JP3780956B2 - High strength steel plate with excellent SR resistance and method for producing the same - Google Patents

High strength steel plate with excellent SR resistance and method for producing the same Download PDF

Info

Publication number
JP3780956B2
JP3780956B2 JP2002030301A JP2002030301A JP3780956B2 JP 3780956 B2 JP3780956 B2 JP 3780956B2 JP 2002030301 A JP2002030301 A JP 2002030301A JP 2002030301 A JP2002030301 A JP 2002030301A JP 3780956 B2 JP3780956 B2 JP 3780956B2
Authority
JP
Japan
Prior art keywords
temperature
strength
cooling
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002030301A
Other languages
Japanese (ja)
Other versions
JP2003231939A (en
Inventor
信行 石川
茂 遠藤
豊久 新宮
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002030301A priority Critical patent/JP3780956B2/en
Publication of JP2003231939A publication Critical patent/JP2003231939A/en
Application granted granted Critical
Publication of JP3780956B2 publication Critical patent/JP3780956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管等の製造に用いるAPI規格X65グレードを超える強度を有する高強度鋼板に関し、特に溶接後に行う応力除去焼鈍(SR)後においても優れた強度と靭性を有する耐SR特性に優れた高強度鋼板とその製造方法に関する。
【0002】
【従来の技術】
石油またはガスの掘削用等に用いられるライザー鋼管は円周溶接によって合金元素量が非常に多い鍛造品(例えばコネクタ等)を溶接して用いる場合が多く、溶接後に溶接による残留応力除去を目的として応力除去焼鈍(SR)処理が施される。また、発電プラント等の配管用鋼管やその他強度部材として用いられる鋼材または鋼板がCr-Mo鋼等と溶接接合されるような場合も、溶接による残留応力除去を目的としてSR処理が施される。SR処理により母材部である鋼管等も熱処理されて強度や靱性が低下する場合があるので、SR処理が施される鋼管や鋼材はSR処理後も強度、靱性が確保される必要が、すなわち耐SR特性に優れている必要がある。また近年、鋼管使用時の内部の圧力上昇による操業効率向上や、より薄い鋼材の使用で素材コストを削減するために、API X80グレード等のAPI X65グレードを超える高強度鋼管または鋼材に対する需要も高まっている。
このような要請に対して、特開平11−50188号公報、特開2001−158939号公報にはAPI X80グレード以上の耐SR特性に優れた鋼板または鋼管が開示されている。
【0003】
【発明が解決しようとする課題】
しかし、特開平11−50188号公報の鋼板はSR処理による強度低下をSR処理時のCr炭化物の析出によって補っているため、多量のCrの添加が必要であり、製造コストが高いだけでなく、溶接性や靱性の低下の問題がある。一方、特開2001−158939号公報の鋼管はシーム溶接金属を特定の組成範囲に限定する必要があり、SR処理により強度が低下しても十分な程度に母材強度が高いことで、母材強度の低下に対応する技術である。したがって母材強度はSR処理により低下している。
【0004】
したがって本発明の目的は、このような従来技術の課題を解決し、API X65グレードを超える高強度鋼板であって、多量の合金元素の添加なしに、SR処理後も強度と靭性が低下しない、優れた耐SR特性を有する高強度鋼板を提供することにある。
【0005】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
【0006】
(1)、質量%で、C:0.02〜0.08%、Si:0.01〜0.50 %、Mn:0.5〜1.8%、P:0.02%以下、S:0.005%以下、Mo:0.05〜0.50%、Ti:0.005〜0.04%、Al:0.01〜0.07%を含有し、Nb:0.005〜0.07%および/またはV:0.005〜0.10%を含有し、残部がFeおよび不可避不純物からなり、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.6〜2.0であり、金属組織がフェライト体積分率90%以上であり、TiとMoと、Nbおよび/またはVとを含む粒径10nm以下の析出物が分散析出していることを特徴とする、耐SR特性に優れた高強度鋼板。
【0007】
(2)、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Ca:0.0005〜0.0025%の中から選ばれる1種又は2種以上を含有することを特徴とする(1)に記載の耐SR特性に優れた高強度鋼板。
【0008】
(3)、(1)または(2)に記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度で鋼帯に巻き取ることを特徴とする、耐SR特性に優れた高強度鋼板の製造方法。
【0009】
(4)、(1)または(2)に記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度で5分以上の等温保持を行うことを特徴とする、耐SR特性に優れた高強度鋼板の製造方法。
【0010】
(5)、(1)または(2)に記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度から0.1℃/s以下の冷却速度で冷却を行うことを特徴とする、耐SR特性に優れた高強度鋼板の製造方法。
【0011】
【発明の実施の形態】
本発明者らは耐SR特性向上と高強度の両立のために、SR処理による鋼材のミクロ組織変化について詳細な検討を行った。一般に溶接鋼管用の鋼板や溶接構造用の鋼板は溶接性の観点から化学成分が厳しく制限されるため、API X65グレード以上の高強度鋼板は熱間圧延後に加速冷却されて製造されている。そのため、ミクロ組織はベイナイトまたはマルテンサイトが主体の組織となるが、このような組織の鋼にSR処理を施すと、ベイナイトまたはマルテンサイトが焼き戻されることによる強度低下はさけられない。また、焼戻しによる強度低下を補うために、SR時にCr炭化物等を析出させる方法があるが、炭化物が容易に粗大化するために靭性が低下する。したがって、ベイナイトやマルテンサイトを主体組織とした変態強化では、SR処理後においても強度、靭性を確保することには限界がある。本発明者らは優れた耐SR特性が得られるミクロ組織形態に関して鋭意研究を行った結果、鋼の組織をSR処理の前後において形態変化を生じないミクロ組織とすることが重要であり、そのためにはマトリクスを実質的にフェライト単相とし、熱的に安定な微細析出物を分散析出させることによって強化すればよいという知見を得た。そして、鋼中で析出する種々の析出物について検討した結果、MoとTiからなる複合炭化物は適正な成分バランスの元では、10nm以下の極めて微細な析出物となり、かつ熱的にも安定であることが分かった。そのため、マトリクスが実質的にフェライト単相であっても析出強化によってAPI X65グレードを超える強度が容易に得られ、且つSR処理によってMo とTiを含む複合炭化物はその形態が変化しないので、強度特性もほとんど変化しないという知見を得た。また、MoとTiからなる炭化物はNb及び/またはVとも複合化し、同様の析出形態と熱的安定性を示すため、NbまたはVを利用することができるという知見を得た。
【0012】
上記のようなTi、Moを基本として含む析出物が分散析出したフェライト組織を有する鋼板は、特定温度域で巻取りを行う一般的な熱延プロセスを用いることにより、薄鋼板では容易に製造できる。また、厚鋼板でも、厚鋼板の製造プロセスを用いて一定時間以上の温度保持または徐冷を施すことにより製造できる。このようにして製造した鋼板は、従来の加速冷却等で得られるベイナイトまたはマルテンサイト主体の鋼板に比べ、少ない合金元素の添加によっても高い強度が得られるため、素材コストが低廉で、且つ優れた溶接性も同時に得られるものである。
【0013】
以下、本発明の高強度鋼板について詳しく説明する。まず、本発明の高強度鋼板の組織について説明する。
【0014】
本発明の鋼板の金属組織は実質的にフェライト単相とする。一般に熱間圧延によって得られるフェライト相は転位密度が少ないため、SR処理などの変態点以下の加熱によってミクロ構造が変化することが無く、かつ延性に富んでいるため適正な結晶粒径とすることで高い靭性が得られる。フェライト相にベイナイト、マルテンサイト、パーライト等の異なる金属組織が混在する場合は、SR処理によってこれらの相の強度が低下するため、フェライト相以外の組織分率は少ないほど好ましい。しかし、フェライト以外の組織の体積分率が低い場合は影響が無視できるため、トータルの体積分率で10%以下の他の金属組織を、すなわちベイナイト、マルテンサイト、パーライト、セメンタイト等を、1種または2種以上含有してもよい。
【0015】
次に、本発明において鋼板内に分散析出する析出物について説明する。
本発明における鋼板はフェライト相中にMoとTiとを基本として含有する析出物が分散析出しているものである。この析出物は極めて微細でかつ高い熱的安定性を有しており、SR処理によってもその形態が変化しないため、SR処理後も高い強度が保持できる。Mo及びTiは鋼中で炭化物を形成する元素であり、MoC、TiCの析出により鋼を強化することは従来より行われているが、本発明ではMoとTiを複合添加して、MoとTiとを基本として含有する複合炭化物を鋼中に微細析出させることにより、MoCおよび/またはTiCの析出強化の場合に比べて、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、MoとTiとを基本として含有する複合炭化物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。
【0016】
MoとTiとを基本として含有する複合炭化物は、Mo、Ti、Cのみで構成される場合は、MoとTiの合計とCとが原子比でほぼ1:1で化合しているものであり、熱的安定性が高くかつ高強度化には非常に効果があるが、Tiの含有量が多くなる程、溶接部靭性が劣化するという問題がある。本発明ではMo、Ti、Cのみで構成される複合炭化物において、Tiの一部を他の元素で置換することにより溶接部靭性を向上させることについて検討し、MoとTiに加えて、さらにNbおよび/またはVを添加し、MoとTiと、Nbおよび/またはVとを含んだ複合炭化物を析出させて、同様の析出強化と優れた耐SR特性を得ることにより本発明を完成した。
【0017】
本発明において鋼板内に分散析出する析出物である、MoとTiと、Nbおよび/またはVとを含んだ複合炭化物は、以下に述べる本発明の成分の鋼材と製造方法とを用いて鋼板を製造することにより、フェライト相中に分散させて得ることができる。本発明の高強度鋼板がMoとTiとを主体とする複合炭化物以外の析出物を含有する場合は、MoとTiの複合炭化物による高強度化の効果を損なわず、耐SR特性を劣化させない程度とする。
【0018】
次に、本発明の高強度鋼板の化学成分について説明する。
【0019】
C:0.02〜0.08%とする。Cは炭化物として析出強化に寄与する元素であるが、0.02%未満では十分な強度が確保できず、0.08%を超えると靭性や耐SR性を劣化させるため、C含有量を0.02〜0.08%に規定する。
【0020】
Si:0.01〜0.50%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.50%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.50%に規定する。
【0021】
Mn:0.5〜1.8%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、1.8%を超えると溶接性が劣化するため、Mn含有量を0.5〜1.8%に規定する。
【0022】
P:0.02%以下とする。Pは溶接性とSR後の靭性を劣化させる不可避不純物元素であるため、P含有量の上限を0.02%に規定する。
【0023】
S:0.005%以下とする。SもSR後の靭性を劣化させるため少ないほど好ましい。しかし、0.005%以下であれば問題ないため、S含有量の上限を0.005%に規定する。
【0024】
Mo:0.05〜0.50%とする。Moは本発明において重要な元素であり、0.05%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Tiとの微細な複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.50%を超えて添加するとベイナイトやマルテンサイトなどのフェライト以外の組織分率が増加するため、SR処理によって強度低下を招く。よって、Mo含有量を0.05〜0.50%に規定する。
【0025】
Ti:0.005〜0.04%とする。TiはMoと同様に本発明において重要な元素である。0.04%を超えて添加することで、Moと複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.04%を超えると溶接熱影響部の靭性を著しく劣化させるため、Ti含有量は0.005〜0.04%に規定する。
【0026】
Al:0.01〜0.07%とする。Alは脱酸剤として添加されるが、0.01%未満では効果がなく、0.07%を超えると鋼の清浄度が低下し、靭性を劣化させるため、Al含有量は0.01〜0.07%に規定する。
【0027】
Nb、Vのうち1種又は2種を含有する。
【0028】
Nb:0.005〜0.05%とする。Nbは組織の微細粒化により靭性を向上させるが、Ti及びMoと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.05%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.05%に規定する。
【0029】
V:0.005〜0.10%とする。VもNbと同様にTi及びMoと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。
【0030】
C量とMo、Ti、Nb、Vの合計量の比である、C/(Mo+Ti+Nb+V):0.6〜2.0とする。C/(Mo+Ti+Nb+V)において各元素記号はその成分の原子%の含有量(at%)を示す。本発明鋼板における高強度化はTiとMoと、Nbおよび/またはVとを含む複合析出物(炭化物)によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti、Nb、V量の関係が重要であり、これらの元素を適正なバランスのもとで添加する事によって、熱的に安定でかつ非常に微細な複合析出物を得ることができる。このときCの原子%での含有量と、Mo、Ti、Nb、Vの原子%での含有量の合計量の比であるC/(Mo+Ti+Nb+V)の値は、0.6〜2.0とする。C/(Mo+Ti+Nb+V)の値が0.6未満または2.0を超える場合はいずれかの元素量が過剰であり、本発明のTiとMoとを含む複合析出物以外の硬化組織が過度に形成されて、耐SR特性の劣化や、靭性の劣化を招くため、C/(Mo+Ti+Nb+V)の値を0.6〜2.0に規定する。なお、質量%の含有量を用いる場合は、以下の式(1)を用いて計算して、その値を0.6〜2.0とする。
【0031】
(C/12.01)/(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)・・・(1)
本発明では鋼板の強度や靭性をさらに改善する目的で、以下に示すCu、Ni、Cr、Caの1種または2種以上を含有してもよい。
【0032】
Cu:0.50%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
【0033】
Ni:0.50%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると耐SR特性が低下するため、添加する場合は0.50%を上限とする。
【0034】
Cr:0.50%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.50%を上限とする。
【0035】
Ca:0.0005〜0.0025%とする。Caは硫化物系介在物の形態制御による靭性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、0.0025%をこえて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性を劣化させるので、添加する場合はCa含有量を0.0005〜0.0025%に規定する。
【0036】
上記以外の残部はF e および不可避不純物からなる。
【0037】
次に、本発明の高強度鋼板の製造方法について説明する。
【0038】
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1250℃、圧延終了温度:750℃以上で熱間圧延を行い、その後2℃/s以上の冷却速度で冷却を行い、次いで550〜700℃の温度で一定時間保持することで、TiとMoと、Nbおよび/またはVとを含む微細な複合炭化物を分散析出させて製造できる。550〜700℃の温度で一定時間保持する方法として、550〜700℃の温度で鋼帯に巻き取る(第一の製造方法)、550〜700℃の温度で5分以上の等温保持を行う(第二の製造方法)、550〜700℃の温度から0.1℃/s以下の冷却速度で徐冷を行う(第三の製造方法)、の3つの製造方法がある。以下、各製造方法について詳しく説明する。
【0039】
加熱温度:1000〜1250℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1250℃を超えると靭性が劣化するため、1000〜1250℃とする。
【0040】
圧延終了温度:750℃以上とする。圧延終了温度が低いと、フェライト相中に圧延歪が残留しSR処理によって回復を生じ、SR後の強度低下を招くため、圧延終了温度を750℃以上とする。また、圧延終了温度の上限は特に規定しなくとも優れた耐SR特性と強度が得られるが、組織の粗大化による靭性低下を防ぐため、950℃以下の温度で圧延を終了することが好ましい。
【0041】
圧延終了後に2℃/s以上の冷却速度で冷却する。圧延終了後に放冷または徐冷を行うと高温域から析出物が析出して、析出物が容易に粗大化し強度が低下する。よって、析出強化に最適な温度まで急冷を行い、高温域からの析出を防止することが本発明における重要な製造条件である。冷却速度が2℃/s未満では高温域での析出防止効果が十分ではなく強度が低下するため、圧延終了後の冷却速度を2℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。
【0042】
2℃/s以上の冷却速度での冷却後、本発明のフェライト組織と微細析出物とを得るためには、高温で一定時間保持することが必要である。第一の製造方法は薄鋼板を製造する場合であり、熱間圧延後、ランアウトテーブルでの水冷等によって冷却した後、鋼帯に巻取る熱延プロセスにおいて、所定の温度で巻取りを行うことにより、鋼帯を等温保持して本発明の析出物を析出させる。
【0043】
また、冷却終了温度は、その後の巻取り温度、等温保持温度、または徐冷開始温度よりも高い温度であればよいが、冷却終了温度が高すぎると析出物の粗大化が生じて十分な強度が得られないので、750℃以下とすることが望ましい。
【0044】
第一の製造方法:巻取り温度:550〜700℃とする。熱延プロセスにより鋼帯を製造する場合は、2℃/s以上の冷却速度での冷却後に巻取り温度550〜700℃で巻取りを行う。巻取り温度が550℃未満ではベイナイトが生成するために耐SR特性が劣化し、また700℃を超えると析出物が粗大化し十分な強度が得られないため、熱延プロセスにおける巻取り温度を550〜700℃に規定する。
【0045】
第二の製造方法及び第三の製造方法は、巻き取りを行わない、厚鋼板等を製造する場合に適する方法であり、厚板ミルにおいて、仕上げ圧延後の水冷設備で冷却した後に、均熱炉において所定の時間以上等温保持して本発明の析出物を析出させる方法が第二の製造方法である。また第三の製造方法は、水冷後に、カバー徐冷等により徐冷を行うことで高温を維持して本発明の析出物を析出させて、本発明の鋼板を製造するものである。以下にこれらの場合を説明する。
【0046】
第二の製造方法:2℃/s以上の冷却速度での冷却後に、550〜700℃の温度で5分以上の等温保持する。冷却終了温度は、等温保持の温度以上、750℃以下とすることが好ましい。熱延プロセスのような鋼帯への巻取りを行わない場合は、圧延後の冷却に引き続いて、一定時間以上の等温保持を行うことによって、MoとTiとを含む析出物が分散析出したフェライト単一組織を得ることが可能である。このとき、550℃未満ではベイナイトが生成するために耐SR特性が劣化し、また700℃を超えると析出物が粗大化し十分な強度が得られないため、保持温度を550〜700℃に規定する。また、保持時間が5分未満ではフェライト変態が完了せず、その後の冷却でベイナイトまたはパーライトを生成するために耐SR特性が劣化するので、保持時間は5分以上に規定する。なお、等温保持によってフェライト変態が完了していれば、その後の冷却速度は任意の速度で構わない。
【0047】
第三の製造方法:2℃/s以上の冷却速度での冷却後に、550〜700℃の温度から0.1℃/s以下の冷却速度で徐冷する。上記のような等温保持を行わなくとも、圧延後の冷却に引き続いて、所定の温度から徐冷を行うことによっても本発明の鋼板を製造することが可能である。このときの冷却速度が0.1℃/sを超えると、ベイナイトが生成し耐SR特性が低下するため、冷却速度の上限を0.1℃/sに規定する。また、徐冷を開始する温度は550〜700℃とする。550℃未満ではベイナイト生成により耐SR特性が劣化し、また700℃を超えると析出物が粗大化し十分な強度が得られないためである。
【0048】
従来の熱延ミルまたは厚板ミルを用いることのできる上記の第一、第二、第三製造方法により製造された本発明の鋼板は、プレスベンド成形、ロール成形、UOE成形等で鋼管に成形して、原油や天然ガスを輸送する鋼管(電縫鋼管、スパイラル鋼管、UOE鋼管)等に利用することができる。
【0049】
【実施例】
表1に示す化学成分の供試鋼(鋼種A〜K)を用いて板厚12、18、26mmの鋼板を製造した。
【0050】
【表1】

Figure 0003780956
【0051】
板厚12mmの熱延鋼帯(No.1〜17)は、圧延後に冷却を行い所定の温度で巻取りを行って製造した。表2に各鋼板のスラブ加熱温度、圧延終了(仕上)温度、圧延後冷却速度、巻取温度を示す。板厚18mm及び26mmの厚鋼板(No.18〜28)は、熱間圧延(厚板プロセス)により鋼種B、C、E、I、Kを用いて表3に示す条件で製造した。表3において、冷却後の処理方法が「温度保持」と記載されているものは、圧延後に加速冷却装置により冷却を行った後、ガス燃焼炉で等温保持(均熱処理)を行った。等温保持を行ったものについては、保持温度と保持時間を表3に併せて示す。また、冷却後の処理方法が「徐冷」と記載されているものは、圧延後に加速冷却装置により冷却を行った後、鋼板を積み重ねることで室温まで徐冷を行った。徐冷を行ったものについては、徐冷開始温度と徐冷開始から300℃までの平均冷却速度を表3に併せて示す。また、No.28は圧延終了後加速冷却により350℃まで冷却し、その後空冷によって製造した。
【0052】
以上のようにして製造した鋼板のミクロ組織を、光学顕微鏡、透過型電子顕微鏡(TEM)により観察した。析出物の成分はエネルギー分散型X線分光法(EDX)により分析した。また耐SR特性を調査するため、ガス雰囲気炉を用いて各鋼板にSR処理を行った。このときの熱処理条件は650℃で2時間とし、その後炉から取り出し空冷によって室温まで冷却した。そして、SR処理前後の鋼板の引張特性及びシャルピー衝撃特性を測定した。引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、降伏強度、引張強度を測定した。そして、製造上のばらつきを考慮して、SR処理前後いずれにおいても降伏強度520MPa以上、引張強度600MPa以上であるものをAPI X65グレードを超える高強度鋼板として評価した。また、靭性については、SR処理後のシャルピー衝撃試験において、−10℃で吸収エネルギーが70J以上あるものを高靭性鋼板として評価した。また、溶接熱影響部靱性(HAZ靱性)を評価するために、SR処理前の鋼板を用いて溶接熱サイクル再現装置により入熱15kJ/cmに相当する熱履歴を与えた後シャルピー衝撃試験を行った。そして破面遷移温度が−10℃以下のものをHAZ靱性が良好と判断した。測定結果を表2、表3に併せて示す。
【0053】
【表2】
Figure 0003780956
【0054】
【表3】
Figure 0003780956
【0055】
表2において、本発明例であるNo.1〜8はいずれも、化学成分および製造方法が本発明の範囲内であり、SR処理の前後で引張強度600MPa以上の高強度で、かつ靭性も優れていた。鋼板の組織は、実質的にフェライト単層であり、TiとMoと、Nbおよび/またはVとを含む粒径が10nm未満の微細な炭化物の析出物が分散析出していた。
【0056】
No.9〜12は化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であり、金属組織が実質的にフェライト単相ではないことや、TiとMoとを含む析出物が分散析出していないため、SR処理後に十分な強度が得られないか、または靭性が低かった。
【0057】
No.13〜17は化学成分が本発明の範囲外であり、SR処理後に十分な強度が得られないか、または靭性が低かった。
【0058】
表3において、本発明例であるNo.18〜21はいずれも、化学成分および製造方法が本発明の範囲内であり、SR処理の前後で引張強度600MPa以上の高強度と高い靭性を有していた。鋼板の組織は、実質的にフェライト単層であり、TiとMoと、Nbおよび/またはVとを含む粒径が10nm未満の微細な炭化物の析出物が分散析出していた。
【0059】
No. 22〜25は化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であり、金属組織が実質的にフェライト単相ではないことや、TiとMoとを含む析出物が分散析出していないため、SR処理後に十分な強度が得られないか、靭性が低かった。
【0060】
No. 26、27は化学成分が本発明の範囲外であり、SR処理後に十分な強度が得られないか、または靭性が低かった。
【0061】
No.28は化学成分が本発明の範囲内であるが、熱間圧延後の冷却条件が本発明範囲と異なるため、SR処理後に十分な強度が得られなかった。
【0062】
【発明の効果】
以上述べたように、本発明によれば、API X65グレード以上の高強度を有し、かつSR処理後も強度と靭性の優れた鋼板が得られる。このため優れた特性を有する電縫鋼管、スパイラル鋼管、UOE鋼管等の鋼管を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel sheet having strength exceeding the API standard X65 grade used in the manufacture of steel pipes, etc., and particularly excellent in SR resistance having excellent strength and toughness even after stress relief annealing (SR) performed after welding. The present invention relates to a high-strength steel plate and a manufacturing method thereof.
[0002]
[Prior art]
Riser steel pipes used for oil or gas drilling are often used by welding welded forgings (eg connectors) with a large amount of alloying elements by circumferential welding, with the aim of removing residual stress by welding after welding. A stress relief annealing (SR) process is performed. In addition, when steel pipes or steel plates used as strength members for piping in power plants or the like are welded to Cr-Mo steel or the like, SR treatment is performed for the purpose of removing residual stress by welding. Since the steel pipe or the like, which is the base material part, may be heat-treated by the SR treatment and the strength and toughness may be reduced, the steel pipe and the steel material subjected to the SR treatment need to ensure the strength and toughness after the SR treatment. It must be excellent in SR resistance. In recent years, the demand for high-strength steel pipes or steel materials that exceed API X65 grades such as API X80 grades has increased in order to improve operational efficiency by increasing internal pressure when using steel pipes, and to reduce material costs by using thinner steel materials. ing.
In response to such a request, Japanese Patent Application Laid-Open Nos. 11-50188 and 2001-158939 disclose steel plates or steel pipes having excellent SR resistance characteristics higher than API X80 grade.
[0003]
[Problems to be solved by the invention]
However, since the steel sheet of JP-A-11-50188 compensates for the strength reduction due to the SR treatment by precipitation of Cr carbide during the SR treatment, a large amount of Cr needs to be added, and not only the production cost is high, There is a problem of deterioration in weldability and toughness. On the other hand, the steel pipe of Japanese Patent Application Laid-Open No. 2001-158939 needs to limit the seam weld metal to a specific composition range, and the base material strength is sufficiently high even if the strength is reduced by SR treatment. It is a technology that responds to a decrease in strength. Accordingly, the base material strength is reduced by the SR treatment.
[0004]
Therefore, the object of the present invention is to solve such problems of the prior art, and is a high-strength steel sheet exceeding API X65 grade, and without adding a large amount of alloy elements, the strength and toughness do not decrease even after SR treatment. An object is to provide a high-strength steel sheet having excellent SR resistance.
[0005]
[Means for Solving the Problems]
The features of the present invention for solving such problems are as follows.
[0006]
(1) By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.02% or less, S: 0.005% or less, Mo: 0.05 to 0.50%, Ti: 0.005 to 0.04%, Al: contains 0.01 to 0.07%, Nb: .005-0.07% and / or V: containing 0.005 to 0.10 percent, the balance being Fe and inevitable impurities or Rannahli, C content in atomic% And C / (Mo + Ti + Nb + V), which is the ratio of the total amount of Mo, Ti, Nb, and V, is 0.6 to 2.0, the metal structure is 90% or more of the ferrite volume fraction, and Ti and Mo A high-strength steel sheet having excellent SR resistance, wherein precipitates having a particle size of 10 nm or less containing Nb and / or V are dispersed and precipitated.
[0007]
(2) Further, by mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Ca: 0.0005 to 0.0025%, one or more selected from A high-strength steel sheet having excellent SR resistance as described in (1).
[0008]
(3) After hot-rolling steel having the composition described in (1) or (2) under the conditions of heating temperature: 1000 to 1250 ° C. and rolling end temperature: 750 ° C. or higher, 2 ° C./s or higher A method for producing a high-strength steel sheet having excellent SR resistance, wherein the steel sheet is cooled at a cooling rate of 5 ° C and then wound on a steel strip at a temperature of 550 to 700 ° C.
[0009]
(4) After hot-rolling steel having the composition described in (1) or (2) under the conditions of heating temperature: 1000 to 1250 ° C. and rolling end temperature: 750 ° C. or higher, 2 ° C./s or higher A method for producing a high-strength steel sheet having excellent SR resistance, characterized by cooling at a cooling rate of 5 ° C. and then isothermally holding at a temperature of 550 to 700 ° C. for 5 minutes or more.
[0010]
(5) After hot rolling steel having the component composition described in (1) or (2) under the conditions of heating temperature: 1000 to 1250 ° C. and rolling end temperature: 750 ° C. or higher, 2 ° C./s or higher A method for producing a high-strength steel sheet excellent in SR resistance, characterized by cooling at a cooling rate of 550-700 ° C. and then cooling at a cooling rate of 0.1 ° C./s or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have made detailed studies on changes in the microstructure of steel materials due to SR treatment in order to achieve both improved SR resistance and high strength. Generally, the chemical composition of steel plates for welded steel pipes and steel plates for welded structures is severely restricted from the viewpoint of weldability, so high strength steel plates of API X65 grade or higher are manufactured by accelerated cooling after hot rolling. Therefore, the microstructure is mainly composed of bainite or martensite. However, when the steel having such a structure is subjected to SR treatment, strength reduction due to tempering of bainite or martensite cannot be avoided. Further, in order to compensate for the strength reduction due to tempering, there is a method of depositing Cr carbide or the like during SR, but the toughness is reduced because the carbide is easily coarsened. Therefore, in transformation strengthening with bainite or martensite as the main structure, there is a limit to securing strength and toughness even after SR treatment. As a result of intensive studies on the microstructure form that provides excellent SR resistance, it is important that the steel structure has a microstructure that does not cause a change in shape before and after the SR treatment. Obtained the knowledge that the matrix should be strengthened by making the matrix substantially ferrite single phase and dispersing fine precipitates which are thermally stable. As a result of examining various precipitates precipitated in steel, the composite carbide composed of Mo and Ti becomes extremely fine precipitates of 10 nm or less under the proper balance of components and is also thermally stable. I understood that. Therefore, even if the matrix is essentially a ferrite single phase, the strength exceeding API X65 grade can be easily obtained by precipitation strengthening, and the composite carbide containing Mo and Ti does not change its shape by SR treatment, so the strength characteristics I also found that there was almost no change. Moreover, the carbide | carbonized_material which consists of Mo and Ti compounded with Nb and / or V, and obtained the knowledge that Nb or V can be utilized in order to show the same precipitation form and thermal stability.
[0012]
A steel sheet having a ferrite structure in which precipitates containing Ti and Mo as a base as described above are dispersed and precipitated can be easily manufactured in a thin steel sheet by using a general hot rolling process in which winding is performed in a specific temperature range. . Further, even a thick steel plate can be manufactured by maintaining the temperature for a certain period of time or gradually cooling using a manufacturing process of the thick steel plate. The steel sheet produced in this way is superior in the material cost because the high strength can be obtained even by the addition of a small amount of alloy elements, compared to the steel sheet mainly composed of bainite or martensite obtained by conventional accelerated cooling or the like. Weldability is also obtained at the same time.
[0013]
Hereinafter, the high-strength steel sheet of the present invention will be described in detail. First, the structure of the high-strength steel sheet of the present invention will be described.
[0014]
The metal structure of the steel sheet of the present invention is substantially a ferrite single phase. In general, the ferrite phase obtained by hot rolling has a low dislocation density, so the microstructure does not change due to heating below the transformation point such as SR treatment, and it has excellent ductility, so it has an appropriate crystal grain size. High toughness can be obtained. When different metal structures such as bainite, martensite, and pearlite are mixed in the ferrite phase, the strength of these phases is reduced by the SR treatment. However, if the volume fraction of the structure other than ferrite is low, the influence can be ignored, so other metal structures of 10% or less in total volume fraction, that is, bainite, martensite, pearlite, cementite, etc. Or you may contain 2 or more types.
[0015]
Next, the precipitate that is dispersed and precipitated in the steel sheet in the present invention will be described.
In the steel sheet according to the present invention, precipitates containing Mo and Ti as a basis are dispersed and precipitated in the ferrite phase. This precipitate is extremely fine and has high thermal stability, and its form does not change even after SR treatment, so that high strength can be maintained even after SR treatment. Mo and Ti are elements that form carbides in the steel, and strengthening the steel by precipitation of MoC and TiC has been conventionally performed. However, in the present invention, Mo and Ti are added in combination to form Mo and Ti. It is a feature that a larger strength improvement effect can be obtained by finely precipitating a composite carbide containing the above in steel as compared with the case of precipitation strengthening of MoC and / or TiC. This unprecedented strength improvement effect is due to the fact that composite carbides containing Mo and Ti as a basis are stable and have a slow growth rate, so that extremely fine precipitates having a particle size of less than 10 nm can be obtained. .
[0016]
When the composite carbide containing Mo and Ti as a base is composed of only Mo, Ti, and C, the total of Mo and Ti and C are combined in an atomic ratio of approximately 1: 1. Although the thermal stability is high and it is very effective for increasing the strength, there is a problem that the toughness of the welded portion deteriorates as the Ti content increases. In the present invention, in a composite carbide composed only of Mo, Ti, and C, it is studied to improve weld toughness by substituting a part of Ti with another element. In addition to Mo and Ti, Nb is further added. The present invention was completed by adding a composite carbide containing Mo, Ti and Nb and / or V by adding and / or V and obtaining the same precipitation strengthening and excellent SR resistance.
[0017]
In the present invention, a composite carbide containing Mo and Ti and Nb and / or V, which is a precipitate that is dispersed and precipitated in the steel sheet, is obtained by using a steel material and a manufacturing method of the components of the present invention described below. By manufacturing, it can be obtained by dispersing in the ferrite phase. When the high-strength steel sheet of the present invention contains precipitates other than the composite carbide mainly composed of Mo and Ti, the effect of increasing the strength by the composite carbide of Mo and Ti is not impaired, and the SR resistance is not deteriorated. And
[0018]
Next, chemical components of the high-strength steel sheet of the present invention will be described.
[0019]
C: 0.02 to 0.08%. C is an element that contributes to precipitation strengthening as a carbide, but if it is less than 0.02%, sufficient strength cannot be secured, and if it exceeds 0.08%, toughness and SR resistance are deteriorated, so the C content is made 0.02 to 0.08% Stipulate.
[0020]
Si: 0.01 to 0.50%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.50%, the toughness and weldability are deteriorated, so the Si content is specified to be 0.01 to 0.50%.
[0021]
Mn: 0.5 to 1.8%. Mn is added for strength and toughness, but if it is less than 0.5%, the effect is not sufficient, and if it exceeds 1.8%, the weldability deteriorates, so the Mn content is specified to be 0.5 to 1.8%.
[0022]
P: 0.02% or less. Since P is an inevitable impurity element that deteriorates weldability and toughness after SR, the upper limit of the P content is specified as 0.02%.
[0023]
S: 0.005% or less. The smaller S is, the more preferable it is because it deteriorates the toughness after SR. However, since there is no problem if it is 0.005% or less, the upper limit of the S content is defined as 0.005%.
[0024]
Mo: 0.05 to 0.50%. Mo is an important element in the present invention, and by containing 0.05% or more, fine composite precipitates with Ti are formed while suppressing pearlite transformation during cooling after hot rolling, greatly contributing to strength increase. To do. However, if added in excess of 0.50%, the structural fraction other than ferrite such as bainite and martensite increases, so the strength decreases due to the SR treatment. Therefore, the Mo content is specified to be 0.05 to 0.50%.
[0025]
Ti: 0.005 to 0.04%. Ti, like Mo, is an important element in the present invention. By adding over 0.04%, it forms a composite precipitate with Mo, which greatly contributes to strength increase. However, if it exceeds 0.04%, the toughness of the weld heat affected zone is remarkably deteriorated, so the Ti content is specified to be 0.005 to 0.04%.
[0026]
Al: 0.01 to 0.07%. Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect, and if it exceeds 0.07%, the cleanliness of the steel is lowered and the toughness is deteriorated, so the Al content is specified to be 0.01 to 0.07%.
[0027]
Contains one or two of Nb and V.
[0028]
Nb: 0.005 to 0.05%. Nb improves toughness by refining the structure, but forms a composite precipitate with Ti and Mo, contributing to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.05%, the toughness of the weld heat affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.05%.
[0029]
V: Set to 0.005 to 0.10%. V, like Nb, forms a composite precipitate with Ti and Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.
[0030]
C / (Mo + Ti + Nb + V): 0.6 to 2.0, which is the ratio of the amount of C and the total amount of Mo, Ti, Nb, and V. In C / (Mo + Ti + Nb + V), each element symbol indicates an atomic% content (at%) of the component. Strengthening in the steel sheet of the present invention is due to composite precipitates (carbides) containing Ti, Mo, Nb and / or V. In order to effectively use the precipitation strengthening by this composite precipitate, the relationship between the amount of C and the amounts of carbide-forming elements Mo, Ti, Nb, and V is important. By adding, a thermally stable and very fine composite precipitate can be obtained. At this time, the value of C / (Mo + Ti + Nb + V), which is the ratio of the content of C in atomic% and the total content of Mo, Ti, Nb, V in atomic%, is 0.6 to 2.0. When the value of C / (Mo + Ti + Nb + V) is less than 0.6 or exceeds 2.0, the amount of any element is excessive, and the hardened structure other than the composite precipitate containing Ti and Mo of the present invention is excessive. Therefore, the value of C / (Mo + Ti + Nb + V) is defined to be 0.6 to 2.0. In addition, when using content of the mass%, it calculates using the following formula | equation (1) and makes the value 0.6-2.0.
[0031]
(C / 12.01) / (Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) ... (1)
In the present invention, for the purpose of further improving the strength and toughness of the steel sheet, one or more of Cu, Ni, Cr and Ca shown below may be contained.
[0032]
Cu: 0.50% or less. Cu is an element effective for improving toughness and increasing strength, but if added in large quantities, weldability deteriorates, so when added, the upper limit is 0.50%.
[0033]
Ni: 0.50% or less. Ni is an element effective for improving toughness and increasing strength. However, when added in a large amount, the SR resistance decreases, so when added, the upper limit is 0.50%.
[0034]
Cr: 0.50% or less. Like Mn, Cr is an effective element for obtaining sufficient strength even at low C. However, if a large amount is added, weldability deteriorates. Therefore, when added, the upper limit is 0.50%.
[0035]
Ca: 0.0005 to 0.0025%. Ca is an element effective in improving toughness by controlling the morphology of sulfide inclusions, but the effect is not sufficient if it is less than 0.0005%, and the effect is saturated even if added over 0.0025%. Since the toughness is deteriorated due to the decrease in cleanliness, the Ca content is specified to be 0.0005 to 0.0025% when added.
[0036]
Balance other than the above F e and inevitable impurities or Ranaru.
[0037]
Next, the manufacturing method of the high strength steel plate of this invention is demonstrated.
[0038]
The high-strength steel sheet of the present invention uses steel having the above-described composition, and is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then cooled at a cooling rate of 2 ° C./s or higher. Then, by holding at a temperature of 550 to 700 ° C. for a certain time, fine composite carbide containing Ti and Mo and Nb and / or V can be dispersed and precipitated. As a method of holding at a temperature of 550 to 700 ° C. for a certain period of time, it is wound around a steel strip at a temperature of 550 to 700 ° C. (first production method), and is isothermally held at a temperature of 550 to 700 ° C. for 5 minutes or more ( There are three production methods: the second production method) and slow cooling from a temperature of 550 to 700 ° C. at a cooling rate of 0.1 ° C./s or less (third production method). Hereinafter, each manufacturing method will be described in detail.
[0039]
Heating temperature: 1000-1250 ° C. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1250 ° C., the toughness deteriorates, so the temperature is set to 1000 to 1250 ° C.
[0040]
Rolling end temperature: 750 ° C. or higher. If the rolling end temperature is low, rolling strain remains in the ferrite phase and recovery is caused by the SR treatment, resulting in a decrease in strength after SR. Therefore, the rolling end temperature is set to 750 ° C. or higher. Further, although the upper limit of the rolling end temperature is not particularly specified, excellent SR resistance and strength can be obtained, but it is preferable to end the rolling at a temperature of 950 ° C. or lower in order to prevent toughness deterioration due to coarsening of the structure.
[0041]
Cool after cooling at a cooling rate of 2 ° C / s or higher. When the product is allowed to cool or gradually cool after the rolling is completed, precipitates are deposited from the high temperature range, and the precipitates are easily coarsened to reduce the strength. Therefore, it is an important manufacturing condition in the present invention to perform rapid cooling to a temperature optimum for precipitation strengthening and prevent precipitation from a high temperature range. If the cooling rate is less than 2 ° C./s, the effect of preventing precipitation in a high temperature range is not sufficient and the strength is lowered. Therefore, the cooling rate after rolling is specified to be 2 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.
[0042]
In order to obtain the ferrite structure and fine precipitates of the present invention after cooling at a cooling rate of 2 ° C./s or more, it is necessary to hold at a high temperature for a certain period of time. The first manufacturing method is to manufacture a thin steel sheet, and after hot rolling, after cooling by water cooling or the like on a run-out table, winding in a steel strip at a predetermined temperature Thus, the steel strip is kept isothermally to precipitate the precipitate of the present invention.
[0043]
The cooling end temperature may be any temperature that is higher than the subsequent coiling temperature, isothermal holding temperature, or annealing start temperature, but if the cooling end temperature is too high, the precipitates become coarse and sufficient strength is obtained. Is not obtained, so it is desirable to set the temperature to 750 ° C. or lower.
[0044]
1st manufacturing method: Winding temperature: It shall be 550-700 degreeC. When a steel strip is manufactured by a hot rolling process, winding is performed at a winding temperature of 550 to 700 ° C. after cooling at a cooling rate of 2 ° C./s or more. When the coiling temperature is less than 550 ° C, bainite is generated and the SR resistance is deteriorated. When the coiling temperature exceeds 700 ° C, the precipitate is coarsened and sufficient strength cannot be obtained. Specified at ~ 700 ° C.
[0045]
The second production method and the third production method are methods suitable for producing thick steel plates and the like that do not wind, and in a thick plate mill, after cooling with water cooling equipment after finish rolling, soaking is performed. The second production method is a method in which the precipitate of the present invention is deposited by isothermal holding in a furnace for a predetermined time or more. In the third production method, the steel sheet of the present invention is produced by maintaining the high temperature by performing slow cooling with a cover or the like after water cooling to precipitate the precipitate of the present invention. These cases will be described below.
[0046]
Second production method: After cooling at a cooling rate of 2 ° C./s or higher, the temperature is maintained at 550 to 700 ° C. for 5 minutes or more. The cooling end temperature is preferably not lower than the isothermal holding temperature and not higher than 750 ° C. When the steel strip is not wound as in the hot rolling process, the ferrite containing the precipitates containing Mo and Ti is dispersed and precipitated by holding it isothermally for a certain period of time following cooling after rolling. It is possible to obtain a single tissue. At this time, if the temperature is lower than 550 ° C, bainite is generated and the SR resistance is deteriorated. If the temperature exceeds 700 ° C, the precipitates are coarsened and sufficient strength cannot be obtained. Therefore, the holding temperature is specified to be 550 to 700 ° C. . Further, if the holding time is less than 5 minutes, the ferrite transformation is not completed, and the SR resistance deteriorates because bainite or pearlite is generated by the subsequent cooling, so the holding time is specified to be 5 minutes or more. As long as the ferrite transformation is completed by the isothermal holding, the subsequent cooling rate may be any rate.
[0047]
Third production method: After cooling at a cooling rate of 2 ° C./s or more, the product is gradually cooled from a temperature of 550 to 700 ° C. at a cooling rate of 0.1 ° C./s or less. Even if the isothermal holding as described above is not performed, the steel sheet of the present invention can also be manufactured by performing slow cooling from a predetermined temperature following cooling after rolling. If the cooling rate at this time exceeds 0.1 ° C./s, bainite is generated and the SR resistance is deteriorated, so the upper limit of the cooling rate is defined as 0.1 ° C./s. Moreover, the temperature which starts slow cooling shall be 550-700 degreeC. When the temperature is lower than 550 ° C., the SR resistance is deteriorated due to the formation of bainite. When the temperature exceeds 700 ° C., the precipitate becomes coarse and sufficient strength cannot be obtained.
[0048]
The steel sheet of the present invention manufactured by the above first, second and third manufacturing methods that can use a conventional hot rolling mill or thick plate mill is formed into a steel pipe by press bend forming, roll forming, UOE forming, etc. Thus, it can be used for steel pipes (ERW pipes, spiral steel pipes, UOE steel pipes) for transporting crude oil and natural gas.
[0049]
【Example】
Steel sheets having a thickness of 12, 18, and 26 mm were manufactured using test steels (steel types A to K) having chemical components shown in Table 1.
[0050]
[Table 1]
Figure 0003780956
[0051]
Hot rolled steel strips (No. 1 to 17) having a thickness of 12 mm were manufactured by cooling after rolling and winding at a predetermined temperature. Table 2 shows the slab heating temperature, rolling end (finishing) temperature, post-rolling cooling rate, and coiling temperature of each steel plate. Thick steel plates (Nos. 18 to 28) having a thickness of 18 mm and 26 mm were manufactured by hot rolling (thick plate process) using steel types B, C, E, I, and K under the conditions shown in Table 3. In Table 3, when the treatment method after cooling was described as “temperature maintenance”, after cooling by an accelerated cooling device after rolling, isothermal holding (soaking) was performed in a gas combustion furnace. Table 3 shows the holding temperature and holding time for those that were held isothermally. Moreover, what was described as the "slow cooling" as the processing method after cooling cooled gradually to room temperature by stacking steel plates, after cooling with an accelerated cooling device after rolling. For those subjected to slow cooling, Table 3 also shows the slow cooling start temperature and the average cooling rate from the slow cooling start to 300 ° C. No. 28 was cooled to 350 ° C. by accelerated cooling after rolling, and then manufactured by air cooling.
[0052]
The microstructure of the steel sheet produced as described above was observed with an optical microscope and a transmission electron microscope (TEM). The components of the precipitate were analyzed by energy dispersive X-ray spectroscopy (EDX). In addition, in order to investigate the SR resistance, each steel plate was subjected to SR treatment using a gas atmosphere furnace. The heat treatment conditions at this time were set at 650 ° C. for 2 hours, then removed from the furnace and cooled to room temperature by air cooling. And the tensile characteristic and Charpy impact characteristic of the steel plate before and after SR processing were measured. Tensile properties were measured by performing a tensile test using a full thickness test piece in the rolling vertical direction as a tensile test piece, and measuring yield strength and tensile strength. Then, in consideration of manufacturing variations, a steel having a yield strength of 520 MPa or more and a tensile strength of 600 MPa or more before and after the SR treatment was evaluated as a high strength steel plate exceeding API X65 grade. As for toughness, in the Charpy impact test after SR treatment, a steel sheet having an absorption energy of 70 J or more at −10 ° C. was evaluated as a high toughness steel plate. In addition, in order to evaluate weld heat affected zone toughness (HAZ toughness), a Charpy impact test was performed after giving a thermal history equivalent to heat input of 15 kJ / cm using a welding heat cycle reproduction device using steel sheets before SR treatment. It was. And it was judged that the HAZ toughness is good when the fracture surface transition temperature is −10 ° C. or lower. The measurement results are also shown in Tables 2 and 3.
[0053]
[Table 2]
Figure 0003780956
[0054]
[Table 3]
Figure 0003780956
[0055]
In Table 2, all of Nos. 1 to 8, which are examples of the present invention, have chemical components and production methods within the scope of the present invention, high strength of tensile strength of 600 MPa or more before and after SR treatment, and excellent toughness. It was. The structure of the steel sheet was substantially a ferrite single layer, and fine carbide precipitates containing Ti, Mo, Nb and / or V and having a particle size of less than 10 nm were dispersed and precipitated.
[0056]
In Nos. 9 to 12, the chemical components are within the scope of the present invention, but the production method is outside the scope of the present invention, the metal structure is not substantially a ferrite single phase, and precipitation including Ti and Mo. Since the product was not dispersed and precipitated, sufficient strength was not obtained after SR treatment, or toughness was low.
[0057]
In Nos. 13 to 17, the chemical components were outside the scope of the present invention, and sufficient strength was not obtained after SR treatment, or the toughness was low.
[0058]
In Table 3, all of Nos. 18 to 21 as examples of the present invention have chemical components and production methods within the scope of the present invention, and have high strength and high toughness with a tensile strength of 600 MPa or more before and after SR treatment. It was. The structure of the steel sheet was substantially a ferrite single layer, and fine carbide precipitates containing Ti, Mo, Nb and / or V and having a particle size of less than 10 nm were dispersed and precipitated.
[0059]
In Nos. 22 to 25, the chemical components are within the scope of the present invention, but the production method is outside the scope of the present invention, the metal structure is not substantially a ferrite single phase, and precipitation including Ti and Mo. Since the product was not dispersed and precipitated, sufficient strength could not be obtained after SR treatment, or toughness was low.
[0060]
Nos. 26 and 27 had chemical components outside the scope of the present invention, and sufficient strength was not obtained after SR treatment, or toughness was low.
[0061]
No. 28 has a chemical composition within the range of the present invention, but the cooling condition after hot rolling was different from the range of the present invention, so that sufficient strength was not obtained after SR treatment.
[0062]
【The invention's effect】
As described above, according to the present invention, a steel sheet having high strength of API X65 grade or higher and excellent in strength and toughness after SR treatment can be obtained. For this reason, steel pipes, such as an electric resistance welded steel pipe, a spiral steel pipe, and a UOE steel pipe, having excellent characteristics can be manufactured.

Claims (5)

質量%で、C:0.02〜0.08%、Si:0.01〜0.50 %、Mn:0.5〜1.8%、P:0.02%以下、S:0.005%以下、Mo:0.05〜0.50%、Ti:0.005〜0.04%、Al:0.01〜0.07%を含有し、Nb:0.005〜0.07%および/またはV:0.005〜0.10%を含有し、残部がFeおよび不可避不純物からなり、原子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+Ti+Nb+V)が0.6〜2.0であり、金属組織がフェライト体積分率90%以上であり、TiとMoと、Nbおよび/またはVとを含む粒径10nm以下の析出物が分散析出していることを特徴とする、耐SR特性に優れた高強度鋼板。In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.02% or less, S: 0.005% or less, Mo: 0.05 to 0.50%, Ti: 0.005 to 0.04% , Al: contains 0.01 to 0.07%, Nb: .005-0.07% and / or V: containing 0.005 to 0.10 percent, the balance being Fe and inevitable impurities or Rannahli, C content in atomic% and Mo, Ti C / (Mo + Ti + Nb + V) which is the ratio of the total amount of Nb, V is 0.6 to 2.0, the metal structure is 90% or more of the ferrite volume fraction, Ti and Mo, Nb and / or Or a high-strength steel sheet having excellent SR resistance, wherein precipitates containing V and having a particle size of 10 nm or less are dispersed and precipitated. さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Ca:0.0005〜0.0025%の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載の耐SR特性に優れた高強度鋼板。  Furthermore, it contains one or more selected from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Ca: 0.0005 to 0.0025% by mass%. Item 5. A high-strength steel sheet excellent in SR resistance according to Item 1. 請求項1または請求項2に記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度で鋼帯に巻き取ることを特徴とする、耐SR特性に優れた高強度鋼板の製造方法。  A steel having the component composition according to claim 1 or 2 is hot-rolled under conditions of a heating temperature of 1000 to 1250 ° C and a rolling end temperature of 750 ° C or higher, and then at a cooling rate of 2 ° C / s or higher. A method for producing a high-strength steel sheet having excellent SR resistance, which is cooled and then wound on a steel strip at a temperature of 550 to 700 ° C. 請求項1または請求項2に記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度で5分以上の等温保持を行うことを特徴とする、耐SR特性に優れた高強度鋼板の製造方法。  A steel having the component composition according to claim 1 or 2 is hot-rolled under conditions of a heating temperature of 1000 to 1250 ° C and a rolling end temperature of 750 ° C or higher, and then at a cooling rate of 2 ° C / s or higher. A method for producing a high-strength steel sheet excellent in SR resistance, characterized by cooling and then isothermal holding for 5 minutes or more at a temperature of 550 to 700 ° C. 請求項1または請求項2に記載の成分組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷却速度で冷却し、次いで550〜700℃の温度から0.1℃/s以下の冷却速度で冷却を行うことを特徴とする、耐SR特性に優れた高強度鋼板の製造方法。  A steel having the component composition according to claim 1 or 2 is hot-rolled under conditions of a heating temperature of 1000 to 1250 ° C and a rolling end temperature of 750 ° C or higher, and then at a cooling rate of 2 ° C / s or higher. A method for producing a high-strength steel sheet excellent in SR resistance, characterized by cooling and then cooling from a temperature of 550 to 700 ° C at a cooling rate of 0.1 ° C / s or less.
JP2002030301A 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same Expired - Fee Related JP3780956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030301A JP3780956B2 (en) 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030301A JP3780956B2 (en) 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003231939A JP2003231939A (en) 2003-08-19
JP3780956B2 true JP3780956B2 (en) 2006-05-31

Family

ID=27774099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030301A Expired - Fee Related JP3780956B2 (en) 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3780956B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784577B2 (en) * 2009-01-30 2014-07-22 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
WO2010087512A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
KR101490566B1 (en) * 2012-12-27 2015-02-05 주식회사 포스코 High-strength steel sheet having superior cryogenic temperature toughness and low yield ratio property and manufacturing method thereof
JP6369347B2 (en) * 2015-02-13 2018-08-08 Jfeスチール株式会社 High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof
CN107363094B (en) * 2016-05-12 2019-02-26 鞍钢股份有限公司 A kind of thin gauge pipe line steel milling method

Also Published As

Publication number Publication date
JP2003231939A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5433964B2 (en) Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness
TWI418641B (en) High-strength steel plate and producing method thereof
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
WO2008078917A1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
JP2008274355A (en) Method for manufacturing hot-rolled steel plate superior in surface quality, fracture toughness and sour corrosion resistance
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
WO2020202334A1 (en) Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
WO2020202333A1 (en) Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile
JP3780956B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP6384635B1 (en) Hot rolled steel sheet for coiled tubing
JP4385622B2 (en) Manufacturing method of high-strength steel sheet
JP4201310B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP2004292922A (en) Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability
JP2014029004A (en) Method of producing high tensile steel sheet excellent in weldability and delayed fracture resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3780956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees