要求が一段と強まってきたこともあって前記調質処理工程を省略することが検討され、調質処理を省略しても所望の鋼材特性を確保することが可能な“非調質鋼”の開発が進められてきた。そして、これまでに開発された非調質鋼は例えばコンロッド(自動車部品)に代表される熱間鍛造部品に適用されつつある。
【0003】
熱間鍛造部品に適用する非調質鋼の開発は、当初、引張強さと靱性の向上に重点が置かれ、例えば特開平10−195530号公報にも見られるように、析出強化元素であるVやNbを利用すると共に焼入れ性向上元素であるMnを調整したものが提案された。
しかし、このような高強度・高靱性の非調質鋼は、例えば切削加工を要する自動車エンジン部品等に適用しようとすると、強度の大幅な増加の故に切削加工が困難であるという問題を有しており、実用上の障害となっている。
【0004】
また、非調質鋼を用いた熱間鍛造部品は調質処理を施した鋼部品と比べて一般に降伏比(降伏強度と引張強度との比)が0.65程度と小さく、そのため切削性を確保すべく引張強度を調質処理材と同等程度に調整すると降伏強度が低下してしまう。この降伏強度は、例えば疲労強度や耐座屈性と密接に関係していることが知られており、降伏強度の低下は疲労強度の低下,耐座屈性の低下を招く。
【0005】
逆に、降伏強度を調質処理材と同程度にすると引張強度が非常に大きくなり、前述のように切削性の劣化を引き起こす。
従って、切削性が確保できる範囲で高い引張強度を有すると共に降伏強度を高くすることが可能な非調質鋼が切望されていた。
【0006】
もっとも、例えば特開平7−157824号公報,特開平9−111412号公報あるいは特開平10−235447号公報には、鍛造温度,ミクロ組織,化学成分等を工夫することによって高強度でかつ高降伏比を有する非調質鋼が得られるとした提案が掲載されている。
【0007】
このうちの特開平7−157824号公報に示されている「降伏強度,靱性および疲労特性に優れる亜熱間鍛造非調質鋼材の製造方法」は、仕上げ温度750〜900℃の条件で熱間鍛造を行うと共に、冷却後における金属組織をフェライト・パ−ライトが90%以上を占める組織とし、更に200〜700℃の温度範囲で時効処理することによって降伏強度,靱性及び疲労特性に優れる非調質鋼を製造する方法である。
しかしながら、この方法によれば、確かに熱間鍛造の後の引張強さが850〜1100MPaで降伏比(0.2%耐力/引張強さ)が0.70以上の鋼部材を実現することは可能であるが、それでも降伏比0.80以上の高降伏比部材の製造は叶わず、用途が制限されざるを得なかった。
また、この方法では、上述したように亜熱間鍛造を実施する必要があり、特に750〜800℃程度の低い鍛造温度では材料の変形抵抗が著しく大きくなって金型寿命の劣化,設備能力の増強という問題が生じがちであった。
【0008】
一方、前記特開平9−111412号公報には「高強度,高降伏比,低延性非調質鋼」に係る発明が記載されており、クラッキングコンロッドとして適した非調質鋼の化学組成が提案されている。
しかし、この発明によれば、熱間鍛造後の引張強さが800〜1100MPaで降伏比が0.70以上の鋼部材を得ることは可能であると考えられるものの、やはり降伏比0.80以上の高降伏比部材を安定して実現することはできなかった。
【0009】
また、前記特開平10−235447号公報に示されている「高靱性・高耐力フェライト+パ−ライト型非調質鋼鍛造品の製造方法」は、特定化学組成の鋼を950℃以上に加熱してから750〜1050℃の温度範囲で熱間鍛造を行い、その後の冷却過程でフェライト+パ−ライト変態させることによって降伏比0.73以上の非調質鋼鍛造品を製造することを特徴とするものである。
しかしながら、この方法も、熱間鍛造後の引張強さが850〜1100MPaで降伏比が 0.8以上の鋼部材が得られる場合があるものの、降伏比が 0.8以上の鋼部材を安定して実現するためには800〜900℃程度までの比較的低温域で熱間鍛造を行う必要があり、1000℃を超える熱間鍛造条件では 0.8以上の降伏比を安定して付与することはできない。即ち、この方法によって降伏比が 0.8以上の鋼部材を安定して得るためには900℃程度以下で熱間鍛造を行なわなければならず、そのため材料の変形抵抗が大きくなり、金型寿命の劣化,設備能力の増強という問題を無視できなかった。
【0010】
【発明が解決しようとする課題】
このようなことから、本発明の目的は、従来の“熱間鍛造型非調質鋼の製造方法”に認められる前記問題点を解消し、鍛造温度を通常の鋼に適用される比較的高温域(900〜1200℃)とした場合であっても高強度(引張強さが850〜1100MPa)で高降伏比(0.2%耐力/引張強さの比が 0.8以上)の熱間鍛造部品を安定して得ることができる高強度・高降伏比非調質鋼熱間鍛造部材の製造手段を提供することに置かれた。
【0011】
【課題を解決するための手段】
上述のように、本発明者らは通常の比較的高温域(900〜1200℃)での鍛造を実施した場合でも高強度と高降伏比を有する非調質鋼熱間鍛造部材を安定製造することが可能な手段を案出すべく鋭意研究を行った結果、次の知見を得ることができた。
【0012】
まず、非調質鋼の熱間鍛造後における引張強さの確保については、「鋼材の焼入れ性を向上させることにより鋼材を強化するC,Mn等の元素」や「フェライト相中に炭化物あるいは炭窒化物として析出することにより鋼材を強化するV等の元素」が有するそれぞれの強化機構に着目して種々検討を行ったが、この検討を通じて、それら元素の配合比に工夫を加えるとそれぞれの強化機能が効果的に発揮されて所望する引張強さ(1000MPa以上)を安定して実現できるようになることを確認した。
【0013】
また、鋼材の熱間鍛造後の降伏比については、下記の式(1) に着目してその向上策を検討した。

Figure 0003780999
但し、σf:初析フェライトの強度,
σp:パ−ライトの強度,
Vf:初析フェライトの面積率,
σf<<σp。
上記式(1) は鋼材の降伏比を表すことができるものとして知られているが、この式(1) から明らかなように、初期降伏応力(0.2%耐力)は初析フェライトの強度で決まり、引張強さは初析フェライトの強度とパ−ライトの強度及び初析フェライトの面積率で決まる。そして、降伏比を増加させるためには、初期フェライトを確保した上で当該初析フェライトの強度を上昇させ、初析フェライトの強度上昇に伴う初期降伏応力の増加割合に対して引張強さの増加割合を小さくすることが効果的である。
【0014】
そこで、本発明者らは、熱間鍛造後に得られるフェライト・パ−ライト組織での初析フェライト部に着目し、この初析フェライトの強度の指標として硬度を用い、熱間鍛造条件による初析フェライト部の硬度変化を調査した。
その結果、初析フェライト部の硬度(強度)の上昇には、熱間鍛造に際しての加熱温度をVやTi等とC,Nが結合して生成する炭化物もしくは炭窒化物が十分に固溶する温度域とすることが重要であることが分かった。即ち、このような高温加熱によって上記炭化物もしくは炭窒化物が十分に固溶されると、その後の冷却過程でこれら炭化物もしくは炭窒化物が初析フェライト中に微細析出することとなり、初析フェライト部が効果的に強化される。
【0015】
しかしながら、その後も続けられた数多くの試験を通じて、上記のような高温加熱を実施したとしても、熱間鍛造を1000〜1200℃程度と比較的高い温度域で行った場合には 0.8以上の高い降伏比を安定して実現できないことが分かった。
【0016】
そのため、熱間鍛造時の加工温度を1000〜1200℃程度の高温域とした場合でも降伏比 0.8以上を安定して達成できる手段を模索したところ、熱間鍛造後に室温で冷間加工を施して塑性変形により初析フェライト部に歪を導入する手法を採用すれば初析フェライト部の更なる強度上昇が可能であり、この場合には引張強さの上昇を殆ど伴うことなく初析フェライト部の強度のみが上昇して降伏比 0.8以上の高強度非調質鋼熱間鍛造部材が安定製造されるようになることが明らかとなった。
【0017】
ところで、先にも述べたように、初析フェライト部の硬度(強度)の上昇には「熱間鍛造に際しての加熱温度を高めにして炭化物もしくは炭窒化物を十分に固溶させ、 その後の冷却中に炭化物もしくは炭窒化物を初析フェライト中に微細析出させる」ことが効果的であるが、初析フェライト中への炭化物もしくは炭窒化物の微細析出には熱間鍛造加工終了からフェライト変態までの温度域における冷却速度が大きな影響を及ぼす。
【0018】
例えば、図1には、後述する「実施例」の「表1」に示した鋼H,I,J及び鋼a,b,cを用いて図2の“ケ−ス1”の手順で非調質鋼熱間鍛造材を製造するに際し、加熱温度を1250℃に、熱間鍛造(熱間前方押出加工)時の減面率を80%に固定し、鍛造温度(加工温度)と鍛造後の冷却速度を変更して得られた非調質鋼熱間鍛造材の降伏比が示されているが、この図1からも、熱間鍛造後の冷却速度を増すと降伏比が向上することは明らかである。
【0019】
ただ、冷却速度を増すだけでは鍛造温度(加工温度)が1000〜1200℃という比較的高温域での鍛造では降伏比 0.8以上を安定して実現できない。
しかし、例えば図3に示すような事実が確認された。即ち、図3は、前記の鋼H,I,J及び鋼a,b,cを用いて図2の“ケ−ス2”の手順で非調質鋼熱間鍛造材を製造するに際し、加熱温度を1250℃に、熱間鍛造(熱間前方押出加工)時の減面率を80%にそれぞれ固定すると共に、鍛造温度(加工温度)と鍛造後の冷却速度を変更し、更に何れも冷却後に加工率5%の冷間加工(スエ−ジング加工)を施して得られた非調質鋼熱間鍛造材の降伏比が示されているが、この図3からは、“熱間鍛造後に冷間加工を施す手法”と“熱間鍛造後の冷却速度を増す手法”とを組み合わせた場合には降伏比の向上効果が一段と顕著化することが分かる。
このように、熱間鍛造後に冷間加工を施すことに加えて熱間鍛造後の冷却速度を制御する手立てを講じることは、高強度・高降伏比の非調質鋼熱間鍛造部材の製造により効果的であることが明らかとなった。
【0020】
本発明は上記知見事項等を基になされたものであって、次の▲1▼〜▲5▼項に示す非調質鋼熱間鍛造部材の製造方法を提供するものである。
▲1▼ C:0.15〜0.40%(以降、 成分割合を表す%は質量%とする) ,Si: 0.4〜 1.5%,Mn: 0.5〜2.0 %,P:0.01〜0.15%,S:0.01〜0.15%,V:0.15〜0.40%,Al: 0.001〜 0.1%を含有し、残部がFe及び不可避的不純物からなる素材鋼を、1000℃以上に加熱して熱間鍛造を行い、その後室温にまで冷却してミクロ組織をフェライト・パ−ライト組織とし、更に加工度が2〜10%の冷間加工を施すことを特徴とする、非調質鋼熱間鍛造部材の製造方法。
▲2▼ 少なくとも熱間鍛造を終えてからフェライト変態温度に達するまでの間を0.5 〜5℃/sの平均冷却速度で冷却することを特徴とする、前記▲1▼項に記載の非調質鋼熱間鍛造部材の製造方法。
▲3▼ 更にCr:0.05〜 0.2%を含有した素材鋼を用いることを特徴とする、前記▲1▼項又は▲2▼項に記載の非調質鋼熱間鍛造部材の製造方法。
▲4▼ 更にN:0.002〜0.03%を含有した素材鋼を用いることを特徴とする、前記▲1▼項乃至▲3▼項の何れかに記載の非調質鋼熱間鍛造部材の製造方法。
▲5▼ 更にTi:0.05〜0.30%,Nb:0.01〜0.10%のうちの1種又は2種を含有した素材鋼を用いることを特徴とする、前記▲1▼項乃至▲4▼項の何れかに記載の非調質鋼熱間鍛造部材の製造方法。
【0021】
【発明の実施の形態】
ここで、本発明において素材鋼の化学組成,熱間鍛造条件及び冷間加工条件を前記の如くに限定した理由を説明する。
【0022】
[A] 素材鋼の化学組成
C: Cは鋼の焼入れ性向上効果の高い元素であって、製品強度を上昇させる上で非常に有効な成分である。また、Cには熱間加工後のミクロ組織におけるフェライト分率を制御すると共に、Vとの炭化物あるいは炭窒化物を形成して初析フェライト部の機械特性に好影響を及ぼす作用がある。しかしながら、その含有量が0.15%未満では最終製品の強度が不足し、一方、0.40%を超えて含有させた場合には焼入れ性が高まりすぎて切削性を悪化させることから、C含有量を0.15〜0.40%と定めた。
【0023】
Si: Siはフェライト相の強化作用を有しており、また鋼の脱酸を安定化するために用いられる元素であるが、その含有量が 0.4%未満では前記作用による効果が少なく、一方、 1.5%を超えて含有させてもその効果が飽和する上、A3 変態点を上昇させて熱間圧延過程でフェライト脱炭を助長する懸念が出てくる。従って、Siの含有量は 0.4〜 1.5%と定めた。
【0024】
Mn: Mnは焼入れ性の向上と最終製品強度を増加するのに有効な元素であり、初析フェライトの析出サイトである複合析出物の基盤となる成分でもある。しかし、Mnの含有量が 0.5%未満では添加効果に乏しく、一方、 2.0%を超えて含有させると鋼材内部の硬度が高くなって延性,冷間加工性を悪化させてしまう。従って、Mn含有量は 0.5〜 2.0%と定めた。
【0025】
S: Sは鋼中でMnSとして存在し、切削性を向上すると共にフェライト析出核として働く元素であるが、その含有量が0.01%未満の場合には前記の効果が十分でなく、一方、0.15%を超えて含有させてもその効果は飽和してしまう。従って、S含有量は0.01〜0.15%と定めた。
【0026】
P: Pには鋼の強度を増加させる作用があるが、その含有量が0.01%未満では前記作用による効果が乏しい。また、Pは結晶粒界に偏析して冷間加工性の著しい劣化や低温での耐遅れ破壊特性の劣化を招く元素でもあり、これらの弊害はP含有量が0.15%を超えると顕著化する。従って、鋼の強度と冷間加工性確保の観点からP含有量を0.01〜0.15%と定めたが、望ましくは0.06〜0.10%に調整するのが好ましい。
【0027】
V: Vには、フェライト中に炭化物あるいは炭窒化物として析出して鋼の強度(初期降伏応力,引張強さ)を高めることにより高強度化,高降伏比化を達成する作用があるが、その含有量が0.15%未満では前記作用による所望の効果を得ることができず、一方、0.40%を超えて含有させるとその効果が飽和して鋼の経済性が損なわれる。この傾向は、前記図3によっても確認することができる。従って、V含有量は0.15〜0.40%と定めた。
【0028】
Al: Alは鋼の脱酸剤として有効な元素であり、また鋼中のNと結合して窒化物を形成して熱間鍛造中のオ−ステナイト結晶を粒微細化する作用をも有しているが、その含有量が 0.001%未満の場合には前記作用によって得られる効果が乏しく、一方、 0.1%を超えて含有させるとその効果が飽和するだけでなく、むしろ靱性値を劣化させる。従って、Al含有量は 0.001〜 0.1%と定めた。
【0029】
Cr: Crは、CやMnと同様に鋼の焼入れ性を向上させて強度を高める作用があるので必要に応じて含有せしめられる成分であるが、強度の向上効果を確実に得るためにはその含有量を0.05%以上とするのが好ましい。一方、Cr含有量が 0.2%を超えると焼入れ性が高くなりすぎて熱間鍛造後の冷却過程で硬質組織(ベイナイト組織やマルテンサイト組織)が生じ、フェライト・パ−ライト組織が得られなくなる。従って、Crを含有させる場合には、その含有量を0.05〜 0.2%とすることと定めた。
【0030】
N: Nは、鋼中のVやAlと結合して窒化物を形成し熱間鍛造中のオ−ステナイト結晶粒を微細化する作用に加えて、熱間鍛造後の冷却過程で生じるフェライト相中に微細析出することにより鋼材の強度を向上させる作用を有しているので必要に応じて含有せしめられる成分であるが、オ−ステナイト結晶粒の微細化及び鋼材の強度向上効果を確実に得るためにはその含有量を 0.002%以上とするのが好ましい。但し、N含有量が0.03%を超えるとその効果は飽和する。従って、Nを含有させる場合には、その含有量を 0.002〜0.03%とすることと定めた。
【0031】
Ti,Nb: Ti及びNbは、何れもVと同様にフェライト中に炭化物あるいは炭窒化物として析出し鋼の強度を高める作用のほか、加熱時のオ−ステナイト結晶粒の粒径を微細化する作用や、熱間鍛造後の初析フェライトの面積率を増加させる作用を有している。そのため、本発明においては必要に応じて何れか一方又は双方が含有せしめられる。但し、Ti含有量が0.05%未満であったり、Nbの含有量が0.01%未満の場合には前記作用による効果が十分ではなく、一方、Tiの含有量が0.30%を超えたり、Nb含有量が0.10%を超えたりすると鋼の熱間加工性が劣化する。従って、Tiを含有させる場合にはその含有量を0.05〜0.30%と、またNbを含有させる場合には含有量を0.01〜0.10%とそれぞれ定めた。
【0032】
ところで、非調質鋼熱間鍛造部材に望まれる強度をより安定して確保するためには、下記の式で定義されるfn1の値が800以上であることが望ましい。
Figure 0003780999
このfn1は熱間鍛造後の鋼の引張強度の指標であり、1000MPa以上の引張強度を得るためにはfn1≧800となるように成分設計を行うのが良い。
【0033】
[B] 熱間鍛造条件
a) 加熱温度
加熱温度が1000℃より低温の場合には、オ−ステナイト結晶粒は微細なまま保持されるが、V,Ti等の炭化物あるいは炭窒化物が十分に固溶しない。そのため、熱間鍛造後の冷却中に生じるフェライト相中にV,Ti等の炭化物あるいは炭窒化物が微細に析出しないため、熱間鍛造後の鋼材の強度上昇や初期降伏応力(0.2%耐力)の上昇効果が得られない。従って、加熱温度は1000℃以上と定めた。
【0034】
但し、V,Ti等の炭化物あるいは炭窒化物をより十分に固溶させるには加熱温度は1100℃以上とすることが望ましい。また、加熱温度が1300℃を超えるとオ−ステナイト結晶粒が粗大化するのでその後の熱間鍛造加工を行ってもオ−ステナイト粒の微細化効果が発揮できない場合が生じ、引張強さは上昇しても初期降伏応力が上昇せず、結果的に高降伏比が実現できなくなる場合がある。そのため、加熱温度は1100〜1300℃とするのが好ましいと言える。
【0035】
b) 加熱後の処理
所定化学組成の素材鋼を上記条件で加熱した後、熱間鍛造を施す。本発明では熱間鍛造時の加工温度と加工量について特に規定はしないが、この熱間鍛造時の加工温度や加工量は鍛造作業や熱間鍛造後のミクロ組織形態(フェライト・パ−ライト組織の確保,初析フェライト部の面積率)並びに機械特性に大きく影響する。
【0036】
例えば熱間鍛造はオ−ステナイト温度域で実施されるが、鍛造温度が900℃未満の場合には材料の変形抵抗が大きくて金型寿命の劣化を招くおそれがある。そのため、熱間鍛造の加工温度は900℃以上とするのが好ましい。
一方、加工温度が1200℃を超えた場合には、例え熱間鍛造時の加工量を増大させても熱間鍛造加工後の冷却過程でオ−ステナイト結晶粒が粒成長し、加工によるオ−ステナイトの微細化効果を維持できずに初析フェライト部の面積率を増加できない場合がある。従って、熱間鍛造の加工温度は1200℃以下に抑えることが好ましいと言える。
なお、加熱温度から熱間鍛造温度までの降温には自然放冷や衝風冷却等を適用すれば良い。
【0037】
また、熱間鍛造時の加工量はオ−ステナイト粒径の微細化に影響し、加工量が増加するにつれてオ−ステナイト粒径はより微細化する。そして、オ−ステナイト粒径の微細化は、熱間鍛造後のミクロ組織における初析フェライト部の面積率増加につながり、鋼材の降伏比を向上させる。
オ−ステナイト粒径の微細化効果を増大させるには熱間鍛造時の減面率(加工率)を50%以上とすることが好ましく、その減面率が75%以上であればオ−ステナイト粒径の微細化効果はより安定化する。
但し、熱間鍛造時の加工量の極端な増加は変形抵抗の増大を招き、素材の加工割れや金型寿命の低下につながる上、変形抵抗が鍛造設備の荷重許容範囲を超えるおそれも出てくる。従って、熱間鍛造時の減面率は95%以下に抑えることが望ましい。
【0038】
熱間鍛造後から室温までの冷却については、大気中での放冷,衝風冷却,液体や砂などの冷却媒体を用いた冷却等が採用でき、またこれらの冷却方法を複数組み合わせても良い。
但し、熱間鍛造後からフェライト変態までの冷却過程は、V,Ti等の炭化物あるいは炭窒化物の析出量や析出形態に影響して冷却後の初析フェライト部の強度に影響を及ぼす可能性がある。つまり、熱間鍛造加工温度からフェライト変態温度までの冷却過程(特に冷却速度)がV,Ti等の炭化物あるいは炭窒化物の析出量や析出形態に少なからぬ影響を及ぼし、この温度範囲での冷却速度が増加するにつれてV,Ti等の炭化物あるいは炭窒化物の初析フェライト相中に微細分散析出が促されるために初析フェライト部の硬度が上昇して行き、ある冷却速度で最大値となり、その後冷却速度が増加しても逆に硬度の低下が生じる傾向が見られる。
【0039】
そのため、初析フェライト相中にV,Ti等の炭化物あるいは炭窒化物を微細分散析出させて初析フェライト部の硬度をより上昇させるべく、前記温度範囲での冷却速度を 0.5℃/s以上とすることが望ましい。
ただ、前述したように、冷却速度が速すぎる場合には逆に初析フェライト部の硬度低下を招く。これは、冷却速度が速いと析出するV,Ti等の炭化物あるいは炭窒化物は微細化するものの、加熱時にオ−ステナイト相に固溶したV,Tiが十分に炭化物もしくは炭窒化物として析出できず、微細析出する炭化物あるいは炭窒化物の量が少なくなって初析フェライト部の硬度の上昇効果が十分に得られなくなるためである。更に、冷却速度が速すぎると、熱間鍛造後のミクロ組織がフェライト・パ−ライト組織中に硬質な組織(ベイナイト組織やマルテンサイト組織)が混入したものとなったり、甚だしい場合にはミクロ組織そのものがフェライト・パ−ライト組織に代わって硬質なミクロ組織(ベイナイト組織,マルテンサイト組織)となったりする場合がある。従って、熱間鍛造後からフェライト変態までの温度範囲での冷却速度は5℃/s以下に止めるのが望ましい。
なお、初析フェライト部への炭化物あるいは炭窒化物の微細分散析出を十分ならしめ、鋼材の降伏比向上効果を一段と顕著化するためには、熱間鍛造後からフェライト変態までの温度範囲での冷却速度を1〜3℃/sの範囲に調整するのがより好ましいと言える。
【0040】
ところで、フェライト変態温度は鋼の化学組成に影響されるが、このフェライト変態温度Tは次の式(2) によってその目安値を算出することができる。
Figure 0003780999
そして、この温度T以降の室温までの冷却については、ミクロ組織がフェライト・パ−ライト組織となるのであれば特に留意する必要はない。
【0041】
本発明において室温にまで冷却した鍛造部材のミクロ組織を「フェライト・パ−ライト組織」と規定した理由は、当該ミクロ組織が「フェライト+パ−ライト+ベイナイトの混合組織」あるいは「ベイナイト組織」の場合には高強度が実現できて所望の強度を確保することは可能であるが、逆に降伏強度が低下し、疲労強度や耐座屈性が劣化するためである。
【0042】
[C] 冷間加工条件
本発明者らは、熱間鍛造後に室温にて冷間加工を施すと、この塑性変形によって初析フェライト部に歪が導入されて初析フェライト部の強度が更に上昇し降伏比が向上することを見出し、更に、前述した諸条件に加えて熱間鍛造後に冷間加工を施すことにより熱間鍛造時の加工温度が1000〜1200℃という比較的高温域であっても降伏比 0.8以上の鍛造部材を安定して得ることが可能になることを確認した。
【0043】
この場合、初期降伏応力(0.2%耐力)は冷間加工時の塑性変形量の増加と共に上昇するが、塑性変形量が大きすぎると引張強さの上昇を招くことが判明した。即ち、冷間加工での加工度が10%を超えると降伏応力の上昇と共に引張強さの上昇も生じ、結果として降伏比の低下を招く。
また、冷間加工での加工度が2%未満の場合には、初期降伏応力の顕著な増加が見られないために降伏比の上昇効果が少ない。
従って、本発明では冷間加工での加工度を2〜10%と定めたが、降伏比の上昇効果をより顕著化するために前記加工度は2〜5%の範囲とすることが推奨される。
【0044】
図4は、後述する「実施例」の「表1」に示した鋼F及びIを用い図2の“ケ−ス2”の手順で非調質鋼熱間鍛造材を製造するに際し、加熱温度を1250℃に、熱間鍛造(熱間前方押出加工)時の加工温度を1100℃に、熱間鍛造時の減面率を80%に、熱間鍛造後の冷却速度を 2.7℃/sに固定し、熱間鍛造後の冷間加工(スエ−ジング加工)における加工率を変更して得られた非調質鋼熱間鍛造材の降伏比を示しているが、この図4からも、熱間鍛造後に加工率2〜10%の冷間加工を施すことによって降伏比 0.8以上の非調質鋼熱間鍛造材を実現できることが分かる。
【0045】
なお、1000〜1200℃という比較的高温域での熱間鍛造によっても降伏比 0.8以上の鍛造部材が安定製造されるためには、少なくとも初析フェライト部の硬度(fHv :ビッカ−ス硬さ) と面積率 (Vf ) が下記の式を満足することが望ましい。
720 ≦ fHv −0.07×Vf 2 +12.6×Vf ≦ 800
【0046】
次いで、本発明を実施例によって説明する。
【実施例】
表1に示す化学組成を有した鋼を真空溶解炉を用いて溶製し、150kgのインゴットを作成した。
【0047】
【表1】
Figure 0003780999
【0048】
次に、作成したインゴットを1200〜1300℃に加熱してから熱間鍛伸して直径45mmの丸棒を作成した。
次いで、この丸棒を直径38mm,高さ50mmの円柱状試験片に機械加工し、この試験片を用いて図2に示す“ケ−ス1”又は“ケ−ス2”の手順で熱間鍛造試験を行った。
【0049】
熱間鍛造は、熱間での前方押出加工にて加工率(減面率)60%もしくは80%の条件で実施した。
なお、熱間鍛造試験条件の詳細は表2に示した通りである。
【0050】
【表2】
Figure 0003780999
【0051】
熱間鍛造試験の後、引張試験,ミクロ組織観察及びビッカ−ス硬度測定を実施して、得られた熱間鍛造材のミクロ組織確認と、初期降伏応力(0.2%耐力),引張強さ,降伏比,初析フェライト部の硬度及び面積率の調査を行った。
ここで、初析フェライト部の硬度測定には微小ビッカ−ス硬度計を用い、荷重10gfで初析フェライト部を20点測定し、平均値を初析フェライト部の硬度とした。
また、初析フェライト部の面積率は、光学顕微鏡にて観察されたミクロ組織を写真にし、視野面積2mm2 分の写真を画像解析して求めた。
これらの調査結果を前記表2に併せて示す。
【0052】
表2に示される結果からも、本発明に従うと引張強度が800〜1100MPaで降伏比が 0.8以上の高強度・高降伏比の非調質鋼熱間鍛造部材の安定製造が可能であることを確認することができる。
【0053】
【発明の効果】
以上に説明した如く、この発明によれば、鍛造温度を比較的高温域(900〜1200℃)とした場合であっても高強度(引張強さが850〜1100MPa)で高降伏比(0.2%耐力/引張強さの比が 0.8以上)の非調質鋼熱間鍛造部品を安定製造することができ、熱間鍛造によって製作される自動車部品等の高性能化,低価格化に大きく寄与することが可能になるなど、産業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】各種V含有量の非調質鋼熱間鍛造材について、鍛造温度(熱間加工温度)及び鍛造後の冷却速度と降伏比との関係を整理したグラフである。
【図2】熱間鍛造の手順を示した模式図である。
【図3】鍛造後に冷間加工を施した各種V含有量の非調質鋼熱間鍛造材について、鍛造温度(熱間加工温度)及び鍛造後の冷却速度と降伏比との関係を整理したグラフである。
【図4】非調質鋼熱間鍛造材について、鍛造後に施した冷間加工の加工率と降伏比との関係を整理したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-tempered steel hot forged member exhibiting high strength and a high yield ratio. More specifically, the present invention relates to a high strength and high yield ratio without lowering the forging temperature during hot forging. The present invention relates to a method for stably producing a non-tempered steel hot forged member.
[0002]
[Prior art]
Conventionally, steel for machine structure applied to automobile parts, etc. is generally used after being subjected to heat treatment (hereinafter referred to as “tempering treatment”) of quenching and tempering to adjust to desired mechanical characteristics. It was the target.
However, in recent years, there has been a further increase in demand for manufacturing cost reduction, and it has been studied to omit the tempering treatment step, and even if the tempering treatment is omitted, it is possible to ensure desired steel properties. Development of “non-tempered steel” has been underway. And the non-heat treated steel developed so far is being applied to hot forged parts represented by, for example, connecting rods (automobile parts).
[0003]
The development of non-tempered steel applied to hot forged parts initially focused on improving tensile strength and toughness. For example, as seen in JP-A-10-195530, V is a precipitation strengthening element. And Nb was used, and Mn, a hardenability improving element, was proposed.
However, such high-strength and high-toughness non-tempered steel has a problem that when it is applied to, for example, automotive engine parts that require cutting, it is difficult to cut due to a significant increase in strength. It has become a practical obstacle.
[0004]
In addition, hot forged parts using non-heat treated steel generally have a yield ratio (ratio of yield strength to tensile strength) of about 0.65 compared to tempered steel parts, thus ensuring machinability. Therefore, when the tensile strength is adjusted to the same level as the tempered material, the yield strength is lowered. This yield strength is known to be closely related to, for example, fatigue strength and buckling resistance, and a decrease in yield strength causes a decrease in fatigue strength and a decrease in buckling resistance.
[0005]
On the other hand, if the yield strength is set to the same level as the tempered material, the tensile strength becomes very large, causing the machinability to deteriorate as described above.
Therefore, a non-heat treated steel that has a high tensile strength and a high yield strength within a range in which machinability can be secured has been desired.
[0006]
However, for example, in Japanese Patent Application Laid-Open Nos. 7-157824, 9-1111412 and 10-235447, a high strength and high yield ratio can be obtained by devising forging temperature, microstructure, chemical composition and the like. A proposal that a non-tempered steel having the following can be obtained is published.
[0007]
Among these, “Method for producing sub-hot forged non-heat-treated steel material excellent in yield strength, toughness and fatigue characteristics” disclosed in Japanese Patent Application Laid-Open No. 7-157824 is It is forged with excellent yield strength, toughness and fatigue properties by forging and making the metal structure after cooling into a structure in which ferrite pearlite occupies 90% or more and aging treatment at a temperature range of 200-700 ° C This is a method for producing quality steel.
However, according to this method, it is possible to realize a steel member having a tensile strength after hot forging of 850 to 1100 MPa and a yield ratio (0.2% proof stress / tensile strength) of 0.70 or more. However, the production of a high yield ratio member with a yield ratio of 0.80 or more has not been realized, and its use has been limited.
Further, in this method, it is necessary to perform sub-hot forging as described above, and particularly at a forging temperature as low as about 750 to 800 ° C., the deformation resistance of the material becomes remarkably large, and the life of the mold is deteriorated and the equipment capacity is reduced. The problem of augmentation tended to arise.
[0008]
On the other hand, Japanese Patent Laid-Open No. 9-111212 describes an invention relating to “high strength, high yield ratio, low ductility non-heat treated steel” and proposes a chemical composition of non-heat treated steel suitable as a cracking connecting rod. Has been.
However, according to the present invention, although it is considered possible to obtain a steel member having a tensile strength after hot forging of 800 to 1100 MPa and a yield ratio of 0.70 or more, a high yield ratio of 0.80 or more is also obtained. The member could not be realized stably.
[0009]
In addition, “Method of manufacturing forged product of high toughness and high yield strength ferrite + pearlite type non-tempered steel” disclosed in Japanese Patent Application Laid-Open No. 10-235447, heats steel having a specific chemical composition to 950 ° C. or higher. Then, hot forging is performed in a temperature range of 750 to 1050 ° C., and a non-tempered steel forging having a yield ratio of 0.73 or more is manufactured by performing ferrite + pearlite transformation in the subsequent cooling process. Is.
However, this method also provides a steel member having a yield ratio of 0.8 or more in a stable manner, although a steel member having a tensile strength after hot forging of 850 to 1100 MPa and a yield ratio of 0.8 or more may be obtained. Therefore, it is necessary to perform hot forging in a relatively low temperature range of about 800 to 900 ° C., and it is impossible to stably give a yield ratio of 0.8 or more under hot forging conditions exceeding 1000 ° C. That is, in order to stably obtain a steel member having a yield ratio of 0.8 or more by this method, hot forging must be performed at about 900 ° C. or lower, which increases the deformation resistance of the material and deteriorates the mold life. , I could not ignore the problem of increased equipment capacity.
[0010]
[Problems to be solved by the invention]
For this reason, the object of the present invention is to solve the above-mentioned problems found in the conventional “method for producing a hot forged non-tempered steel” and to set the forging temperature to a relatively high temperature applied to ordinary steel. Stable hot forged parts with high strength (tensile strength of 850 to 1100 MPa) and high yield ratio (ratio of 0.2% proof stress / tensile strength of 0.8 or more) even when the temperature range is 900 to 1200 ° C. It has been put in place to provide a means for producing a hot forged member of high strength and high yield ratio non-tempered steel that can be obtained in this way.
[0011]
[Means for Solving the Problems]
As described above, the present inventors stably produce a non-tempered steel hot forged member having high strength and a high yield ratio even when forging in a normal relatively high temperature range (900 to 1200 ° C.). As a result of diligent research to devise possible means, the following knowledge was obtained.
[0012]
First, regarding the securing of tensile strength after hot forging of non-tempered steel, “elements such as C and Mn that strengthen steel by improving the hardenability of steel” or “carbide or carbon in the ferrite phase” Various studies have been conducted focusing on each strengthening mechanism of elements such as V that strengthen steel by precipitation as nitrides. It was confirmed that the function can be effectively exhibited and the desired tensile strength (1000 MPa or more) can be stably realized.
[0013]
In addition, the yield ratio after hot forging of steel materials was investigated by considering the following formula (1).
Figure 0003780999
Where σf: strength of pro-eutectoid ferrite,
σp: strength of pearlite,
Vf: area ratio of pro-eutectoid ferrite,
σf << σp.
The above formula (1) is known to be able to express the yield ratio of steel materials. As is clear from this formula (1), the initial yield stress (0.2% proof stress) is determined by the strength of pro-eutectoid ferrite. The tensile strength is determined by the strength of pro-eutectoid ferrite, the strength of pearlite, and the area ratio of pro-eutectoid ferrite. In order to increase the yield ratio, the strength of the pro-eutectoid ferrite is increased after securing the initial ferrite, and the tensile strength increases with respect to the increase rate of the initial yield stress accompanying the increase in the strength of the pro-eutectoid ferrite. It is effective to reduce the ratio.
[0014]
Therefore, the present inventors focused on the pro-eutectoid ferrite part in the ferrite-pearlite structure obtained after hot forging, using hardness as an index of the strength of the pro-eutectoid ferrite, The hardness change of the ferrite part was investigated.
As a result, in order to increase the hardness (strength) of the pro-eutectoid ferrite part, the heating temperature at the time of hot forging is sufficiently solid-solved with carbides or carbonitrides produced by combining C, N with V, Ti, etc. It was found that the temperature range is important. That is, when the carbide or carbonitride is sufficiently dissolved by such high temperature heating, the carbide or carbonitride is finely precipitated in the pro-eutectoid ferrite in the subsequent cooling process, and the pro-eutectoid ferrite part Is effectively strengthened.
[0015]
However, even if high-temperature heating as described above is carried out through numerous tests that have continued since then, when hot forging is performed at a relatively high temperature range of about 1000 to 1200 ° C., a high yield of 0.8 or more is obtained. It was found that the ratio could not be realized stably.
[0016]
Therefore, when a means for stably achieving a yield ratio of 0.8 or higher was sought even when the processing temperature during hot forging was set to a high temperature range of about 1000 to 1200 ° C., cold working was performed at room temperature after hot forging. If a method of introducing strain into the pro-eutectoid ferrite part by plastic deformation is adopted, the strength of the pro-eutectoid ferrite part can be further increased. In this case, the pro-eutectoid ferrite part is hardly accompanied by an increase in tensile strength. It became clear that high strength non-tempered steel hot forged members with a yield ratio of 0.8 or higher can be manufactured stably only with increasing strength.
[0017]
By the way, as described above, to increase the hardness (strength) of the pro-eutectoid ferrite part, “the heating temperature at the time of hot forging is increased to sufficiently dissolve the carbide or carbonitride, and then the cooling is performed. It is effective to finely precipitate carbides or carbonitrides in pro-eutectoid ferrite, but it is effective for fine precipitation of carbides or carbonitrides in proeutectoid ferrite from the end of hot forging to ferrite transformation. The cooling rate in the temperature range greatly affects.
[0018]
For example, in FIG. 1, the steel H, I, J and steels a, b, c shown in “Table 1” of “Example” described later are used in the procedure of “Case 1” in FIG. When manufacturing tempered steel hot forgings, the heating temperature is fixed at 1250 ° C, and the area reduction during hot forging (hot forward extrusion) is fixed at 80%. After forging temperature (processing temperature) and forging The yield ratio of the non-tempered steel hot forging obtained by changing the cooling rate of the steel is shown, but also from this FIG. 1, the yield ratio improves when the cooling rate after hot forging is increased. Is clear.
[0019]
However, if the forging temperature (working temperature) is 1000 to 1200 ° C., the yield ratio of 0.8 or more cannot be stably achieved by simply increasing the cooling rate.
However, for example, the fact as shown in FIG. 3 was confirmed. That is, FIG. 3 shows the heating of the non-heat treated steel hot forging material in the procedure of “Case 2” in FIG. 2 using the steels H, I, J and steels a, b, c. The temperature is fixed at 1250 ° C and the area reduction during hot forging (hot forward extrusion) is fixed at 80%, the forging temperature (processing temperature) and the cooling rate after forging are changed, and both are cooled. The yield ratio of the non-heat treated steel hot forging obtained by cold working (saging processing) with a working rate of 5% is shown later. It can be seen that the effect of improving the yield ratio becomes more prominent when the “method of performing cold working” and the “method of increasing the cooling rate after hot forging” are combined.
Thus, in addition to performing cold working after hot forging, taking steps to control the cooling rate after hot forging is the production of non-tempered steel hot forged members with high strength and high yield ratio It became clear that it was more effective.
[0020]
The present invention has been made on the basis of the above findings and the like, and provides a method for producing a non-tempered steel hot forged member as shown in the following items (1) to (5).
(1) C: 0.15 to 0.40% (Hereinafter, “%” means “% by mass”), Si: 0.4 to 1.5%, Mn: 0.5 to 2.0%, P: 0.01 ~ 0.15%, S: 0.01 ~ 0.15%, V: 0.15 ~ 0.40%, Al: 0.001 ~ 0.1%, with the balance of Fe and inevitable impurities heated to 1000 ℃ or higher Non-tempered steel hot forged member characterized by performing forging, then cooling to room temperature, making the microstructure a ferrite pearlite structure, and further performing cold working with a workability of 2 to 10% Manufacturing method.
(2) The non-tempered material as described in (1) above, wherein at least the period from hot forging to reaching the ferrite transformation temperature is cooled at an average cooling rate of 0.5 to 5 ° C./s. Manufacturing method of steel hot forging member.
(3) The method for producing a non-tempered steel hot forged member according to the item (1) or (2), further comprising using a raw steel containing Cr: 0.05 to 0.2%.
(4) The method for producing a non-tempered steel hot forged member according to any one of (1) to (3) above, further comprising using a raw steel containing N: 0.002 to 0.03%. .
(5) Further, any one of the above items (1) to (4), characterized by using a material steel containing one or two of Ti: 0.05 to 0.30% and Nb: 0.01 to 0.10%. The manufacturing method of the non-tempered steel hot forging member of crab.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Here, the reason why the chemical composition of the raw steel, the hot forging conditions, and the cold working conditions are limited as described above in the present invention will be described.
[0022]
[A] Chemical composition of steel
C: C is an element having a high effect of improving the hardenability of steel, and is a very effective component for increasing the product strength. C also has the effect of controlling the ferrite fraction in the microstructure after hot working, and forming a carbide or carbonitride with V to positively influence the mechanical properties of the pro-eutectoid ferrite part. However, if the content is less than 0.15%, the strength of the final product is insufficient. On the other hand, if the content exceeds 0.40%, the hardenability is excessively increased and the machinability is deteriorated. It was set to 0.40%.
[0023]
Si: Si has a strengthening action on the ferrite phase and is an element used to stabilize the deoxidation of steel. However, if its content is less than 0.4%, the effect by the action is small. Even if the content exceeds 1.5%, the effect is saturated and A Three There is a concern that the transformation point is raised to promote ferrite decarburization during the hot rolling process. Therefore, the Si content is determined to be 0.4 to 1.5%.
[0024]
Mn: Mn is an element effective for improving hardenability and increasing the strength of the final product, and is also a component serving as a base for composite precipitates that are precipitation sites of pro-eutectoid ferrite. However, if the Mn content is less than 0.5%, the effect of addition is poor. On the other hand, if it exceeds 2.0%, the hardness inside the steel material becomes high and the ductility and cold workability deteriorate. Therefore, the Mn content is determined to be 0.5 to 2.0%.
[0025]
S: S is present in steel as MnS and is an element that improves machinability and acts as a ferrite precipitation nucleus. However, when its content is less than 0.01%, the above effect is not sufficient. Even if it is contained in excess of%, the effect is saturated. Therefore, the S content is determined to be 0.01 to 0.15%.
[0026]
P: P has an effect of increasing the strength of the steel, but if the content is less than 0.01%, the effect of the above effect is poor. Further, P is an element that segregates at the grain boundaries and causes a significant deterioration in cold workability and delayed fracture resistance at low temperatures. These adverse effects become significant when the P content exceeds 0.15%. . Therefore, the P content is determined to be 0.01 to 0.15% from the viewpoint of ensuring the strength of the steel and the cold workability, but is preferably adjusted to 0.06 to 0.10%.
[0027]
V: V has the effect of increasing strength and yield ratio by increasing the strength (initial yield stress, tensile strength) of steel by precipitation as carbide or carbonitride in ferrite. If the content is less than 0.15%, the desired effect due to the above action cannot be obtained. On the other hand, if the content exceeds 0.40%, the effect is saturated and the economic efficiency of the steel is impaired. This tendency can also be confirmed by FIG. Therefore, the V content is determined to be 0.15 to 0.40%.
[0028]
Al: Al is an element effective as a deoxidizer for steel, and also has the effect of refining austenite crystals during hot forging by forming nitrides by combining with N in steel. However, when the content is less than 0.001%, the effect obtained by the above action is poor, while when the content exceeds 0.1%, the effect is not only saturated but also the toughness value is deteriorated. Therefore, the Al content is determined to be 0.001 to 0.1%.
[0029]
Cr: Like C and Mn, Cr is a component that can be incorporated as necessary because it has the effect of improving the hardenability of steel and increasing its strength. The content is preferably 0.05% or more. On the other hand, if the Cr content exceeds 0.2%, the hardenability becomes too high, and a hard structure (bainite structure or martensite structure) is generated in the cooling process after hot forging, and a ferrite / pearlite structure cannot be obtained. Therefore, when Cr is contained, the content is determined to be 0.05 to 0.2%.
[0030]
N: N is a ferrite phase formed in the cooling process after hot forging, in addition to the action of forming nitrides by bonding with V and Al in steel to refine austenite crystal grains during hot forging. It has the effect of improving the strength of the steel material by fine precipitation in it, so it is a component that can be included as necessary, but it ensures the refinement of austenite crystal grains and the effect of improving the strength of the steel material Therefore, the content is preferably 0.002% or more. However, when the N content exceeds 0.03%, the effect is saturated. Therefore, when N is contained, the content is determined to be 0.002 to 0.03%.
[0031]
Ti, Nb: Ti and Nb, as well as V, precipitate as ferrite or carbonitride in ferrite and increase the strength of the steel, as well as refine the austenite grain size during heating. And has the effect of increasing the area ratio of pro-eutectoid ferrite after hot forging. Therefore, in the present invention, either one or both of them are contained as necessary. However, when the Ti content is less than 0.05% or the Nb content is less than 0.01%, the effect by the above action is not sufficient, while the Ti content exceeds 0.30% or the Nb content. If it exceeds 0.10%, the hot workability of steel deteriorates. Therefore, when Ti is contained, the content is set to 0.05 to 0.30%, and when Nb is contained, the content is set to 0.01 to 0.10%.
[0032]
By the way, in order to ensure more stably the strength desired for the non-tempered steel hot forged member, fn defined by the following equation: 1 The value of is desirably 800 or more.
Figure 0003780999
This fn 1 Is an index of the tensile strength of steel after hot forging. To obtain a tensile strength of 1000 MPa or more, fn 1 It is preferable to design the components so that ≧ 800.
[0033]
[B] Hot forging conditions
a) Heating temperature
When the heating temperature is lower than 1000 ° C., the austenite crystal grains are kept fine, but carbides such as V and Ti or carbonitrides are not sufficiently dissolved. For this reason, carbides such as V and Ti or carbonitrides do not precipitate finely in the ferrite phase generated during cooling after hot forging, so the strength of steel after hot forging and initial yield stress (0.2% proof stress) The effect of increasing is not obtained. Therefore, the heating temperature was set to 1000 ° C. or higher.
[0034]
However, it is desirable that the heating temperature be 1100 ° C. or higher in order to more fully dissolve carbides such as V and Ti, or carbonitrides. In addition, when the heating temperature exceeds 1300 ° C., the austenite crystal grains become coarse, so that the effect of refining the austenite grains cannot be exhibited even if the subsequent hot forging is performed, and the tensile strength increases. However, the initial yield stress does not increase, and as a result, a high yield ratio may not be realized. Therefore, it can be said that the heating temperature is preferably 1100 to 1300 ° C.
[0035]
b) Treatment after heating
After heating the material steel having a predetermined chemical composition under the above conditions, hot forging is performed. In the present invention, the processing temperature and processing amount at the time of hot forging are not particularly specified, but the processing temperature and processing amount at the time of hot forging are the microstructure structure (ferrite / pearlite structure after forging operation or hot forging). , The area ratio of pro-eutectoid ferrite) and mechanical properties.
[0036]
For example, hot forging is performed in the austenite temperature range, but when the forging temperature is less than 900 ° C., the material has a large deformation resistance, which may lead to deterioration of the mold life. Therefore, it is preferable that the processing temperature of hot forging is 900 ° C. or higher.
On the other hand, when the processing temperature exceeds 1200 ° C., even if the amount of processing during hot forging is increased, austenite crystal grains grow in the cooling process after hot forging, and auto-processing due to processing occurs. In some cases, the area ratio of the pro-eutectoid ferrite portion cannot be increased without maintaining the refinement effect of the stenite. Therefore, it can be said that the hot forging processing temperature is preferably suppressed to 1200 ° C. or lower.
Note that natural cooling, blast cooling, or the like may be applied to lower the temperature from the heating temperature to the hot forging temperature.
[0037]
Moreover, the processing amount at the time of hot forging affects the refinement of the austenite grain size, and the austenite grain size is further refined as the machining amount increases. And refinement | miniaturization of an austenite particle size leads to the area ratio increase of the pro-eutectoid ferrite part in the microstructure after hot forging, and improves the yield ratio of steel materials.
In order to increase the effect of refining the austenite grain size, it is preferable to set the area reduction ratio (working ratio) during hot forging to 50% or more. If the area reduction ratio is 75% or more, austenite The effect of refining the particle size is further stabilized.
However, an extreme increase in the amount of processing during hot forging leads to an increase in deformation resistance, leading to cracks in the material and a decrease in the die life, and there is a risk that the deformation resistance will exceed the allowable load range of the forging equipment. come. Therefore, it is desirable to suppress the area reduction rate during hot forging to 95% or less.
[0038]
For cooling from hot forging to room temperature, cooling in the atmosphere, blast cooling, cooling using a cooling medium such as liquid or sand, etc. can be adopted, and a plurality of these cooling methods may be combined. .
However, the cooling process from hot forging to ferrite transformation may affect the strength of the pro-eutectoid ferrite part after cooling by affecting the precipitation amount and form of carbides and carbonitrides such as V and Ti. There is. In other words, the cooling process (especially the cooling rate) from the hot forging temperature to the ferrite transformation temperature has a considerable influence on the precipitation amount and precipitation form of carbides and carbonitrides such as V and Ti, and cooling within this temperature range. As the speed increases, the hardness of the pro-eutectoid ferrite part increases because fine dispersion precipitation is promoted in the pro-eutectoid ferrite phase of carbides or carbonitrides such as V and Ti, and reaches a maximum value at a certain cooling rate. Thereafter, even if the cooling rate is increased, the hardness tends to decrease.
[0039]
Therefore, in order to increase the hardness of the pro-eutectoid ferrite part by finely dispersing and precipitating carbides or carbonitrides such as V and Ti in the pro-eutectoid ferrite phase, the cooling rate in the above temperature range is 0.5 ° C / s or more. It is desirable to do.
However, as described above, when the cooling rate is too high, the hardness of the pro-eutectoid ferrite part is reduced. This is because, although the carbide or carbonitride such as V and Ti that precipitates when the cooling rate is high, the V and Ti dissolved in the austenite phase during heating can be sufficiently precipitated as carbide or carbonitride. This is because the amount of finely precipitated carbide or carbonitride is reduced, and the effect of increasing the hardness of the pro-eutectoid ferrite portion cannot be obtained sufficiently. Furthermore, if the cooling rate is too fast, the microstructure after hot forging becomes a structure in which a hard structure (bainite structure or martensite structure) is mixed in the ferrite-pearlite structure, or in a severe case the microstructure In some cases, the structure itself becomes a hard microstructure (bainite structure, martensite structure) instead of the ferrite-pearlite structure. Therefore, it is desirable that the cooling rate in the temperature range from hot forging to ferrite transformation is stopped at 5 ° C./s or less.
In addition, in order to sufficiently finely precipitate carbides or carbonitrides in the pro-eutectoid ferrite part and to further increase the yield ratio improvement effect of the steel material, the temperature range from after hot forging to ferrite transformation It can be said that it is more preferable to adjust the cooling rate to a range of 1 to 3 ° C./s.
[0040]
By the way, although the ferrite transformation temperature is affected by the chemical composition of the steel, this ferrite transformation temperature T can be calculated by the following equation (2).
Figure 0003780999
And about cooling to room temperature after this temperature T, if a micro structure becomes a ferrite pearlite structure, it is not necessary to pay particular attention.
[0041]
The reason why the microstructure of the forged member cooled to room temperature in the present invention is defined as “ferrite / pearlite structure” is that the microstructure is “mixed structure of ferrite + pearlite + bainite” or “bainite structure”. In some cases, high strength can be realized and desired strength can be ensured, but conversely, yield strength decreases, and fatigue strength and buckling resistance deteriorate.
[0042]
[C] Cold working conditions
When the present inventors perform cold working at room temperature after hot forging, strain is introduced into the pro-eutectoid ferrite part due to this plastic deformation, which further increases the strength of the pro-eutectoid ferrite part and improves the yield ratio. In addition to the above-described conditions, forging with a yield ratio of 0.8 or more even if the working temperature during hot forging is 1000 to 1200 ° C. by performing cold working after hot forging. It was confirmed that the member can be obtained stably.
[0043]
In this case, the initial yield stress (0.2% yield strength) increases with an increase in the amount of plastic deformation during cold working, but it has been found that if the amount of plastic deformation is too large, the tensile strength increases. That is, if the degree of work in cold working exceeds 10%, the yield stress increases and the tensile strength increases, resulting in a decrease in yield ratio.
In addition, when the degree of work in cold working is less than 2%, the initial yield stress is not significantly increased, and thus the yield ratio is not increased.
Therefore, in the present invention, the working degree in cold working is set to 2 to 10%, but it is recommended that the working degree be in the range of 2 to 5% in order to make the yield ratio increasing effect more remarkable. The
[0044]
FIG. 4 shows the heating of the non-heat treated steel hot forging material in the procedure of “Case 2” of FIG. 2 using the steels F and I shown in “Table 1” of “Example” described later. The temperature is 1250 ° C, the processing temperature during hot forging (hot forward extrusion) is 1100 ° C, the area reduction rate during hot forging is 80%, and the cooling rate after hot forging is 2.7 ° C / s. FIG. 4 shows the yield ratio of the non-heat treated steel hot forging obtained by changing the processing rate in cold working (swaging) after hot forging. It can be seen that a non-tempered steel hot forging material having a yield ratio of 0.8 or more can be realized by performing cold working with a working rate of 2 to 10% after hot forging.
[0045]
In order to stably produce a forged member having a yield ratio of 0.8 or more even by hot forging in a relatively high temperature range of 1000 to 1200 ° C., at least the hardness of the pro-eutectoid ferrite part (fHv: Vickers hardness) And the area ratio (Vf) preferably satisfy the following formula.
720 ≦ fHv −0.07 × Vf 2 + 12.6 × Vf ≦ 800
[0046]
The invention will now be illustrated by examples.
【Example】
A steel having a chemical composition shown in Table 1 was melted using a vacuum melting furnace to prepare a 150 kg ingot.
[0047]
[Table 1]
Figure 0003780999
[0048]
Next, the prepared ingot was heated to 1200 to 1300 ° C. and then hot forged to prepare a round bar having a diameter of 45 mm.
Next, this round bar is machined into a cylindrical test piece having a diameter of 38 mm and a height of 50 mm, and this test piece is used to perform hot processing in the “case 1” or “case 2” procedure shown in FIG. A forging test was conducted.
[0049]
Hot forging was performed under conditions of a processing rate (area reduction) of 60% or 80% by hot forward extrusion.
The details of the hot forging test conditions are as shown in Table 2.
[0050]
[Table 2]
Figure 0003780999
[0051]
After hot forging test, tensile test, microstructure observation and Vickers hardness measurement are carried out, microstructure confirmation of the obtained hot forging, initial yield stress (0.2% proof stress), tensile strength, The yield ratio, the hardness of the pro-eutectoid ferrite part and the area ratio were investigated.
Here, the hardness of the pro-eutectoid ferrite part was measured using a micro Vickers hardness meter, 20 points of the pro-eutectoid ferrite part were measured with a load of 10 gf, and the average value was taken as the hardness of the pro-eutectoid ferrite part.
The area ratio of the pro-eutectoid ferrite part is a microscopic structure observed with an optical microscope. 2 It was obtained by image analysis of a minute photo.
These survey results are also shown in Table 2.
[0052]
From the results shown in Table 2, it can be seen that according to the present invention, it is possible to stably manufacture a non-tempered steel hot forged member having a high strength and a high yield ratio with a tensile strength of 800 to 1100 MPa and a yield ratio of 0.8 or more. Can be confirmed.
[0053]
【The invention's effect】
As described above, according to the present invention, even when the forging temperature is set to a relatively high temperature range (900 to 1200 ° C.), the high yield (tensile strength is 850 to 1100 MPa) and the high yield ratio (0.2%). Non-tempered steel hot forged parts with a ratio of proof stress / tensile strength of 0.8 or more) can be stably manufactured, which greatly contributes to higher performance and lower cost of automobile parts manufactured by hot forging. It is possible to achieve industrially useful effects.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the relationship between forging temperature (hot working temperature), cooling rate after forging, and yield ratio for non-tempered steel hot forgings with various V contents.
FIG. 2 is a schematic view showing a procedure for hot forging.
FIG. 3 shows the relationship between the forging temperature (hot working temperature), the cooling rate after forging, and the yield ratio for various tempered steel hot forgings that have been cold worked after forging. It is a graph.
FIG. 4 is a graph summarizing the relationship between the processing rate and the yield ratio of cold working performed after forging on a non-heat treated steel hot forged material.

Claims (5)

質量%で、C:0.15〜0.40%,Si: 0.4〜 1.5%,Mn: 0.5〜2.0 %,P:0.01〜0.15%,S:0.01〜0.15%,V:0.15〜0.40%,Al: 0.001〜 0.1%を含有し、残部がFe及び不可避的不純物からなる素材鋼を、1000℃以上に加熱して熱間鍛造を行い、その後室温にまで冷却してミクロ組織をフェライト・パ−ライト組織とし、更に加工度が2〜10%の冷間加工を施すことを特徴とする、非調質鋼熱間鍛造部材の製造方法。By mass%, C: 0.15~0.40%, Si : 0.4~ 1.5%, Mn: 0.5~2.0%, P: 0.01 ~0.15%, S: 0.01~0.15%, V: 0.15~0.40%, Al: 0.001~ The material steel containing 0.1% and the balance consisting of Fe and inevitable impurities is heated to 1000 ° C. or higher, hot forged, then cooled to room temperature, and the microstructure becomes a ferrite pearlite structure. Furthermore, the manufacturing method of the non-tempered steel hot forging member characterized by performing cold working with a work degree of 2 to 10%. 少なくとも熱間鍛造を終えてからフェライト変態温度に達するまでの間を 0.5〜5℃/sの平均冷却速度で冷却することを特徴とする、請求項1に記載の非調質鋼熱間鍛造部材の製造方法。The non-tempered steel hot-forged member according to claim 1, wherein at least a period between hot forging and reaching the ferrite transformation temperature is cooled at an average cooling rate of 0.5 to 5 ° C / s. Manufacturing method. 質量%で、更にCr:0.05〜 0.2%を含有した素材鋼を用いることを特徴とする、請求項1又は2に記載の非調質鋼熱間鍛造部材の製造方法。3. The method for producing a non-tempered steel hot forged member according to claim 1 or 2, wherein the raw material steel further contains Cr: 0.05 to 0.2% in mass%. 質量%で、更にN:0.002〜0.03%を含有した素材鋼を用いることを特徴とする、請求項1乃至3の何れかに記載の非調質鋼熱間鍛造部材の製造方法。The method for producing a non-tempered steel hot forged member according to any one of claims 1 to 3, wherein the material steel contains N: 0.002 to 0.03% in mass%. 質量%で、更にTi:0.05〜0.30%,Nb:0.01〜0.10%のうちの1種又は2種を含有した素材鋼を用いることを特徴とする、請求項1乃至4の何れかに記載の非調質鋼熱間鍛造部材の製造方法。The material steel according to any one of claims 1 to 4, wherein the material steel further contains one or two of Ti: 0.05 to 0.30% and Nb: 0.01 to 0.10%. A method for producing a non-tempered steel hot forged member.
JP2002302577A 2002-10-17 2002-10-17 Manufacturing method of non-tempered steel hot forged member Expired - Fee Related JP3780999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302577A JP3780999B2 (en) 2002-10-17 2002-10-17 Manufacturing method of non-tempered steel hot forged member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302577A JP3780999B2 (en) 2002-10-17 2002-10-17 Manufacturing method of non-tempered steel hot forged member

Publications (2)

Publication Number Publication Date
JP2004137542A JP2004137542A (en) 2004-05-13
JP3780999B2 true JP3780999B2 (en) 2006-05-31

Family

ID=32450606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302577A Expired - Fee Related JP3780999B2 (en) 2002-10-17 2002-10-17 Manufacturing method of non-tempered steel hot forged member

Country Status (1)

Country Link
JP (1) JP3780999B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824508B2 (en) 2006-07-28 2010-11-02 Nippon Steel Corporation Fine grain surface layer steel part and method of production of same
JP5354996B2 (en) * 2008-08-27 2013-11-27 株式会社神戸製鋼所 Hot forged parts for connecting rods with excellent fracture splitting properties and manufacturing method thereof
JP5436928B2 (en) * 2009-05-14 2014-03-05 山陽特殊製鋼株式会社 Non-tempered steel for ferrite-pearlite hot forging with excellent fatigue strength and machinability and rail components used in common rail systems made of the non-tempered steel
JP5801529B2 (en) * 2009-05-19 2015-10-28 Jfe条鋼株式会社 Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
KR101253852B1 (en) 2009-08-04 2013-04-12 주식회사 포스코 Non-heat Treatment Rolled Steel and Drawn Wire Rod Having High Toughness and Method Of Manufacturing The Same
JP5716640B2 (en) * 2011-11-21 2015-05-13 新日鐵住金株式会社 Rolled steel bar for hot forging
JP5737152B2 (en) * 2011-11-21 2015-06-17 新日鐵住金株式会社 Rolled steel bar for hot forging
KR101665783B1 (en) * 2014-12-04 2016-10-13 주식회사 포스코 Non-quenched and tempered steel wire rod having excellent room-temperature formability and low-temperature impact toughness and manufacturing method thereof
KR101758470B1 (en) * 2015-11-12 2017-07-17 주식회사 포스코 Non-quenched and tempered wire rod having excellent cold workability and method for manufacturing same
KR101758490B1 (en) 2015-12-17 2017-07-17 주식회사 포스코 Non-quenched and tempered wire rod having excellent strength and impact toughness and method for manufacturing same
JP6673475B2 (en) * 2016-06-07 2020-03-25 日本製鉄株式会社 Rolled steel bars for hot forging
KR102143075B1 (en) * 2018-11-26 2020-08-31 주식회사 포스코 Non-quenched and tempered wire rod having excellent drawability and impact toughness and method of manufacturing the same
KR102178711B1 (en) * 2019-07-03 2020-11-13 주식회사 포스코 Non-heat treated wire rod having excellent strength and impact toughness and method for manufacturing thereof
KR102318035B1 (en) * 2019-12-17 2021-10-27 주식회사 포스코 Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof
CN113966404B (en) * 2020-02-24 2023-09-15 浦项股份有限公司 Non-heat-treated wire rod having excellent drawability and impact toughness and method for manufacturing the same
KR102448753B1 (en) * 2020-11-27 2022-09-30 주식회사 포스코 Non-heat treated steel with improved machinability and toughness and the method for manufacturing the same
WO2023234700A1 (en) * 2022-05-31 2023-12-07 주식회사 포스코 Non-quenched and tempered steel wire rod with improved machinability and toughness, and method for manufacturing same
CN115074629B (en) * 2022-06-29 2023-08-11 马鞍山钢铁股份有限公司 Non-quenched and tempered steel for Nb-Ti-V composite reinforced high-carbon expansion-break connecting rod, production expansion-break connecting rod thereof and forging and cooling control process
CN115058655B (en) * 2022-06-29 2023-08-11 马鞍山钢铁股份有限公司 Non-quenched and tempered steel for Nb microalloyed medium-carbon expansion-break connecting rod, expansion-break connecting rod produced by non-quenched and tempered steel, and forging and cooling control process of non-quenched and tempered steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617122A (en) * 1992-06-30 1994-01-25 Aichi Steel Works Ltd Production of non-heattreated steel excellent in durability ratio
JPH08120335A (en) * 1994-10-26 1996-05-14 Kobe Steel Ltd Production of non-heat treated steel excellent in fatigue strength
JPH09111412A (en) * 1995-10-19 1997-04-28 Sumitomo Metal Ind Ltd Non-heat treated steel having high strength, high yield ratio, and low ductility
JP3534146B2 (en) * 1997-01-30 2004-06-07 住友金属工業株式会社 Non-heat treated steel excellent in fatigue resistance and method for producing the same
JPH11131134A (en) * 1997-10-30 1999-05-18 Kobe Steel Ltd Production of high strength formed part made of non-refining steel
JP3584726B2 (en) * 1998-03-24 2004-11-04 住友金属工業株式会社 High strength non-heat treated steel

Also Published As

Publication number Publication date
JP2004137542A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3780999B2 (en) Manufacturing method of non-tempered steel hot forged member
JPH07109518A (en) Production of steel for hot forging excellent in fatigue strength, yield strength, and machinability
US5648044A (en) Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
JP5655366B2 (en) Bainite steel
US20070006947A1 (en) Steel wire for cold forging having excellent low temperature impact properties and method of producing the same
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
CN114134431B (en) 2000 Mpa-grade high-strength high-toughness high-hardenability spring steel by square billet continuous casting and rolling and manufacturing method thereof
JP6614349B2 (en) Rolled wire rod
JPS58107416A (en) Method of directly softening steel wire or rod steel useful for mechanical construction
JP3149741B2 (en) Non-heat treated steel excellent in fatigue resistance and its manufacturing method
JPH0425343B2 (en)
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP2000160286A (en) High-strength and high-toughness non-heat treated steel excellent in drilling machinability
JPH0526850B2 (en)
JPH09202921A (en) Production of wire for cold forging
JP4020842B2 (en) Non-tempered hot forged part excellent in low ductility and machinability and method for producing the part
JP3798251B2 (en) Manufacturing method of undercarriage forgings for automobiles
CN114651080B (en) Crankshaft and method for manufacturing blank for crankshaft
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP2018178228A (en) Raw material for high frequency induction hardening component
JPH07102340A (en) Production of non-heattreated steel excellent in fatigue characteristic
JPH0617122A (en) Production of non-heattreated steel excellent in durability ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3780999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees