JP3780154B2 - Method for producing brown rice flour, bread using brown rice flour, method for producing millet flour and bread using millet flour - Google Patents

Method for producing brown rice flour, bread using brown rice flour, method for producing millet flour and bread using millet flour Download PDF

Info

Publication number
JP3780154B2
JP3780154B2 JP2000235853A JP2000235853A JP3780154B2 JP 3780154 B2 JP3780154 B2 JP 3780154B2 JP 2000235853 A JP2000235853 A JP 2000235853A JP 2000235853 A JP2000235853 A JP 2000235853A JP 3780154 B2 JP3780154 B2 JP 3780154B2
Authority
JP
Japan
Prior art keywords
brown rice
diffraction
viscosity
millet powder
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000235853A
Other languages
Japanese (ja)
Other versions
JP2002045130A (en
Inventor
靖 三浦
Original Assignee
岩手県パン工業組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩手県パン工業組合 filed Critical 岩手県パン工業組合
Priority to JP2000235853A priority Critical patent/JP3780154B2/en
Publication of JP2002045130A publication Critical patent/JP2002045130A/en
Application granted granted Critical
Publication of JP3780154B2 publication Critical patent/JP3780154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cereal-Derived Products (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、湿熱処理してなる玄米粉の製造方法及びこの玄米粉を用いたパン類、及び、温水処理してなるキビ粉の製造方法及びこのキビ粉を用いたパン類に関する。
【0002】
【従来の技術】
現在の米を取り巻く環境は、余剰米による価格の下落等によって厳しい状況に直面し、その消費量も減少しており、主要穀物である米の利用拡大が考えられている。
また、雑穀類は食品に起因するアトピー等のアレルギー保持者の食品素材として従来から薬局や量販店や百貨店等の自然食品コーナー等で販売されてきた。近年では健康志向の高まりからか雑穀類の栄養機能を見直す動きがあり、高アレルギー食品素材のような特殊用途のみならず、「古くて新しい食品素材」として一般消費者向け需要が拡大する可能性を秘めている。キビは、ビタミンB群、食物繊維、微量元素等の含量が高く、種々の機能特性が期待されている。
このような背景から、近年、例えば、パン類等の原料として用いられる小麦粉に代わり、玄米やキビ等の他の雑穀類を使用することが研究されている。しかしながら、単に、代替させても、品質面で小麦に劣るので、物理的処理を施して改変することが行なわれる。
【0003】
従来、例えば、玄米においては、以下のような改変技術が知られている(例えば、特開平4−45757号公報掲載)。
これは、原料玄米を、耐圧密封容器内で攪拌しながら、120℃〜130℃で、100〜200秒間蒸煮し、これを粉砕して玄米粉とするものである。そして、原料玄米に由来するタンパク質及びビタミン類の変性率が5%未満であり、かつデンプンの糊化度が約20%になるようにしている。
このように改変した玄米粉を、例えば、せんべいやクッキー等の菓子類を初めとする加工食品に応用するようにしている。
【0004】
【発明が解決しようとする課題】
ところで、上記の従来の玄米粉にあっては、例えば、パン類に用いようとすると、糊化し易く、パン生地の粘性が必要以上に増大してしまい生地が良く膨らまなかったり、クラムが硬くなったり、すだちも悪くなる傾向にあるという問題があった。また、雑穀としてのキビにおいても、同様の傾向にあるという問題がある。
本発明は、このような問題点に鑑みてなされたもので、適正範囲で糊化しにくく改変でき、糊化してもその粘度が適正範囲で低くなるように改変できる玄米粉の製造方法及びキビ粉の製造方法を提供することを目的とする。
また、この製造方法によって作られた玄米粉を用いたパン類及びキビ粉を用いたパン類を提供することも目的とする。
【0005】
【課題を解決するための手段】
このような目的を達成するための本発明の玄米粉の製造方法は、原料玄米をそのまま湿熱処理する湿熱処理工程と、該湿熱処理工程で湿熱処理された原料玄米を乾燥する乾燥工程と、該乾燥工程で乾燥した原料玄米を粉砕して玄米粉を得る粉砕工程とを備えた玄米粉の製造方法において、
上記湿熱処理を、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 300.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.02〜35.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 5.00deg/min
(8) 発散防止スリット幅 0.50deg
(9) 散乱防止スリット幅 0.50deg
(10)受光防止スリット幅 0.15mm
(11)計測装置 シンチレーションカウンタ
にして上記玄米粉のX線回折強度を測定したときに、
▲1▼デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.012〜0.023、
▲2▼回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.030〜0.070
▲3▼回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.030〜0.060
(ここで、相対ピーク強度とは、得られたX線回折図形からベースラインの変動分を差し引いた正味のX線回折図形におけるすべての回折ピーク強度の合計に対する各回折ピーク強度の相対値である)
の少なくともいずれか2つを示すように該原料玄米を湿熱処理する構成にしたものである。
そして、必要に応じ、
▲1▼デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.018〜0.022
▲2▼回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.050〜0.065
▲3▼回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.040〜0.055
の少なくともいずれか2つを示すように該原料玄米を湿熱処理する構成にしている。
【0006】
ここで、デンプンに由来する回折ピークは、図3に示すように、3b(回折角2θが15deg)、4a−4b(回折角2θが17〜18deg)、6a(回折角2θが23deg)であることが知られ、相対ピーク強度が高すぎても、あるいは低くすぎても、デンプンの糊化温度が低かったり、デンプンの糊化液の粘度が高くなったりし、上記の適正範囲で良好になる。
これにより、玄米粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変される。
【0007】
また、原料玄米をそのまま湿熱処理する湿熱処理工程と、該湿熱処理工程で湿熱処理された原料玄米を乾燥する乾燥工程と、該乾燥工程で乾燥した原料玄米を粉砕して玄米粉を得る粉砕工程とを備えた玄米粉の製造方法において、
上記湿熱処理を、迅速粘度測定装置により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量として玄米粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 玄米粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置して玄米粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にして上記玄米粉の糊化特性を測定したときに、
糊化開始温度が67〜75℃になるように上記原料玄米を湿熱処理する、
もしくは、
最高粘度と最低粘度との差であるブレークダウンが30〜110RVUで、かつ、最高粘度が185〜320RVU及び最低粘度が70〜150RVUのいずれかを示すように該原料玄米を湿熱処理する構成にしている。
そして、必要に応じ、糊化開始温度が70〜74℃になるように上記原料玄米を湿熱処理する、
もしくは、
最高粘度と最低粘度との差であるブレークダウンが60〜90RVUで、かつ、最高粘度が190〜280RVU及び最低粘度が90〜140RVUのいずれかを示すように該原料玄米を湿熱処理する構成にしている。
【0008】
ここで、デンプンの糊化開始温度やデンプンの糊化液の粘度が高すぎても、あるいは低くすぎても、性状が不十分になり、上記の適正範囲で良好になる。
これにより、玄米粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変される。
【0009】
そして、本発明では、上記湿熱処理工程を、オートクレーブを用い、90℃以上120℃未満の温度で、50〜90分間行なう構成としている。この温度外であると、目的のものが得られない。
また、必要に応じ、上記湿熱処理工程を、100℃±4℃の温度で行なう構成としている。より望ましい範囲となり、確実に適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変できる。
更に、必要に応じ、上記湿熱処理工程を、60〜80分間行なう構成としている。より望ましい範囲となり、確実に適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変できる。
【0010】
そして、上記目的を達成するための本発明の玄米粉を用いたパン類は、玄米粉を原料としてパン生地を調製し、該生地を成形してホイロ・焼成してなる玄米粉を用いたパン類において、上記玄米粉を、原料玄米をそのまま湿熱処理する湿熱処理工程と、該湿熱処理工程で湿熱処理された原料玄米を乾燥する乾燥工程と、該乾燥工程で乾燥した原料玄米を粉砕して玄米粉を得る粉砕工程とを経て製造し、上記湿熱処理を、上記玄米粉の製造方法と同様に構成している。
これにより、玄米粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変されるので、これを用いたパン類において、ローフ比容積が大きく良く膨らんだパンになり、また、クラムも柔らかく、すだちも良好で、品質の良いものとなる。
【0011】
そしてまた、上記目的を達成するための本発明のキビ粉の製造方法は、原料キビ粉を温水処理する温水処理工程と、該温水処理工程で温水処理された原料キビ粉を乾燥する乾燥工程と、該乾燥工程で乾燥した原料キビ粉を粉砕してキビ粉を得る粉砕工程とを備えたキビ粉の製造方法において、
上記温水処理を、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 30.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.00〜50.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 2.00deg/min
(8) 発散防止スリット幅 1.00deg
(9) 散乱防止スリット幅 1.00deg
(10)受光防止スリット幅 0.30mm
(11)計測装置 シンチレーションカウンタ
にして上記キビ粉のX線回折強度を測定したときに、
▲1▼デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.157〜0.164
▲2▼回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.408〜0.415
▲3▼回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.163〜0.170
(ここで、相対ピーク強度とは、得られたX線回折図形からベースラインの変動分を差し引いた正味のX線回折図形におけるすべての回折ピーク強度の合計に対する各回折ピーク強度の相対値である)
の少なくともいずれか2つを示すように該原料キビ粉を温水処理する構成にしている。
そして、必要に応じ、
▲1▼デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.159〜0.162
▲2▼回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.410〜0.413
▲3▼回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.165〜0.168
の少なくともいずれか2つを示すように該原料キビ粉を温水処理する構成にしている。
【0012】
ここで、デンプンに由来する回折ピークは、図3に示すように、3b(回折角2θが15deg)、4a−4b(回折角2θが17〜18deg)、6a(回折角2θが23deg)であることが知られ、相対ピーク強度が高すぎても、あるいは低くすぎても、デンプンの糊化温度が低かったり、デンプンの糊化液の粘度が高くなったりし、上記の適正範囲で良好になる。
これにより、キビ粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変される。
【0013】
また、原料キビ粉を温水処理する温水処理工程と、該温水処理工程で温水処理された原料キビ粉を乾燥する乾燥工程と、該乾燥工程で乾燥した原料キビ粉を粉砕してキビ粉を得る粉砕工程とを備えたキビ粉の製造方法において、
上記温水処理を、迅速粘度測定装置により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量としてキビ粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 キビ粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置してキビ粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にして上記キビ粉の糊化特性を測定したときに、
最高粘度と最低粘度との差であるブレークダウンが20〜100RVUで、かつ、最高粘度が30〜150RVU及び最低粘度が4〜40RVUのいずれかを示すように該原料キビ粉を温水処理する構成にしている。
そして、必要に応じ、最高粘度と最低粘度との差であるブレークダウンが55〜95RVUで、かつ、最高粘度が70〜130RVU及び最低粘度が12〜32RVUのいずれかを示すように該原料キビ粉を温水処理する構成にしている。
【0014】
ここで、デンプンの糊化液の粘度が高すぎても、あるいは低くすぎても、性状が不十分になり、上記の適正範囲で良好になる。
これにより、キビ粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変される。
【0015】
そして、本発明では、上記温水処理工程を、45℃以上60℃未満の温度で、6〜48時間行なう構成としている。この温度外であると、目的のものが得られない。
また、必要に応じ、上記温水処理工程を、50℃±5℃の温度で行なう構成としている。より望ましい範囲となり、確実に適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変できる。
更に、必要に応じ、上記温水処理工程を、12〜24時間行なう構成としている。より望ましい範囲となり、確実に適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変できる。
【0016】
そしてまた、上記目的を達成するための本発明のキビ粉を用いたパン類は、キビ粉を原料としてパン生地を調製し、該生地を成形してホイロ・焼成してなるキビ粉を用いたパン類において、上記キビ粉を、原料キビ粉を温水処理する温水処理工程と、該温水処理工程で温水処理された原料キビ粉を乾燥する乾燥工程と、該乾燥工程で乾燥した原料キビを粉砕する粉砕工程とを経て製造し、上記温水処理を、上記キビ粉の製造方法と同様に構成している。
これにより、キビ粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変されるので、これを用いたパン類において、ローフ比容積が大きく良く膨らんだパンになり、また、クラムも柔らかく、すだちも良好で、品質の良いものとなる。
【0017】
【発明の実施の形態】
以下、添付図面に基づいて、本発明の実施の形態に係る玄米粉の製造方法,玄米粉を用いたパン類,キビ粉の製造方法及びキビ粉を用いたパン類について説明する。
(1)玄米粉の製造方法
図1に示す工程に従う。
(1−1)湿熱処理工程
原料玄米をそのまま湿熱処理する。湿熱処理は、オートクレーブを用い、90℃以上120℃未満の温度、望ましくは、100℃±4℃の温度で行なう。また、時間は、50〜90分間、望ましくは、60〜80分間行なう。
また、湿熱処理は、以下の条件に従う。
即ち、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 300.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.02〜35.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 5.00deg/min
(8) 発散防止スリット幅 0.50deg
(9) 散乱防止スリット幅 0.50deg
(10)受光防止スリット幅 0.15mm
(11)計測装置 シンチレーションカウンタ
にして上記玄米粉をX線回折強度を測定したときに、
▲1▼デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.012〜0.023、望ましくは0.018〜0.022、
▲2▼回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.030〜0.070、望ましくは0.050〜0.065、
▲3▼回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.030〜0.060、望ましくは0.040〜0.055の少なくともいずれか2つを示すように原料玄米を湿熱処理する。
【0018】
また、湿熱処理は、以下の条件に従う。
即ち、迅速粘度測定装置(ラピッド・ビスコアナライザーRVA- 4、Newport Scientific Rty.Ltd.社製)により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量として玄米粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 玄米粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置して玄米粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にして上記玄米粉の糊化特性を測定したときに、
糊化開始温度が67〜75℃ 望ましくは70〜74℃になるように上記原料玄米を湿熱処理する。
また、最高粘度と最低粘度との差であるブレークダウンが30〜110RVU、望ましくは60〜90RVUで、かつ、最高粘度が185〜320RVU、望ましくは190〜280RVU及び最低粘度が70〜150RVU、望ましくは90〜140RVUのいずれかを示すように原料玄米を湿熱処理する。
これにより、玄米粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその粘度が適正範囲で低くなるように改変される。
【0019】
(1−2)乾燥工程
湿熱処理工程で湿熱処理された原料玄米を25℃の環境下で3時間静置して乾燥する。
(1−3)粉砕工程
乾燥工程で乾燥された原料玄米を粉砕する。
このようにして製造された玄米粉においては、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変される。
【0020】
(2)玄米粉を用いたパン類
上記の玄米粉を用いて、パン類を製造する。例えば、玄米粉30%(w/w)と強力小麦粉70%(w/w)とを混ぜ、これに酵母その他の副原料及び水を加えて混捏して、生地を調製し、この生地を成形して、ホイロ・焼成する。
これにより、玄米粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変されるので、これを用いたパン類において、ローフ比容積が大きく良く膨らんだパンになり、また、クラムも柔らかく、すだちも良好で、品質の良いものとなる。
【0021】
(3)キビ粉の製造方法
図2に示す工程に従う。
(3−1)温水処理工程
原料キビ粉に水を加えて温水処理する。温水処理は、45℃以上60℃未満の温度、望ましくは、50℃±5℃の温度で、6〜48時間、望ましくは、12〜24時間行なう。
また、温水処理は以下の条件に従う。
即ち、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 30.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.00〜50.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 2.00deg/min
(8) 発散防止スリット幅 1.00deg
(9) 散乱防止スリット幅 1.00deg
(10)受光防止スリット幅 0.30mm
(11)計測装置 シンチレーションカウンタ
にして上記キビ粉をX線回折強度を測定したときに、
▲1▼デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.157〜0.164、望ましくは、0.159〜0.162
▲2▼回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.408〜0.415、望ましくは、0.410〜0.413
▲3▼回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.163〜0.170、望ましくは、0.165〜0.168
の少なくともいずれか2つを示すように原料キビ粉を温水処理する。
【0022】
また、温水処理は以下の条件に従う。
迅速粘度測定装置(ラピッド・ビスコアナライザーRVA- 4、Newport Scientific Rty.Ltd.社製)により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量としてキビ粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 キビ粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置してキビ粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にしてキビ粉の糊化特性を測定したときに、
最高粘度と最低粘度との差であるブレークダウンが20〜100RVU、望ましくは、55〜95RVUで、かつ、最高粘度が30〜150RVU、望ましくは、70〜130RVU及び最低粘度が4〜40RVU、望ましくは、12〜32RVUのいずれかを示すように原料キビ粉を温水処理する。
【0023】
(3−2)乾燥工程
温水処理した原料キビを乾燥する。
(3−3)粉砕工程
乾燥工程で乾燥された原料キビを粉砕する。
このようにして製造されたキビ粉においては、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその粘度が適正範囲で低くなるように改変される。
【0024】
(4)キビ粉を用いたパン類
上記のキビ粉を用いて、パン類を製造する。例えば、キビ粉30%(w/w)と強力小麦粉70%(w/w)とを混ぜ、これに酵母その他の副原料及び水を加えて混捏して、生地を調製し、この生地を成形して、ホイロ・焼成する。
これにより、キビ粉において、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変されるので、これを用いたパン類において、ローフ比容積が大きく良く膨らんだパンになり、また、クラムも柔らかく、すだちも良好で、品質の良いものとなる。
【0025】
【実施例】
以下本発明の実施例を比較例とともに説明する。実施例及び比較例については、X線回折装置によって測定を行ないX線回折線の相対ピーク強度を算出した。また、迅速粘度測定装置(ラピッド・ビスコアナライザーRVA- 4、Newport Scientific Rty.Ltd.社製)での粘度特性を測定した。
[実施例1]
(1)玄米粉の製造
(1−1)湿熱処理工程
原料玄米として、1998年秋田県産あきたこまちの玄米を用いた。
オートクレーブには、株式会社トミー精工製の「SS−320BH」を用いた。
湿熱処理は、100℃で、60分間行なった。
(1−2)乾燥工程
25℃の恒温室内に3時間静置して行なった,
(1−3)粉砕工程
粉砕機としてドイツ・Retsch社製の「ZM1」を用いた。
乾燥された原料玄米を粉砕した。
(2)玄米粉を用いたパン類
上記の玄米粉を用いて、パン類を製造する。玄米粉30%(w/w)と強力小麦粉70%(w/w)とを混ぜ、これに酵母その他の副材料を加えた。成分を図4に示す。
そして、図5に示す工程に従って、パンを調製した。
【0026】
[比較例1]
上記と同様の原料玄米で未処理のものを用い、上記と同様に粉砕した。また、これを用いて上記と同様にパンを作成した。
[比較例2]
上記と同様の原料玄米を160℃で、60分間乾熱処理し、上記と同様に粉砕した。また、これを用いて上記と同様にパンを作成した。
[比較例3]
上記と同様の原料玄米を120℃で、60分間、実施例1と同様に湿熱処理し、同様に粉砕した。また、これを用いて上記と同様にパンを作成した。
【0027】
この実施例1及び比較例1乃至3に係る玄米粉について、X線回折装置によってX線回折測定を行ない相対ピーク強度を算出した。また、迅速粘度測定装置での粘度特性を測定した。
また、パンについて、以下の測定を行ない、評価した。
(i)ローフ比容積
ローフ重量とローフ体積から、比容積=ローフ体積/ローフ重量を算出した。5個のローフの平均値ならびに標準偏差をとった。
(ii)クラム硬さ
ローフの両端を10mm切除して、厚さ25mmスライス片を用意した。
これは、5つのローフについて夫々3スライス片を抽出し、全部で15片用意した。
これらについて、AACC標準法74−09に準拠(円板状プランジャ(No.3,φ16mm×H25mm),圧縮速度1mm・s-1,硬さをひずみ0.25での圧縮力と定義)して硬さを測定した。
(iii)すだちの良否
ローフの両端を10mm切除して、厚さ25mmスライス片を用意した。
これは、5つのローフについて夫々3スライス片を抽出し、全部で15片用意した。
これらについて、画像処理装置(解析システムドットアナライザー DA−5000S 王子計測機器(株)製)を用いて内相全体を1画像として記録し、すだちの良否を目視判定した(−2〜+2の5段階カテゴリー尺度)。
【0028】
結果を図6に示す。これから分かるように、実施例1では、比較例に比較して、製パン特性が極めて良い。従って、本発明に係る玄米粉が、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変されたことが分かる。また、これを用いたパン類において、ローフ比容積が大きく良く膨らんだパンになり、また、クラムも柔らかく、すだちも良好で、品質の良いものとなる。
【0029】
[実施例2]
(1)キビ粉の製造
(1−1)温水処理工程
原料キビとして、1998年北海道産キビ(Panicum miliaceum L.)を用いた。水分、タンパク質(窒素−タンパク質換算係数6.25)、脂質、灰分含量はそれぞれ10.6、11.7、2.8、0.9(%,w/w)であった。
温水処理機として恒温水槽(NTT−1200,東京理科機械(株))を使用した。
温水処理は、50℃で、720分間(12時間)行なった。
(1−2)乾燥工程
乾燥機として共和真空技術(株)製の真空凍結乾燥機「RLEII−103」を用いた。
凍結乾燥は、温水処理した原料キビを−45℃以下まで冷却して凍結させ、減圧雰囲気(13Pa以下)にして、加熱速度60℃/minで−40℃から20℃まで加熱し、その温度で60分間保持した後に加熱速度10℃/minで30℃まで加熱して60分間保持するという温度プログラムで粉砕に適した水分含量になるように行なった。
(1−3)粉砕工程
粉砕機としてドイツ・Retsch社製の「ZM1」を用いた。
(2)キビ粉を用いたパン類
上記のキビ粉を用いて、上記と同様にパン類を製造した。
【0030】
[実施例3]
温水処理を、50℃で、2880分間(48時間)行なった。他は実施例2と同じである。
[比較例4]
上記と同様の原料キビで未処理のものを用い、上記と同様に粉砕した。また、これを用いて上記と同様にパンを作成した。
[比較例5]
上記と同様の原料キビを120℃で、20分間、湿熱処理し、上記と同様に粉砕した。また、これを用いて上記と同様にパンを作成した。
[比較例6]
上記と同様の原料キビを60℃で、2880分間(48時間)、実施例2,3と同様に処理した。また、これを用いて上記と同様にパンを作成した。
【0031】
この実施例2,3及び比較例4乃至6に係るキビ粉について、X線回折装置によってX線回折測定を行ない相対ピーク強度を算出した。また、迅速粘度測定装置での粘度特性を測定した。
また、パンについても、玄米と同様の測定を行ない、評価した。
結果を図7に示す。これから分かるように、実施例2,3では、比較例に比較して、製パン特性が極めて良い。従って、本発明に係るキビ粉が、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変されたことが分かる。また、これを用いたパン類において、ローフ比容積が大きく良く膨らんだパンになり、また、クラムも柔らかく、すだちも良好で、品質の良いものとなる。
【0032】
【発明の効果】
以上説明したように、本発明の玄米粉の製造方法,キビ粉の製造方法によれば、適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変することができた。その結果、物理・化学的処理によりデンプンの糊化特性を改変した米粉,キビ粉ができ、特に、小麦粉中のデンプン糊化特性に近い糊化特性を持ち小麦粉代替可能性の高いことが示され、種々の加工食品へ適用が広がる。
また、本発明の玄米粉を用いたパン類,キビ粉を用いたパン類によれば、玄米粉及びキビ粉が適正範囲でデンプンが糊化しにくく改変でき、糊化してもその糊化液の粘度が適正範囲で低くなるように改変されるので、これを用いたパン類において、ローフ比容積が大きく良く膨らんだパンになり、また、クラムも柔らかく、すだちも良好で、品質の良いものとすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る玄米粉の製造方法を示す工程図である。
【図2】本発明の実施の形態に係るキビ粉の製造方法を示す工程図である。
【図3】X線回折におけるデンプンのX線回折ピークを示すグラフ図である。
【図4】パン類を製造する際の材料配分を示す表図である。
【図5】パン類を製造する際の工程条件を示す表図である。
【図6】本発明の実施例に係る玄米粉の製造方法において、玄米粉及びこれを用いたパンの物性測定結果を比較例とともに示す表図である。
【図7】本発明の実施例に係るキビ粉の製造方法において、キビ粉及びこれを用いたパンの物性測定結果を比較例とともに示す表図である。
【符号の説明】
(1−1) 湿熱処理工程
(1−2) 乾燥工程
(1−3) 粉砕工程
(3−1) 温水処理工程
(3−2) 乾燥工程
(3−3) 粉砕工程
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing brown rice flour obtained by wet heat treatment, breads using the brown rice flour, a method for producing millet flour obtained by hot water treatment, and breads using the milled flour.
[0002]
[Prior art]
The current environment surrounding rice is faced with harsh conditions due to falling prices due to surplus rice, and its consumption is decreasing, and the use of rice, the main grain, is expected.
In addition, cereals have been sold in the natural food corners of pharmacies, mass retailers, department stores, etc. as food materials for allergy holders such as atopy caused by food. In recent years, there has been a movement to review the nutritional function of millet grains due to increased health consciousness, and there is a possibility that demand for general consumers will expand not only for special applications such as highly allergic food ingredients but also as `` old and new food ingredients '' I have a secret. Millet has a high content of vitamin B group, dietary fiber, trace elements and the like, and various functional properties are expected.
Against this background, recently, for example, the use of other cereals such as brown rice and millet has been studied in place of wheat flour used as a raw material for bread and the like. However, even if it is simply replaced, it is inferior to wheat in terms of quality, so it is modified by applying a physical treatment.
[0003]
Conventionally, for example, in brown rice, the following modification techniques are known (for example, published in JP-A-4-45757).
In this, raw brown rice is boiled at 120 ° C. to 130 ° C. for 100 to 200 seconds while stirring in a pressure-tight sealed container, and this is crushed to give brown rice flour. And the modification | denaturation rate of the protein derived from raw material brown rice and vitamins is less than 5%, and it is trying for the gelatinization degree of starch to be about 20%.
The brown rice flour modified in this way is applied to processed foods such as confectionery such as rice crackers and cookies.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional brown rice flour, for example, when it is used for breads, it is easy to gelatinize, the viscosity of the bread dough increases more than necessary, and the dough does not swell well, or the crumb becomes hard. , There was a problem that they all tended to get worse. In addition, there is a problem that millet as a minor grain has the same tendency.
The present invention has been made in view of such problems, and can be modified so that it is difficult to gelatinize within an appropriate range and can be modified so that its viscosity is reduced within an appropriate range even when gelatinized, and millet powder It aims at providing the manufacturing method of.
Another object of the present invention is to provide breads using brown rice flour and breads using millet powder produced by this production method.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, the method for producing brown rice flour of the present invention includes a wet heat treatment step in which raw brown rice is directly heat-treated, a drying step in which raw brown rice that has been heat-treated in the wet heat treatment step is dried, In the method for producing brown rice flour, comprising the step of grinding the raw brown rice dried in the drying step to obtain brown rice flour,
The wet heat treatment is performed using an X-ray diffractometer with the measurement conditions of the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 300.0mA
(4) Scanning axis 2θ / θ
(5) Scanning angle 5.02-35.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 5.00deg / min
(8) Divergence prevention slit width 0.50deg
(9) Anti-scattering slit width 0.50deg
(10) Light receiving prevention slit width 0.15mm
(11) Measuring device When measuring the X-ray diffraction intensity of the brown rice flour using a scintillation counter,
(1) The relative peak intensity at diffraction peak 3b derived from starch (diffraction angle 2θ is 15 deg) is 0.012 to 0.023,
(2) The relative peak intensity at diffraction peaks 4a-4b (diffraction angle 2θ is 17-18 deg) is 0.030-0.070.
(3) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.030 to 0.060.
(Here, the relative peak intensity is a relative value of each diffraction peak intensity with respect to the sum of all diffraction peak intensities in the net X-ray diffraction pattern obtained by subtracting the baseline fluctuation from the obtained X-ray diffraction pattern. )
The raw brown rice is configured to be subjected to a wet heat treatment so as to show at least any two of the above.
And if necessary,
(1) The relative peak intensity at diffraction peak 3b (diffraction angle 2θ is 15 deg) derived from starch is 0.018 to 0.022.
(2) The relative peak intensity at diffraction peak 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.050 to 0.065.
(3) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.040 to 0.055.
The raw brown rice is configured to be heat-treated so as to show at least any two of the above.
[0006]
Here, as shown in FIG. 3, the diffraction peaks derived from starch are 3b (diffraction angle 2θ is 15 deg), 4a-4b (diffraction angle 2θ is 17 to 18 deg), 6a (diffraction angle 2θ is 23 deg). It is known that if the relative peak intensity is too high or too low, the gelatinization temperature of the starch is low, the viscosity of the gelatinization solution of the starch is high, and it is good in the above appropriate range .
Thereby, in brown rice flour, starch can be modified so as not to be gelatinized in an appropriate range, and even when gelatinized, the viscosity of the gelatinized solution is modified to be low in the appropriate range.
[0007]
In addition, a wet heat treatment step in which the raw brown rice is heat-treated as it is, a drying step in which the raw brown rice that has been heat-treated in the wet heat treatment step is dried, and a pulverization step in which the raw brown rice dried in the drying step is crushed to obtain brown rice flour In the method for producing brown rice flour comprising
The wet heat treatment is performed with a rapid viscosity measuring device, and the measurement conditions of the rapid viscosity measuring device are
(1) Sample Brown rice flour as dry weight 3.00g
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Brown rice powder is put in a sample container, 25.0 g of 40 ° C demineralized water is added to it, and it is stirred manually for 1 minute in a genuine paddle, and left for 2 minutes to absorb brown rice flour. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. At 30 ° C. for 7 minutes and measuring the gelatinization characteristics of the brown rice flour,
The raw brown rice is wet-heat treated so that the gelatinization start temperature is 67 to 75 ° C.
Or
The raw brown rice is subjected to a heat treatment so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, is 30 to 110 RVU, and the highest viscosity is 185 to 320 RVU and the lowest viscosity is 70 to 150 RVU. Yes.
And if necessary, the raw material brown rice is wet-heat treated so that the gelatinization start temperature is 70 to 74 ° C.,
Or
The raw brown rice is subjected to a heat treatment so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, is 60 to 90 RVU, and the highest viscosity is any of 190 to 280 RVU and the lowest viscosity is 90 to 140 RVU. Yes.
[0008]
Here, even if the gelatinization start temperature of starch or the viscosity of starch gelatinization solution is too high or too low, the properties become insufficient, and it is good in the above-mentioned appropriate range.
Thereby, in brown rice flour, starch can be modified so as not to be gelatinized in an appropriate range, and even when gelatinized, the viscosity of the gelatinized solution is modified to be low in the appropriate range.
[0009]
And, in the present invention, the upper Symbol wet heat treatment process, an autoclave, at a temperature below 120 ° C. 90 ° C. or higher, and configured to perform 50 to 90 minutes. If it is outside this temperature, the desired product cannot be obtained.
Further, if necessary, the wet heat treatment step is performed at a temperature of 100 ° C. ± 4 ° C. It becomes a more desirable range, and can be modified so that starch can be hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid can be modified within an appropriate range.
Further, the wet heat treatment step is performed for 60 to 80 minutes as necessary. It becomes a more desirable range, and can be modified so that starch can be hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid can be modified within an appropriate range.
[0010]
And the breads using the brown rice flour of the present invention for achieving the above object, bread dough using brown rice flour prepared by preparing bread dough using brown rice flour as a raw material, forming the dough and proofing and baking In the above, the brown rice flour is subjected to a wet heat treatment step in which the raw brown rice is subjected to a wet heat treatment, a drying step in which the raw brown rice subjected to the heat treatment in the wet heat treatment step is dried, and the raw brown rice dried in the drying step is pulverized It is manufactured through a pulverizing step for obtaining a powder, and the wet heat treatment is configured in the same manner as in the method for manufacturing brown rice flour.
As a result, in brown rice flour, starch can be modified so that it is difficult to gelatinize in an appropriate range, and even when gelatinized, the viscosity of the gelatinized solution is modified to be low in the appropriate range. The bread has a large specific volume and is well swelled, and the crumbs are soft and succulent and good quality.
[0011]
In addition, the method for producing millet powder of the present invention for achieving the above object includes a warm water treatment process for treating raw millet powder with warm water, and a drying process for drying the millet powder treated with warm water in the warm water treatment process. In a method for producing millet powder, comprising a milling step of milling raw millet powder dried in the drying step to obtain millet powder,
The above hot water treatment is performed using an X-ray diffractometer with the measurement conditions of the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 30.0mA
(4) Scanning axis 2θ / θ
(5) Scan angle 5.00-50.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 2.00deg / min
(8) Divergence prevention slit width 1.00deg
(9) Anti-scattering slit width 1.00deg
(10) Light receiving prevention slit width 0.30mm
(11) Measuring device When measuring the X-ray diffraction intensity of the millet powder using a scintillation counter,
(1) The relative peak intensity at the diffraction peak 3b derived from starch (diffraction angle 2θ is 15 deg) is 0.157 to 0.164.
(2) The relative peak intensity at the diffraction peaks 4a-4b (diffraction angle 2θ is 17-18 deg) is 0.408-0.415.
(3) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.163 to 0.170.
(Here, the relative peak intensity is a relative value of each diffraction peak intensity with respect to the sum of all diffraction peak intensities in the net X-ray diffraction pattern obtained by subtracting the baseline fluctuation from the obtained X-ray diffraction pattern. )
The raw millet powder is configured to be treated with warm water so that at least any two of them are shown.
And if necessary,
(1) The relative peak intensity at the diffraction peak 3b derived from starch (diffraction angle 2θ is 15 deg) is 0.159 to 0.162.
(2) The relative peak intensity at the diffraction peaks 4a-4b (diffraction angle 2θ is 17-18 deg) is 0.410-0.413.
(3) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.165 to 0.168.
The raw millet powder is configured to be treated with warm water so that at least any two of them are shown.
[0012]
Here, as shown in FIG. 3, the diffraction peaks derived from starch are 3b (diffraction angle 2θ is 15 deg), 4a-4b (diffraction angle 2θ is 17 to 18 deg), 6a (diffraction angle 2θ is 23 deg). It is known that if the relative peak intensity is too high or too low, the gelatinization temperature of the starch is low, the viscosity of the gelatinization solution of the starch is high, and it is good in the above appropriate range .
Thereby, in millet powder, starch can be modified so that it is difficult to gelatinize in an appropriate range, and even if gelatinized, the viscosity of the gelatinized solution is modified to be low in the appropriate range.
[0013]
Also, a hot water treatment process for treating raw millet powder with warm water, a drying process for drying the raw millet powder treated with hot water in the warm water treatment process, and milling the raw millet powder dried in the drying process to obtain millet powder In a method for producing millet powder comprising a grinding step,
The hot water treatment is performed using a rapid viscosity measuring device, and the measurement conditions of the rapid viscosity measuring device are
(1) Sample Millet powder 3.00g as dry matter weight
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Put millet powder in a sample container, add 25.0 g of 40 ° C demineralized water, hand-stir in a genuine paddle for 1 minute, and let stand for 2 minutes to absorb millet powder. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. At 30 ° C. for 7 minutes and measuring the pasting characteristics of the millet powder,
The raw millet powder is treated with warm water so that the breakdown, which is the difference between the maximum viscosity and the minimum viscosity, is 20 to 100 RVU, and the maximum viscosity is 30 to 150 RVU and the minimum viscosity is 4 to 40 RVU. ing.
And, if necessary, the raw millet powder so that the breakdown, which is the difference between the maximum viscosity and the minimum viscosity, is 55 to 95 RVU, the maximum viscosity is 70 to 130 RVU, and the minimum viscosity is 12 to 32 RVU. Is configured to perform hot water treatment.
[0014]
Here, even if the viscosity of the gelatinized solution of starch is too high or too low, the properties become insufficient, and it is good in the above-mentioned appropriate range.
Thereby, in millet powder, starch can be modified so that it is difficult to gelatinize in an appropriate range, and even if gelatinized, the viscosity of the gelatinized solution is modified to be low in the appropriate range.
[0015]
And, in the present invention, the upper Symbol hot water treatment step at a temperature below 45 ° C. or higher 60 ° C., are configured to perform 6-48 hours. If it is outside this temperature, the desired product cannot be obtained.
Moreover, it is set as the structure which performs the said warm water treatment process at the temperature of 50 degreeC +/- 5 degreeC as needed. It becomes a more desirable range, and can be modified so that starch can be hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid can be modified within an appropriate range.
Furthermore, it is set as the structure which performs the said warm water treatment process for 12 to 24 hours as needed. It becomes a more desirable range, and can be modified so that starch can be hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid can be modified within an appropriate range.
[0016]
In addition, breads using millet powder of the present invention for achieving the above object are breads using millet powder obtained by preparing bread dough using millet powder as a raw material, forming the dough, and proofing and baking. In the class, the millet powder is pulverized with a warm water treatment process for treating the millet powder with warm water, a drying process for drying the millet powder treated with warm water in the warm water treatment process, and the millet powder dried in the drying process. The hot water treatment is configured in the same manner as the above milling powder manufacturing method.
As a result, in millet powder, starch can be modified to be difficult to gelatinize in an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid is modified to be low in the appropriate range. The bread has a large specific volume and is well swelled, and the crumbs are soft and succulent and good quality.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, based on an accompanying drawing, the manufacturing method of the brown rice flour concerning the embodiment of the present invention, bread using brown rice flour, the manufacturing method of millet flour, and bread using millet flour are explained.
(1) Manufacturing method of brown rice flour The process shown in FIG. 1 is followed.
(1-1) Wet heat treatment process The raw brown rice is directly heat treated. The wet heat treatment is performed using an autoclave at a temperature of 90 ° C. or higher and lower than 120 ° C., preferably 100 ° C. ± 4 ° C. The time is 50 to 90 minutes, preferably 60 to 80 minutes.
The wet heat treatment is performed under the following conditions.
That is, the measurement conditions of the X-ray diffractometer are set by the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 300.0mA
(4) Scanning axis 2θ / θ
(5) Scanning angle 5.02-35.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 5.00deg / min
(8) Divergence prevention slit width 0.50deg
(9) Anti-scattering slit width 0.50deg
(10) Light receiving prevention slit width 0.15mm
(11) Measuring device When measuring the X-ray diffraction intensity of the above brown rice flour using a scintillation counter,
(1) The relative peak intensity at diffraction peak 3b derived from starch (diffraction angle 2θ is 15 deg) is 0.012 to 0.023, preferably 0.018 to 0.022,
(2) The relative peak intensity at diffraction peak 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.030 to 0.070, preferably 0.050 to 0.065,
(3) The raw brown rice is wet-heat treated so that the relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.030 to 0.060, preferably 0.040 to 0.055. To do.
[0018]
The wet heat treatment is performed under the following conditions.
That is, with a rapid viscosity measuring device (Rapid Viscoanalyzer RVA-4, manufactured by Newport Scientific Rty. Ltd.)
(1) Sample Brown rice flour as dry weight 3.00g
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Brown rice powder is put in a sample container, 25.0 g of 40 ° C demineralized water is added to it, and it is stirred manually for 1 minute in a genuine paddle, and left for 2 minutes to absorb brown rice flour. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. At 30 ° C. for 7 minutes and measuring the gelatinization characteristics of the brown rice flour,
The raw brown rice is wet-heat treated so that the gelatinization start temperature is 67 to 75 ° C, preferably 70 to 74 ° C.
Further, the breakdown, which is the difference between the maximum viscosity and the minimum viscosity, is 30 to 110 RVU, preferably 60 to 90 RVU, and the maximum viscosity is 185 to 320 RVU, preferably 190 to 280 RVU and the minimum viscosity is 70 to 150 RVU, preferably The raw brown rice is wet-heat treated so as to indicate any of 90 to 140 RVU.
Thereby, in brown rice flour, starch can be modified so that it is difficult to gelatinize in an appropriate range, and even if gelatinized, the viscosity is modified to be low in the appropriate range.
[0019]
(1-2) Drying process The raw brown rice that has been heat-moisture treated in the heat-moisture treatment process is allowed to stand for 3 hours in an environment of 25 ° C. and dried.
(1-3) Crushing process The raw brown rice dried in the drying process is crushed.
The brown rice flour produced in this way can be modified so that starch can be hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid is lowered within the appropriate range.
[0020]
(2) Breads using brown rice flour Breads are produced using the brown rice flour described above. For example, 30% (w / w) brown rice flour and 70% (w / w) strong wheat flour are mixed with yeast and other secondary ingredients and water to prepare a dough, and this dough is molded. Then, proofing and firing.
As a result, in brown rice flour, starch can be modified so that it is difficult to gelatinize in an appropriate range, and even when gelatinized, the viscosity of the gelatinized solution is modified to be low in the appropriate range. The bread has a large specific volume and is well swelled, and the crumbs are soft and succulent and good quality.
[0021]
(3) Millet powder manufacturing method The process shown in FIG. 2 is followed.
(3-1) Warm water treatment process Hot water treatment is performed by adding water to the raw material millet powder. The hot water treatment is performed at a temperature of 45 ° C. or more and less than 60 ° C., preferably 50 ° C. ± 5 ° C., for 6 to 48 hours, preferably 12 to 24 hours.
The hot water treatment is subject to the following conditions.
That is, the measurement conditions of the X-ray diffractometer are set by the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 30.0mA
(4) Scanning axis 2θ / θ
(5) Scan angle 5.00-50.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 2.00deg / min
(8) Divergence prevention slit width 1.00deg
(9) Anti-scattering slit width 1.00deg
(10) Light receiving prevention slit width 0.30mm
(11) Measuring device When measuring the X-ray diffraction intensity of the above millet powder using a scintillation counter,
(1) The relative peak intensity at diffraction peak 3b derived from starch (diffraction angle 2θ is 15 deg) is 0.157 to 0.164, preferably 0.159 to 0.162.
(2) Relative peak intensity at diffraction peak 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.408 to 0.415, preferably 0.410 to 0.413.
(3) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.163 to 0.170, preferably 0.165 to 0.168.
The raw millet powder is treated with warm water so that at least any two of them are shown.
[0022]
The hot water treatment is subject to the following conditions.
Using a rapid viscosity measuring device (Rapid Visco Analyzer RVA-4, manufactured by Newport Scientific Rty. Ltd.), the measurement conditions of the rapid viscosity measuring device were measured.
(1) Sample Millet powder 3.00g as dry matter weight
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Put millet powder in a sample container, add 25.0 g of 40 ° C demineralized water, hand-stir in a genuine paddle for 1 minute, and let stand for 2 minutes to absorb millet powder. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. When measuring the pasting characteristics of millet powder by holding at 30 ° C for 7 minutes,
The breakdown between the maximum viscosity and the minimum viscosity is 20 to 100 RVU, preferably 55 to 95 RVU, and the maximum viscosity is 30 to 150 RVU, preferably 70 to 130 RVU and the minimum viscosity is 4 to 40 RVU, preferably The raw millet powder is treated with warm water to indicate any of 12 to 32 RVU.
[0023]
(3-2) Drying process The raw material mill treated with warm water is dried.
(3-3) Grinding process The raw material mill dried in the drying process is pulverized.
Millet powder produced in this manner can be modified so that starch is difficult to gelatinize within an appropriate range, and even when gelatinized, its viscosity is lowered within the appropriate range.
[0024]
(4) Breads using millet powder Breads are produced using the above millet powder. For example, millet powder 30% (w / w) and strong wheat flour 70% (w / w) are mixed, yeast and other secondary ingredients and water are added and kneaded to prepare the dough, and this dough is molded. Then, proofing and firing.
As a result, in millet powder, starch can be modified to be difficult to gelatinize in an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid is modified to be low in the appropriate range. The bread has a large specific volume and is well swelled, and the crumbs are soft and succulent and good quality.
[0025]
【Example】
Examples of the present invention will be described below together with comparative examples. About the Example and the comparative example, it measured with the X-ray-diffraction apparatus and computed the relative peak intensity of the X-ray-diffraction line. In addition, the viscosity characteristics were measured with a rapid viscosity measuring device (Rapid Visco Analyzer RVA-4, manufactured by Newport Scientific Rty. Ltd.).
[Example 1]
(1) Manufacture of brown rice flour (1-1) Wet heat treatment process Brown rice produced in Akita Prefecture in 1998 was used as raw rice.
“SS-320BH” manufactured by Tommy Seiko Co., Ltd. was used for the autoclave.
The wet heat treatment was performed at 100 ° C. for 60 minutes.
(1-2) Drying step This was carried out by leaving it in a constant temperature room at 25 ° C. for 3 hours.
(1-3) Crushing process “ZM1” manufactured by Retsch, Germany was used as a crusher.
The dried raw brown rice was crushed.
(2) Breads using brown rice flour Breads are produced using the brown rice flour described above. Brown rice flour 30% (w / w) and strong wheat flour 70% (w / w) were mixed, and yeast and other auxiliary materials were added thereto. The components are shown in FIG.
And bread was prepared according to the process shown in FIG.
[0026]
[Comparative Example 1]
The raw material brown rice similar to the above was used and untreated, and pulverized in the same manner as described above. In addition, using this, bread was prepared in the same manner as described above.
[Comparative Example 2]
Raw brown rice similar to the above was subjected to a dry heat treatment at 160 ° C. for 60 minutes and pulverized in the same manner as described above. In addition, using this, bread was prepared in the same manner as described above.
[Comparative Example 3]
Raw brown rice similar to the above was wet-heat treated at 120 ° C. for 60 minutes in the same manner as in Example 1 and pulverized in the same manner. In addition, using this, bread was prepared in the same manner as described above.
[0027]
With respect to the brown rice flour according to Example 1 and Comparative Examples 1 to 3, X-ray diffraction measurement was performed by an X-ray diffractometer to calculate a relative peak intensity. Moreover, the viscosity characteristic in a rapid viscosity measuring apparatus was measured.
The bread was measured and evaluated as follows.
(I) Specific volume = loaf volume / loaf weight was calculated from loaf specific volume loaf weight and loaf volume. The average of 5 loaf as well as the standard deviation were taken.
(Ii) Both ends of the crumb hardness loaf were excised 10 mm to prepare slices having a thickness of 25 mm.
For this, 3 slice pieces were extracted from each of the 5 loaf, and 15 pieces were prepared in total.
In accordance with AACC standard method 74-09 (disc-shaped plunger (No. 3, φ16 mm × H25 mm), compression speed 1 mm · s −1 , hardness is defined as compression force at strain 0.25) Hardness was measured.
(Iii) 10 mm of both ends of the right and wrong loaf of Sudachi were cut off to prepare a slice piece having a thickness of 25 mm.
For this, 3 slice pieces were extracted from each of the 5 loaf, and 15 pieces were prepared in total.
About these, the whole internal phase was recorded as one image using the image processing apparatus (Analysis system dot analyzer DA-5000S made by Oji Scientific Instruments Co., Ltd.), and the quality of Sudachi was judged visually (-5 to -2 to +2). Category scale).
[0028]
The results are shown in FIG. As can be seen, in Example 1, the bread-making characteristics are very good as compared with the comparative example. Therefore, it can be seen that the brown rice flour according to the present invention can be modified such that starch is hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid is modified within the appropriate range. Moreover, in breads using this, the loaf specific volume becomes large and well swelled, and the crumbs are soft, the sudoku is good, and the quality is good.
[0029]
[Example 2]
(1) Manufacture of millet powder (1-1) Warm water treatment process 1998 millet millet (Panicum milaceum L.) was used as raw material millet. The water content, protein content (nitrogen-protein conversion factor 6.25), lipid content, and ash content were 10.6, 11.7, 2.8, and 0.9 (%, w / w), respectively.
A constant temperature water tank (NTT-1200, Tokyo Science Machine Co., Ltd.) was used as a hot water treatment machine.
The hot water treatment was performed at 50 ° C. for 720 minutes (12 hours).
(1-2) Drying Step A vacuum freeze dryer “RLEII-103” manufactured by Kyowa Vacuum Technology Co., Ltd. was used as a dryer.
In freeze-drying, raw water-treated millet is cooled to −45 ° C. or lower and frozen, and then heated in a reduced pressure atmosphere (13 Pa or lower) from −40 ° C. to 20 ° C. at a heating rate of 60 ° C./min. The temperature was adjusted to a moisture content suitable for pulverization by a temperature program of holding for 60 minutes and then heating to 30 ° C. at a heating rate of 10 ° C./min and holding for 60 minutes.
(1-3) Crushing process “ZM1” manufactured by Retsch, Germany was used as a crusher.
(2) Breads using millet powder Breads were produced in the same manner as described above using the above millet powder.
[0030]
[Example 3]
The hot water treatment was performed at 50 ° C. for 2880 minutes (48 hours). Others are the same as in the second embodiment.
[Comparative Example 4]
A raw millet similar to the above was used and untreated, and pulverized in the same manner as described above. In addition, using this, bread was prepared in the same manner as described above.
[Comparative Example 5]
Raw material mills similar to the above were wet-heat treated at 120 ° C. for 20 minutes and pulverized in the same manner as described above. In addition, using this, bread was prepared in the same manner as described above.
[Comparative Example 6]
The same raw material millet as above was treated in the same manner as in Examples 2 and 3 at 60 ° C. for 2880 minutes (48 hours). In addition, using this, bread was prepared in the same manner as described above.
[0031]
For the milled powder according to Examples 2 and 3 and Comparative Examples 4 to 6, X-ray diffraction measurement was performed by an X-ray diffractometer to calculate the relative peak intensity. Moreover, the viscosity characteristic in a rapid viscosity measuring apparatus was measured.
In addition, bread was measured and evaluated in the same manner as brown rice.
The results are shown in FIG. As can be seen, in Examples 2 and 3, the baking characteristics are very good as compared with the comparative example. Therefore, it can be seen that the milled powder according to the present invention can be modified such that starch is hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid is modified within the appropriate range. Moreover, in breads using this, the loaf specific volume becomes large and well swelled, and the crumbs are soft, the sudoku is good, and the quality is good.
[0032]
【The invention's effect】
As described above, according to the method for producing brown rice flour and the method for producing millet flour of the present invention, starch can be hardly gelatinized within an appropriate range, and even when gelatinized, the viscosity of the gelatinized liquid is low within the appropriate range. Could be modified to As a result, rice flour and millet flour with modified starch gelatinization properties by physical and chemical treatments can be produced, and it is shown that they have gelatinization properties close to starch gelatinization properties in wheat flour and are highly likely to replace flour. Application to various processed foods will expand.
In addition, according to the breads using brown rice flour of the present invention and breads using millet flour, brown rice flour and millet flour can be modified in a suitable range so that starch is difficult to gelatinize, and even if gelatinized, Since the viscosity is modified so as to be low within the proper range, the bread using the bread has a large loaf specific volume and is well swelled. Also, the crumb is soft, the bread is good, and the quality is good. can do.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method for producing brown rice flour according to an embodiment of the present invention.
FIG. 2 is a process diagram showing a method for producing millet powder according to an embodiment of the present invention.
FIG. 3 is a graph showing an X-ray diffraction peak of starch in X-ray diffraction.
FIG. 4 is a table showing material distribution when breads are produced.
FIG. 5 is a table showing process conditions when producing breads.
FIG. 6 is a table showing together with comparative examples the physical property measurement results of brown rice flour and bread using the same in the method for producing brown rice flour according to an example of the present invention.
FIG. 7 is a table showing, together with a comparative example, physical property measurement results of millet powder and bread using the same in the method for producing millet powder according to an example of the present invention.
[Explanation of symbols]
(1-1) Wet heat treatment step (1-2) Drying step (1-3) Grinding step (3-1) Hot water treatment step (3-2) Drying step (3-3) Grinding step

Claims (12)

原料玄米をそのまま湿熱処理する湿熱処理工程と、該湿熱処理工程で湿熱処理された原料玄米を乾燥する乾燥工程と、該乾燥工程で乾燥した原料玄米を粉砕して玄米粉を得る粉砕工程とを備えた玄米粉の製造方法において、
上記湿熱処理工程を、オートクレーブを用い、100℃±4℃の温度で、60〜80分間行なう構成にするとともに、
上記湿熱処理を、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 300.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.02〜35.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 5.00deg/min
(8) 発散防止スリット幅 0.50deg
(9) 散乱防止スリット幅 0.50deg
(10)受光防止スリット幅 0.15mm
(11)計測装置 シンチレーションカウンタ
にして上記玄米粉のX線回折強度を測定したときに、
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.012〜0.023
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.030〜0.070
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.030〜0.060
(ここで、相対ピーク強度とは、得られたX線回折図形からベースラインの変動分を差し引いた正味のX線回折図形におけるすべての回折ピーク強度の合計に対する各回折ピーク強度の相対値である)
の少なくともいずれか2つを示すように該原料玄米を湿熱処理する構成にし、
上記湿熱処理を、迅速粘度測定装置により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量として玄米粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 玄米粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置して玄米粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にして上記玄米粉の糊化特性を測定したときに、
糊化開始温度が67〜75℃になるように上記原料玄米を湿熱処理する、
もしくは、
最高粘度と最低粘度との差であるブレークダウンが30〜110RVUで、かつ、最高粘度が185〜320RVU及び最低粘度が70〜150RVUのいずれかを示すように該原料玄米を湿熱処理する構成にしたことを特徴とする玄米粉の製造方法。
A moist heat treatment process in which the raw brown rice is directly heat-treated, a drying process in which the raw brown rice heat-moisture treated in the moist heat treatment process is dried, and a pulverization process in which the raw brown rice dried in the drying process is crushed to obtain brown rice flour. In the method for producing brown rice flour provided,
While performing the wet heat treatment step at a temperature of 100 ° C. ± 4 ° C. for 60 to 80 minutes using an autoclave,
The wet heat treatment is performed using an X-ray diffractometer with the measurement conditions of the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 300.0mA
(4) Scanning axis 2θ / θ
(5) Scanning angle 5.02-35.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 5.00deg / min
(8) Divergence prevention slit width 0.50deg
(9) Anti-scattering slit width 0.50deg
(10) Light receiving prevention slit width 0.15mm
(11) Measuring device When measuring the X-ray diffraction intensity of the brown rice flour using a scintillation counter,
(i) The relative peak intensity at diffraction peak 3b (diffraction angle 2θ is 15 deg) derived from starch is 0.012 to 0.023.
(ii) The relative peak intensity at diffraction peak 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.030 to 0.070.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.030 to 0.060.
(Here, the relative peak intensity is a relative value of each diffraction peak intensity with respect to the sum of all diffraction peak intensities in the net X-ray diffraction pattern obtained by subtracting the baseline fluctuation from the obtained X-ray diffraction pattern. )
The raw brown rice is configured to be heat-treated so as to show at least any two of
The wet heat treatment is performed with a rapid viscosity measuring device, and the measurement conditions of the rapid viscosity measuring device are
(1) Sample Brown rice flour as dry weight 3.00g
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Brown rice powder is put in a sample container, 25.0 g of 40 ° C demineralized water is added to it, and it is stirred manually for 1 minute in a genuine paddle, and left for 2 minutes to absorb brown rice flour. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. At 30 ° C. for 7 minutes and measuring the gelatinization characteristics of the brown rice flour,
The raw brown rice is wet-heat treated so that the gelatinization start temperature is 67 to 75 ° C.
Or
The raw brown rice was wet-heat treated so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, was 30 to 110 RVU, and the highest viscosity was 185 to 320 RVU and the lowest viscosity was 70 to 150 RVU. A method for producing brown rice flour characterized by the above.
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.018〜0.022
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.050〜0.065
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.040〜0.055
の少なくともいずれか2つを示すように該原料玄米を湿熱処理する構成にしたことを特徴とする請求項1記載の玄米粉の製造方法。
(i) The relative peak intensity at diffraction peak 3b (diffraction angle 2θ is 15 deg) derived from starch is 0.018 to 0.022.
(ii) The relative peak intensity at diffraction peak 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.050 to 0.065.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.040 to 0.055.
The method for producing brown rice flour according to claim 1, wherein the raw brown rice is subjected to a wet heat treatment so as to show at least any two of the above.
糊化開始温度が70〜74℃になるように上記原料玄米を湿熱処理する、
もしくは、
最高粘度と最低粘度との差であるブレークダウンが60〜90RVUで、かつ、最高粘度が190〜280RVU及び最低粘度が90〜140RVUのいずれかを示すように該原料玄米を湿熱処理する構成にしたことを特徴とする請求項1または2記載の玄米粉の製造方法。
The raw brown rice is wet-heat treated so that the gelatinization start temperature is 70 to 74 ° C.,
Or
The raw brown rice was wet-heat treated so that the breakdown, which is the difference between the maximum viscosity and the minimum viscosity, was 60 to 90 RVU, and the maximum viscosity was 190 to 280 RVU and the minimum viscosity was 90 to 140 RVU. The method for producing brown rice flour according to claim 1 or 2, wherein:
玄米粉を原料としてパン生地を調製し、該生地を成形してホイロ・焼成してなる玄米粉を用いたパン類において、
上記玄米粉を、原料玄米をそのまま湿熱処理する湿熱処理工程と、該湿熱処理工程で湿熱処理された原料玄米を乾燥する乾燥工程と、該乾燥工程で乾燥した原料玄米を粉砕して玄米粉を得る粉砕工程とを経て製造し、
上記湿熱処理工程を、オートクレーブを用い、100℃±4℃の温度で、60〜80分間行なう構成にするとともに、
上記湿熱処理を、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 300.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.02〜35.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 5.00deg/min
(8) 発散防止スリット幅 0.50deg
(9) 散乱防止スリット幅 0.50deg
(10)受光防止スリット幅 0.15mm
(11)計測装置 シンチレーションカウンタ
にして上記玄米粉のX線回折強度を測定したときに、
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.012〜0.023
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.030〜0.070
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.030〜0.060
(ここで、相対ピーク強度とは、得られたX線回折図形からベースラインの変動分を差し引いた正味のX線回折図形におけるすべての回折ピーク強度の合計に対する各回折ピーク強度の相対値である)
の少なくともいずれか2つを示すように該原料玄米を湿熱処理する構成にし、
上記湿熱処理を、迅速粘度測定装置により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量として玄米粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 玄米粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置して玄米粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にして上記玄米粉の糊化特性を測定したときに、
糊化開始温度が67〜75℃になるように上記原料玄米を湿熱処理する、
もしくは、
最高粘度と最低粘度との差であるブレークダウンが30〜110RVUで、かつ、最高粘度が185〜320RVU及び最低粘度が70〜150RVUのいずれかを示すように該原料玄米を湿熱処理する構成にしたことを特徴とする玄米粉を用いたパン類。
In bread using unpolished rice flour prepared from unpolished rice flour as a raw material,
The above-mentioned brown rice flour is subjected to a wet heat treatment step in which the raw brown rice is heat-treated as it is, a drying step in which the raw brown rice heat-heated in the wet heat treatment step is dried, and the raw brown rice dried in the drying step is crushed to obtain brown rice flour. Through the pulverization process to obtain,
While performing the wet heat treatment step at a temperature of 100 ° C. ± 4 ° C. for 60 to 80 minutes using an autoclave,
The wet heat treatment is performed using an X-ray diffractometer with the measurement conditions of the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 300.0mA
(4) Scanning axis 2θ / θ
(5) Scanning angle 5.02-35.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 5.00deg / min
(8) Divergence prevention slit width 0.50deg
(9) Anti-scattering slit width 0.50deg
(10) Light receiving prevention slit width 0.15mm
(11) Measuring device When measuring the X-ray diffraction intensity of the brown rice flour using a scintillation counter,
(i) The relative peak intensity at diffraction peak 3b (diffraction angle 2θ is 15 deg) derived from starch is 0.012 to 0.023.
(ii) The relative peak intensity at diffraction peak 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.030 to 0.070.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.030 to 0.060.
(Here, the relative peak intensity is a relative value of each diffraction peak intensity with respect to the sum of all diffraction peak intensities in the net X-ray diffraction pattern obtained by subtracting the baseline fluctuation from the obtained X-ray diffraction pattern. )
The raw brown rice is configured to be heat-treated so as to show at least any two of
The wet heat treatment is performed with a rapid viscosity measuring device, and the measurement conditions of the rapid viscosity measuring device are
(1) Sample Brown rice flour as dry weight 3.00g
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Brown rice powder is put in a sample container, 25.0 g of 40 ° C demineralized water is added to it, and it is stirred manually for 1 minute in a genuine paddle, and left for 2 minutes to absorb brown rice flour. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. At 30 ° C. for 7 minutes and measuring the gelatinization characteristics of the brown rice flour,
The raw brown rice is wet-heat treated so that the gelatinization start temperature is 67 to 75 ° C.
Or
The raw brown rice was wet-heat treated so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, was 30 to 110 RVU, and the highest viscosity was 185 to 320 RVU and the lowest viscosity was 70 to 150 RVU. Bread using brown rice flour characterized by that.
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.018〜0.022
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.050〜0.065
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.040〜0.055
の少なくともいずれか2つを示すように該原料玄米を湿熱処理する構成にした構成にしたことを特徴とする請求項4記載の玄米粉を用いたパン類。
(i) The relative peak intensity at diffraction peak 3b (diffraction angle 2θ is 15 deg) derived from starch is 0.018 to 0.022.
(ii) The relative peak intensity at diffraction peak 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.050 to 0.065.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.040 to 0.055.
5. The bread using brown rice flour according to claim 4 , wherein the raw brown rice is configured to be heat-moisture treated so as to show at least any two of the above.
糊化開始温度が70〜74℃になるように上記原料玄米を湿熱処理する、
もしくは、
最高粘度と最低粘度との差であるブレークダウンが60〜90RVUで、かつ、最高粘度が190〜280RVU及び最低粘度が90〜140RVUのいずれかを示すように該原料玄米を湿熱処理する構成にしたことを特徴とする請求項4または5記載の玄米粉を用いたパン類。
The raw brown rice is wet-heat treated so that the gelatinization start temperature is 70 to 74 ° C.,
Or
The raw brown rice was wet-heat treated so that the breakdown, which is the difference between the maximum viscosity and the minimum viscosity, was 60 to 90 RVU, and the maximum viscosity was 190 to 280 RVU and the minimum viscosity was 90 to 140 RVU. Breads using brown rice flour according to claim 4 or 5 .
原料キビ粉を温水処理する温水処理工程と、該温水処理工程で温水処理された原料キビ粉を乾燥する乾燥工程と、該乾燥工程で乾燥した原料キビ粉を粉砕してキビ粉を得る粉砕工程とを備えたキビ粉の製造方法において、
上記温水処理工程を、50℃±5℃の温度で、12〜24時間行なう構成にするとともに、
上記温水処理を、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 30.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.00〜50.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 2.00deg/min
(8) 発散防止スリット幅 1.00deg
(9) 散乱防止スリット幅 1.00deg
(10)受光防止スリット幅 0.30mm
(11)計測装置 シンチレーションカウンタ
にして上記キビ粉のX線回折強度を測定したときに、
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.157〜0.164
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.408〜0.415
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.163〜0.170
(ここで、相対ピーク強度とは、得られたX線回折図形からベースラインの変動分を差し引いた正味のX線回折図形におけるすべての回折ピーク強度の合計に対する各回折ピーク強度の相対値である)
の少なくともいずれか2つを示すように該原料キビ粉を温水処理する構成にし、
上記温水処理を、迅速粘度測定装置により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量としてキビ粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 キビ粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置してキビ粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にして上記キビ粉の糊化特性を測定したときに、
最高粘度と最低粘度との差であるブレークダウンが20〜100RVUで、かつ、最高粘度が30〜150RVU及び最低粘度が4〜40RVUのいずれかを示すように該原料キビ粉を温水処理する構成にしたことを特徴とするキビ粉の製造方法。
A hot water treatment process for treating raw millet powder with warm water, a drying process for drying the raw millet powder treated with warm water in the warm water treatment process, and a pulverization process for pulverizing the raw millet powder dried in the drying process to obtain millet powder In a method for producing millet powder comprising
The hot water treatment step is performed at a temperature of 50 ° C. ± 5 ° C. for 12 to 24 hours ,
The above hot water treatment is performed using an X-ray diffractometer with the measurement conditions of the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 30.0mA
(4) Scanning axis 2θ / θ
(5) Scan angle 5.00-50.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 2.00deg / min
(8) Divergence prevention slit width 1.00deg
(9) Anti-scattering slit width 1.00deg
(10) Light receiving prevention slit width 0.30mm
(11) Measuring device When measuring the X-ray diffraction intensity of the millet powder using a scintillation counter,
(i) The relative peak intensity at diffraction peak 3b (diffraction angle 2θ is 15 deg) derived from starch is 0.157 to 0.164.
(ii) The relative peak intensity at diffraction peaks 4a-4b (diffraction angle 2θ is 17-18 deg) is 0.408-0.415.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.163 to 0.170.
(Here, the relative peak intensity is a relative value of each diffraction peak intensity with respect to the sum of all diffraction peak intensities in the net X-ray diffraction pattern obtained by subtracting the baseline fluctuation from the obtained X-ray diffraction pattern. )
The raw millet powder is treated with warm water so as to show at least any two of
The hot water treatment is performed using a rapid viscosity measuring device, and the measurement conditions of the rapid viscosity measuring device are
(1) Sample Millet powder 3.00g as dry matter weight
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Put millet powder in a sample container, add 25.0 g of 40 ° C demineralized water, hand-stir in a genuine paddle for 1 minute, and let stand for 2 minutes to absorb millet powder. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. At 30 ° C. for 7 minutes and measuring the pasting characteristics of the millet powder,
The raw millet powder is treated with hot water so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, is 20 to 100 RVU, and the highest viscosity is 30 to 150 RVU and the lowest viscosity is 4 to 40 RVU. A method for producing millet powder characterized by the above.
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.159〜0.162
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.410〜0.413
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.165〜0.168
の少なくともいずれか2つを示すように該原料キビ粉を温水処理する構成にしたことを特徴とする請求項7記載のキビ粉の製造方法。
(i) The relative peak intensity at diffraction peak 3b derived from starch (diffraction angle 2θ is 15 deg) is 0.159 to 0.162.
(ii) The relative peak intensity at the diffraction peaks 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.410 to 0.413.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.165 to 0.168.
The method for producing millet powder according to claim 7, wherein the raw millet powder is treated with warm water so as to show at least any two of the above.
最高粘度と最低粘度との差であるブレークダウンが55〜95RVUで、かつ、最高粘度が70〜130RVU及び最低粘度が12〜32RVUのいずれかを示すように該原料キビ粉を温水処理する構成にしたことを特徴とする請求項7または8記載のキビ粉の製造方法。The raw millet powder is treated with hot water so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, is 55 to 95 RVU, and the highest viscosity is 70 to 130 RVU and the lowest viscosity is 12 to 32 RVU. The method for producing millet powder according to claim 7 or 8, wherein キビ粉を原料としてパン生地を調製し、該生地を成形してホイロ・焼成してなるキビ粉を用いたパン類において、
上記キビ粉を、原料キビ粉を温水処理する温水処理工程と、該温水処理工程で温水処理された原料キビ粉を乾燥する乾燥工程と、該乾燥工程で乾燥した原料キビ粉を粉砕する粉砕工程とを経て製造し、
上記温水処理工程を、50℃±5℃の温度で、12〜24時間行なう構成にするとともに、
上記温水処理を、X線回折装置により、該X線回折装置の測定条件を
(1) X線源 対陰極銅(CuKα線、波長1.54056Å)
(2) 管電圧 40.0kV
(3) 管電流 30.0mA
(4) 走査軸 2θ/θ
(5) 走査角度 5.00〜50.00deg
(6) 走査間隔 0.02deg
(7) 走査速度 2.00deg/min
(8) 発散防止スリット幅 1.00deg
(9) 散乱防止スリット幅 1.00deg
(10)受光防止スリット幅 0.30mm
(11)計測装置 シンチレーションカウンタ
にして上記キビ粉のX線回折強度を測定したときに、
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.157〜0.164
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.408〜0.415
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.163〜0.170
(ここで、相対ピーク強度とは、得られたX線回折図形からベースラインの変動分を差し引いた正味のX線回折図形におけるすべての回折ピーク強度の合計に対する各回折ピーク強度の相対値である)
の少なくともいずれか2つを示すように該原料キビ粉を温水処理する構成にし、
上記温水処理を、迅速粘度測定装置により、該迅速粘度測定装置の測定条件を
(1) 試料 乾物重量としてキビ粉3.00g
(2) 試料容器 装置純正のアルミニウム製円筒型試料容器(φ38mm×H78mm)
(3) 試料分散液 キビ粉を試料容器に入れ、これに40℃の脱塩水25.0gを加え装置純正のパドルにて1分間だけ手攪拌し、2分間静置してキビ粉の吸水状態を揃える。
(4) 測定パドル回転数 160rpm
(5) 測定温度プログラム 50℃で3分間保持した後に加熱速度6℃/minで95℃まで加熱し、95℃で7分間保持し、そして冷却速度6℃/minで30℃まで冷却し、最後に30℃で7分間保持
にして上記キビ粉の糊化特性を測定したときに、
最高粘度と最低粘度との差であるブレークダウンが20〜100RVUで、かつ、最高粘度が30〜150RVU及び最低粘度が4〜40RVUのいずれかを示すように該原料キビ粉を温水処理する構成にしたことを特徴とするキビ粉を用いたパン類。
In breads using millet powder prepared from millet powder as a raw material, forming the dough and baked and baked,
The millet powder is heated in a warm water treatment process for raw millet powder, a drying process for drying the millet powder heated in the warm water treatment process, and a pulverizing process for grinding the millet powder dried in the drying process. And manufactured through
The hot water treatment step is performed at a temperature of 50 ° C. ± 5 ° C. for 12 to 24 hours ,
The above hot water treatment is performed using an X-ray diffractometer with the measurement conditions of the X-ray diffractometer.
(1) X-ray source Anti-cathode copper (CuKα ray, wavelength 1.54056Å)
(2) Tube voltage 40.0kV
(3) Tube current 30.0mA
(4) Scanning axis 2θ / θ
(5) Scan angle 5.00-50.00deg
(6) Scan interval 0.02deg
(7) Scanning speed 2.00deg / min
(8) Divergence prevention slit width 1.00deg
(9) Anti-scattering slit width 1.00deg
(10) Light receiving prevention slit width 0.30mm
(11) Measuring device When measuring the X-ray diffraction intensity of the millet powder using a scintillation counter,
(i) The relative peak intensity at diffraction peak 3b (diffraction angle 2θ is 15 deg) derived from starch is 0.157 to 0.164.
(ii) The relative peak intensity at diffraction peaks 4a-4b (diffraction angle 2θ is 17-18 deg) is 0.408-0.415.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.163 to 0.170.
(Here, the relative peak intensity is a relative value of each diffraction peak intensity with respect to the sum of all diffraction peak intensities in the net X-ray diffraction pattern obtained by subtracting the baseline fluctuation from the obtained X-ray diffraction pattern. )
The raw millet powder is treated with warm water so as to show at least any two of
The hot water treatment is performed using a rapid viscosity measuring device, and the measurement conditions of the rapid viscosity measuring device are
(1) Sample Millet powder 3.00g as dry matter weight
(2) Sample container Genuine aluminum cylindrical sample container (φ38mm × H78mm)
(3) Sample dispersion Put millet powder in a sample container, add 25.0 g of 40 ° C demineralized water, hand-stir in a genuine paddle for 1 minute, and let stand for 2 minutes to absorb millet powder. Align.
(4) Measurement paddle speed 160rpm
(5) Measurement temperature program After holding at 50 ° C. for 3 minutes, heat to 95 ° C. at a heating rate of 6 ° C./min, hold at 95 ° C. for 7 minutes, and cool to 30 ° C. at a cooling rate of 6 ° C./min. At 30 ° C. for 7 minutes and measuring the pasting characteristics of the millet powder,
The raw millet powder is treated with hot water so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, is 20 to 100 RVU, and the highest viscosity is 30 to 150 RVU and the lowest viscosity is 4 to 40 RVU. Breads using millet powder characterized by
(i)デンプンに由来する回折ピーク3b(回折角2θが15deg)における相対ピーク強度が0.159〜0.162
(ii)回折ピーク4a−4b(回折角2θが17〜18deg)における相対ピーク強度が0.410〜0.413
(iii)回折ピーク6a(回折角2θが23deg)における相対ピーク強度が0.165〜0.168
の少なくともいずれか2つを示すように該原料キビ粉を温水処理する構成にしたことを特徴とする請求項10記載のキビ粉を用いたパン類。
(i) The relative peak intensity at diffraction peak 3b derived from starch (diffraction angle 2θ is 15 deg) is 0.159 to 0.162.
(ii) The relative peak intensity at the diffraction peaks 4a-4b (diffraction angle 2θ is 17 to 18 deg) is 0.410 to 0.413.
(iii) The relative peak intensity at the diffraction peak 6a (diffraction angle 2θ is 23 deg) is 0.165 to 0.168.
The bread using millet powder according to claim 10, wherein the raw millet powder is treated with warm water so as to show at least any two of the above.
最高粘度と最低粘度との差であるブレークダウンが55〜95RVUで、かつ、最高粘度が70〜130RVU及び最低粘度が12〜32RVUのいずれかを示すように該原料キビ粉を温水処理する構成にしたことを特徴とする請求項10または11記載のキビ粉を用いたパン類。The raw millet powder is treated with hot water so that the breakdown, which is the difference between the highest viscosity and the lowest viscosity, is 55 to 95 RVU, and the highest viscosity is 70 to 130 RVU and the lowest viscosity is 12 to 32 RVU. Breads using millet powder according to claim 10 or 11 , wherein
JP2000235853A 2000-08-03 2000-08-03 Method for producing brown rice flour, bread using brown rice flour, method for producing millet flour and bread using millet flour Expired - Fee Related JP3780154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235853A JP3780154B2 (en) 2000-08-03 2000-08-03 Method for producing brown rice flour, bread using brown rice flour, method for producing millet flour and bread using millet flour

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235853A JP3780154B2 (en) 2000-08-03 2000-08-03 Method for producing brown rice flour, bread using brown rice flour, method for producing millet flour and bread using millet flour

Publications (2)

Publication Number Publication Date
JP2002045130A JP2002045130A (en) 2002-02-12
JP3780154B2 true JP3780154B2 (en) 2006-05-31

Family

ID=18727993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235853A Expired - Fee Related JP3780154B2 (en) 2000-08-03 2000-08-03 Method for producing brown rice flour, bread using brown rice flour, method for producing millet flour and bread using millet flour

Country Status (1)

Country Link
JP (1) JP3780154B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047561A1 (en) 2002-11-25 2004-06-10 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Method of producing rice flour and use thereof
US20100310747A1 (en) * 2009-06-05 2010-12-09 Brunob Ii B.V. Gluten-Free Bakery Products
JP5885913B2 (en) * 2010-08-26 2016-03-16 株式会社ブルボン Method for processing rice grain, method for controlling particle size and particle size distribution of rice flour, and method for controlling gelatinization degree and viscosity of rice flour
JP2013055889A (en) * 2011-09-07 2013-03-28 Nippon Flour Mills Co Ltd Non-waxy rice flour for sponge cake and production method thereof
JP5943177B2 (en) * 2011-10-18 2016-06-29 日本製粉株式会社 Rice flour for bread
JP5943184B2 (en) * 2012-03-02 2016-06-29 日本製粉株式会社 Baked confectionery using rice flour and method for producing the same
JP5912954B2 (en) * 2012-07-18 2016-04-27 株式会社日清製粉グループ本社 Heat-treated rice flour composition and method for producing confectionery or flour
JP5834160B1 (en) * 2015-06-26 2015-12-16 山中 直樹 Bread and method for producing the same

Also Published As

Publication number Publication date
JP2002045130A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
Inglett et al. Physical properties of gluten-free sugar cookies made from amaranth–oat composites
CN108783207B (en) High-content buckwheat fine dried noodles and making method thereof
Luo et al. The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill
NO164875B (en) PROCEDURE FOR PASTA PREPARATION.
Young et al. Effect of roasting as a premilling treatment on the functional and bread baking properties of whole yellow pea flour
Park et al. Effects of rice flour size fractions on gluten free rice bread
JP3780154B2 (en) Method for producing brown rice flour, bread using brown rice flour, method for producing millet flour and bread using millet flour
US20070116844A1 (en) Method for manufacturing rice flour having good rheological and sensory characteristics, rice flour produced by the same methods and instant rice soup comprising the rice flour
JP2015536151A (en) Rice dough composition and rice dough formed therefrom
Sopiwnyk et al. Flour and bread making properties of whole and split yellow peas treated with dry and steam heat used as premilling treatment
JPH04287652A (en) Production of rice powder and rice powder-processed product
CN102395283B (en) Wholegrain instant pasta
JP6405104B2 (en) Process for producing heat-treated cereal whole grains
Inamdar et al. Influence of stone chakki settings on the characteristics of whole wheat flour (Atta) and its chapati making quality
US20090169707A1 (en) Process of producing whole wheat flour
WO2021095827A1 (en) Method for producing heated and ground wheat flour, heated and ground wheat flour, mix for bakery foods and method for producing same
Frohlich et al. Effect of premilling treatments on the functional and bread‐baking properties of whole yellow pea flour using micronization and pregermination
JP6681250B2 (en) Pulverized heat treatment flour manufacturing method and bakery food mix manufacturing method
Bourré et al. Effect of dry and steam heating on the functional and bread baking properties of yellow pea and navy bean flours
AU2013250594B2 (en) Method for manufacturing fresh pasta
Sapna et al. Application of pulverization and thermal treatment to pigmented broken rice: insight into flour physical, functional and product forming properties
US4978543A (en) Process for the manufacture of microwavable oat hot cereal
JP6280766B2 (en) Flour composition for noodles
JP4457064B2 (en) Quality improvement method of low amylo flour
JP2019118269A (en) Buckwheat flour and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees