JP3779885B2 - Immunoassay method - Google Patents

Immunoassay method Download PDF

Info

Publication number
JP3779885B2
JP3779885B2 JP2001087253A JP2001087253A JP3779885B2 JP 3779885 B2 JP3779885 B2 JP 3779885B2 JP 2001087253 A JP2001087253 A JP 2001087253A JP 2001087253 A JP2001087253 A JP 2001087253A JP 3779885 B2 JP3779885 B2 JP 3779885B2
Authority
JP
Japan
Prior art keywords
whole blood
sample
antibody
antigen
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001087253A
Other languages
Japanese (ja)
Other versions
JP2001296292A (en
Inventor
泰生 山尾
成博 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2001087253A priority Critical patent/JP3779885B2/en
Publication of JP2001296292A publication Critical patent/JP2001296292A/en
Application granted granted Critical
Publication of JP3779885B2 publication Critical patent/JP3779885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、免疫測定方法に関し、より詳しくは、被検体試料中の抗原あるいは抗体と特異的に反応する抗体あるいは抗原を固定化した不溶性粒子と被検体試料中の抗原あるいは抗体とを凝集反応させ、生じた凝集混合液に対して近赤外光または赤外光を照射し、そのときの吸光度変化または散乱光変化を測定するようにした免疫測定方法に関する。
【0002】
【従来の技術およびその欠点】
前記免疫測定方法として、特公昭58−11575号公報に開示されるものがある。すなわち、この公報の方法は、抗原あるいは抗体を固定化した不溶性担体と体液試料中の抗体あるいは抗原とを抗原抗体反応させ、その反応混合液に600〜2400nmから選ばれた波長の光を照射し、その吸光度の増加を測定するものである。この方法は、その有用性から所謂ラテックス免疫比濁法として、現在では免疫測定の主流となっている。
【0003】
ところが、上記測定方法において用いられる測定試料は、水、血清、尿、食塩水などである。また、臨床検査における一般的な採血の注意点としては、溶血を極力避け、できるだけ速やかに血清・血漿分離することである。この理由は、溶血による光学的測定への影響、血球膜を通してのNa、K、Clなどの物質の出入り、血球代謝による移動(解糖による乳酸、ビルビン酸の血清中への移動)の影響、目的成分の血球中と血清中の濃度差による影響などが挙げられる。
【0004】
以上のことから、被検者から得られた血液は、遠心分離を行って血清または血漿に分離した試料を使用しなければならなかった。このため、血液を大量に処理できる大または中病院の中央検査室などでは支障はないが、開業医や緊急検査室では、遠心分離機による前処理が行えないことがあり、したがって、上記方法は必ずしも万全のものではない。
【0005】
そして、このような一般的な全血の取り扱い環境にあって、免疫検査領域において、血清・血漿分離を行うことなく、全血を直接に測定試料とする精密定量測定方法は存在しなかった。また、血液を溶血せずに測定することは、光学的手段を用いて測定する場合において、赤血球による濁りが大きく、不向きであった。
【0006】
この発明は、上述の事柄に留意してなされたもので、その目的は、遠心分離機などによって血液を前処理しなくても簡便にしかも短時間で測定を行うことができる免疫測定方法を提供することであ
【0007】
【課題を解決するための手段】
この出願の発明者らは、鋭意研究した結果、前記臨床検査における一般的な採血の注意点としての溶血を極力避け、できるだけ速やかに血清・血漿分離するという固定概念を覆し、意外にも、凝集反応に影響しない方法を用いて故意かつ強制的に全血を溶血させることにより、全血中の抗原あるいは抗体を測定できることを見出した。
【0008】
すなわち、前記目的を達成するため、この発明では、被検体試料中の抗原あるいは抗体と特異的に反応する抗体あるいは抗原を固定化した不溶性粒子と被検体試料中の抗原あるいは抗体とを凝集反応させ、生じた凝集混合液に対する光照射による吸光度変化または散乱光変化を測定する免疫測定方法において、前記被検体試料として全血を用い、この全血を、低張液と混合、凍結融解、または超音波振動を与えるのいずれか手法により、強制的に溶血させるようにしている。
【0009】
【0010】
【0011】
【0012】
上記発明によれば、
(1)全血被検液を遠心分離操作などの前処理を行うことなく、直接、全血被検液を用いることにより、測定時間の短縮、測定コストの低減および測定操作の簡略化が図れる。そして、遠心分離操作を行う必要がないということは、遠心分離機や遠心分離容器の費用、被検液の採血容器から遠心分離容器への移替えの手間および遠心分離操作のための時間が不要になるとともに、それだけ、検査要員が血液に接触する機械が少なくて済み、感染への危険性が大幅に低減される。
【0013】
(2)抗原抗体反応に影響しない方法で全血中の血球を強制的に溶血させることにより、一般のラテックス免疫比濁法を用いた測定キットと組み合わせることができ、精度のよい測定データを得ることができるとともに、広範囲な応用が可能になる。
【0014】
(3)溶血試薬をラテックス試薬に含ませることによって、測定装置の構成を簡単にすることができ、測定時間を短縮することができる。
【0015】
【0016】
【発明の実施の形態】
以下、この発明の詳細を実施例によって詳細に説明する。
【0017】
まず、各実施例を説明する前に、検討に用いた試薬を下記表1に示す。なお、この表1における符号a〜gは、以下の図5〜7における符号と同じである。
【0018】
【表1】

Figure 0003779885
【0019】
〔実施例1〕:溶血試薬による溶血法
EDTA−2K抗凝固剤を用いて通常の採血法により採血した人全血0.04mLを、図1に示すようなセル長5mmの石英製のセル5に収容し、これに、前記表1に示した溶血試薬水溶液a〜gをそれぞれ2.0mL添加し、図2に示すような分光光度計1(例えば日立製作所製:U−3410)を用いて、波長300〜1000nmにおける吸収スペクトル(図5参照)、波長800nmにおける溶血反応タイムコース(図6参照)および波長800nmにおけるそれぞれの反応開始後5分目の吸光度と反応開始後4〜5分目における1分間当たりの吸光度変化(表1参照)を求め、各種溶血試薬の溶血能力を調べた。
【0020】
なお、前記図2において、2は近赤外光または赤外光などの照射光Lを発するハロゲンランプからなる光源、3は集光レンズ、4は回折格子、6は増幅器、7はコンピュータなどの演算・記録装置である。また、Sはセル5内に収容された試料としての溶血処理を施した全血である。
【0021】
図5に示すように、試薬j(生理食塩水)の未溶血ではその濁りによって全波長での吸光度が2.5以上となり、ラテックス凝集反応を光学的に検出する際に影響を与える結果となった。一方、同図に示すように、試薬a(純水)、試薬b(サポニン水溶液)を用いることにより、上記のような濁りはなくなり、ラテックス凝集度合いを検出できることが判った。また。表1および図6から、試薬a(純水)、試薬b(サポニン)、試薬c(トリトンX−100)、試薬f(ラウリル硫酸ナトリウム)および試薬g(ベンザルコニウムクロライド)は、人全血を短期間に溶血する能力があることが判る。
【0022】
〔実施例2〕:凍結による溶血法
図3は、全血を溶血させるのに用いる凍結セルホルダー9の一例を示すもので、セル5を挿入保持できるとともに、測光窓10を備えたアルミニウム製のセルブロック11にペルチェ素子(例えばメルコア製)12を接合してなるものである。13はペルチェ素子12に適宜の直流電流を供給するための電源、Lは光源2からの近赤外光または赤外光である。
【0023】
EDTA−2K抗凝固剤を用いて通常の採血法により採血した人全血0.04mLを、図3に示すように、凍結セルホルダー9にセットされたセル5内に収容し、ペルチェ素子12に所定の方向の電流を10分間通電して人全血を完全に凍結した。その後、ペルチェ素子12に方向とは逆方向の電流を通電して凍結した人全血を融解し、これに生理食塩水2.0mLを添加して融解希釈した後、分光光度計1を用いて波長800nmにおける反応開始後5分目の吸光度と反応開始後4〜5分目における1分間当たりの吸光度変化(表1参照)を求め、溶血試薬の溶血能力を調べた。表1においてhで示すように、人全血を凍結・融解することによってこれ4溶血できることが判る。
【0024】
〔実施例3〕:超音波振動による溶血法
図4は、全血を溶血させるのに用いる超音波ノズル14の一例を示すもので、ステンレス鋼製のノズル15に超音波発振子16を結合したもので、17は発振回路、18は吸引用シリンジである。
【0025】
EDTA−2K抗凝固剤を用いて通常の採血法により採血した人全血0.04mLをノズル15内に吸引し、その状態で超音波発振子16を5分間動作させることにより、ノズル15内の人全血Bを溶血した。その後、この溶血した人全血Bを全量セル5に収容し、さらに、これに生理食塩水2.0mLを添加して希釈した後、分光光度計1を用いて波長800nmにおける反応開始後5分目の吸光度と反応開始後4〜5分目における1分間当たりの吸光度変化(表1参照)を求め、溶血試薬の溶血能力を調べた。表1において符号iで示すように、人全血に超音波振動を与えることによりこれを溶血できることが判る。
【0026】
〔実施例4〕:CRPの測定方法1
1)抗CRP抗体感作ラテックス液の調整
平均粒径0.2μmのポリスチレンラテックス(例えば日本合成ゴム社製:固形分10%)10mLに、約10mg/mLの抗ヒトCRPウサギ抗体液(pH7.5、100mmol/Lトリス塩酸緩衝液、0.1%アジ化Na)を添加し、30℃で一昼夜静置した後、3600rpmで遠心分離した沈澱物に0.2W/V%牛血清アルブミン pH8.5、100mmol/Lトリス塩酸緩衝液を添加し、抗ヒトCRP抗体感作ラテックス懸濁液に調整した。
【0027】
2)CRP測定方法
EDTA−2K抗凝固剤を用いて通常の採血法により採血した人全血0.04mLをセル1に収容し、これに、表1に示した溶血試薬水溶液a〜gを0.5mL添加し、37℃で3分間インキュベーションした後、上記1)で調整した抗ヒトCRP抗体感作ラテックス懸濁液を1.5mL添加し、分光光度計1を用いて波長800nmにおける反応開始後4〜5分目における1分間当たりの吸光度変化を求めた。
【0028】
別途、血漿を検体とした市販のラテックス免疫比濁法CRP測定キットを用いて前記検体を検定して検量線を作成した。図は、前記CRP測定に得られた結果に基づいて作成した検量線を示すもので、純水aおよびサポニン水溶液bなどを用いて全血を強制的に溶血したものにおいては、図中の符号a,bで示すように、良好な感度の検量線が得られた。しかしながら、各種界面活性剤c〜gを用いた場合には、凝集反応が阻害され、図中の符号c〜gで示すように、免疫反応には適さないという結果となった。
【0029】
〔実施例5〕:凍結法または超音波振動法による溶血試料を用いたCRP測定方法
前記実施例2または実施例3で溶血した後の生理食塩水による希釈操作の代わりに、実施例4で作製した抗ヒトCRP抗体感作ラテックス懸濁液を2.0mL添加し、分光光度計1を用いて波長800nmにおける反応開始後4〜5分目における1分間当たりの吸光度変化を求めた。
【0030】
別途、血清または血漿を検体とした市販のラテックス免疫比濁法CRP測定キットを用いて前記検体を検定して検量線を作成した。この場合、図の符号h,iで示すように、良好な感度の検量線が得られた。
【0031】
〔実施例6〕:CRPの測定方法2
前記実施例4で用いた抗ヒトCRP抗体感作ラテックス懸濁液の代わりに、市販のラテックス免疫比濁法CRP測定キットを用い、溶血試薬として0.5W/V%サポニン水溶液を用いる以外は実施例4と同様の測定方法により、波長800nmにおける反応開始後4〜5分目における1分間当たりの吸光度変化を求め、事前に作成した検量線より、全血を検体としたこの発明の分析値と血清を検体とした分析値との相関試験(n=40)を実施したところ、図8に示すように、良好な結果が得られた。
【0032】
〔実施例7〕:ヘマトクリット補正
前記実施例6において、この発明による分析値に関して、測定した全血検体を同時に血球カウンタ(例えば堀場製作所製:LC−240A)によって、そのヘマトクリット値を測定し、
A’=A×100/(100−ヘマトクリット%) …(1)
但し、A:実際に測定された吸光度変化量、A’:被検体試料中の血漿成分を100%に換算した吸光度変化量)
なる演算を行って求めた分析値と血清を検体とした分析値との相関試験(n=40)を実施したところ、図9に示すように、実施例6の結果よりもより良好な結果が得られた。
【0033】
上述の実施例では、凝集混合液に対する光照射による吸光度変化を測定するようにしているが、これに代えて、散乱光変化を測定するようにしてもよい。
【0034】
【発明の効果】
この発明においては、被検体試料中の抗原あるいは抗体と特異的に反応する抗体あるいは抗原を固定化した不溶性粒子と被検体試料中の抗原あるいは抗体とを凝集反応させ、生じた凝集混合液に対する光照射による吸光度変化または散乱光変化を測定する免疫測定方法において、前記被検体試料として全血を用い、この全血を、低張液と混合、凍結融解、または超音波振動を与えるのいずれかの凝集反応に影響を与えない手法により、強制的に溶血させるようにしている。
【0035】
したがって、この発明によれば、全血被検液を遠心分離操作などの前処理を行うことなく、直接、全血被検液を用いることができるので、測定時間の短縮、測定コストの低減および測定操作の簡略化が図れる。そして、検査要員が血液に接触する機械が少なくて済み、感染への危険性が大幅に低減される。
【0036】
【図面の簡単な説明】
【図1】 この発明方法で用いるセルの一例を示す斜視図である。
【図2】 この発明方法で用いる分光光度計の構成を概略的に示す図である。
【図3】 この発明方法で用いる凍結セルホルダーの一例を示す斜視図である。
【図4】 この発明方法で用いる用いる超音波ノズルの一例を示す斜視図である。
【図5】 各種の溶血試薬水溶液を用いて全血を溶血させた試料の波長300〜1000nmにおける吸収スペクトルを示す図である。
【図6】 各種の溶血試薬水溶液を用いて全血を溶血させた試料の波長800nmにおける溶血反応タイムコースを示す図である。
【図7】 CRP測定を行ったときに得られた検量線の一例を示す図である。
【図8】 ヘマトクリット補正を行わないときにおける全血検体と血漿検体との相関関係を示す図である。
【図9】 ヘマトクリット補正を行ったときにおける全血検体と血漿検体との相関関係を示す図である。
【符号の説明】
B…全血、S…溶血処理を施した全血、L…照射光。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an immunoassay method. More specifically, the present invention relates to an agglutination reaction between an antigen or an antibody specifically reacting with an antigen or antibody in an analyte sample or an insoluble particle immobilized with the antigen and an antigen or antibody in the analyte sample. The present invention also relates to an immunoassay method in which near-infrared light or infrared light is irradiated to the resulting agglomerated mixed solution, and the change in absorbance or the change in scattered light at that time is measured.
[0002]
[Prior art and its drawbacks]
As the immunoassay method, there is one disclosed in Japanese Patent Publication No. 58-11575. That is, the method of this publication causes an antigen-antibody reaction between an insoluble carrier on which an antigen or antibody is immobilized and an antibody or antigen in a body fluid sample, and the reaction mixture is irradiated with light having a wavelength selected from 600 to 2400 nm. , And measuring the increase in absorbance. This method is currently the mainstream of immunoassay as a so-called latex immunoturbidimetric method because of its usefulness.
[0003]
However, the measurement sample used in the measurement method is water, serum, urine, saline, or the like. Also, a general precaution for blood collection in clinical tests is to avoid hemolysis as much as possible and to separate serum and plasma as quickly as possible. The reason for this is the effect of hemolysis on the optical measurement, the entry and exit of substances such as Na, K, and Cl through the blood cell membrane, the effect of movement by blood cell metabolism (lactate by glycolysis, the movement of bilvic acid into the serum), Examples include the influence of the concentration of the target component in blood cells and serum.
[0004]
From the above, the blood obtained from the subject had to use a sample that had been centrifuged and separated into serum or plasma. For this reason, there is no problem in a central laboratory of a large or middle hospital that can process a large amount of blood, but in a practitioner or an emergency laboratory, pretreatment with a centrifuge may not be performed. It is not perfect.
[0005]
In such a general whole blood handling environment, there has been no precise quantitative measurement method in which the whole blood is directly measured as a measurement sample without performing serum / plasma separation in the immunoassay region. In addition, measurement without lysing blood is unsuitable due to large turbidity caused by red blood cells when measuring using optical means.
[0006]
The present invention has been made in mind the above-mentioned matters, purpose of that is, immunoassay capable of measuring a short time simply yet without pretreatment of the blood, such as by centrifuge Ru der be provided.
[0007]
[Means for Solving the Problems]
As a result of earnest research, the inventors of this application overturned the fixed concept of separating serum and plasma as quickly as possible while avoiding hemolysis as a precautionary point for general blood collection in the above-mentioned clinical examination. It was found that antigens or antibodies in whole blood can be measured by intentionally and forcefully lysing whole blood using a method that does not affect the reaction.
[0008]
That is, in order to achieve the above-mentioned object, in the present invention, an antigen or an antibody specifically reacting with an antigen in an analyte sample or an insoluble particle on which an antigen is immobilized and an antigen or antibody in the analyte sample are subjected to an agglutination reaction. In the immunoassay method for measuring a change in absorbance or a change in scattered light due to light irradiation with respect to the resulting aggregated mixture, whole blood is used as the specimen sample, and this whole blood is mixed with a hypotonic solution, freeze-thawed, or ultra-thin. Hemolysis is forcibly performed by any method of applying sonic vibration .
[0009]
[0010]
[0011]
[0012]
According to the above invention,
(1) By using a whole blood test solution directly without performing a pretreatment such as a centrifugation operation on the whole blood test solution, the measurement time can be shortened, the measurement cost can be reduced, and the measurement operation can be simplified. . And the fact that there is no need to perform the centrifuge operation means that the cost of the centrifuge and the centrifuge container, the trouble of transferring the test liquid from the blood collection container to the centrifuge container, and the time for the centrifuge operation are not required. At the same time, fewer machines are needed for testing personnel to contact the blood, greatly reducing the risk of infection.
[0013]
(2) By forcibly lysing blood cells in whole blood in a way that does not affect the antigen-antibody reaction, it can be combined with a measurement kit using a general latex immunoturbidimetric method, and accurate measurement data can be obtained. And a wide range of applications.
[0014]
(3) By including the hemolytic reagent in the latex reagent, the configuration of the measuring apparatus can be simplified and the measuring time can be shortened.
[0015]
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, details of the present invention will be described in detail by way of examples.
[0017]
First, before describing each example, the reagents used in the study are shown in Table 1 below. In addition, the code | symbol ag in this Table 1 is the same as the code | symbol in the following FIGS.
[0018]
[Table 1]
Figure 0003779885
[0019]
[Example 1]: Hemolysis method using a hemolysis reagent Quartz cell 5 having a cell length of 5 mm as shown in FIG. 1 was obtained by using 0.04 mL of human whole blood collected by a normal blood collection method using an EDTA-2K anticoagulant. And 2.0 mL of each of the hemolytic reagent aqueous solutions a to g shown in Table 1 above was added thereto, and a spectrophotometer 1 (for example, U-3410 manufactured by Hitachi, Ltd.) as shown in FIG. 2 was used. , Absorption spectrum at a wavelength of 300 to 1000 nm (see FIG. 5), hemolysis reaction time course at a wavelength of 800 nm (see FIG. 6), absorbance at the fifth minute after the start of reaction at a wavelength of 800 nm, and at the fourth to fifth minutes after the start of the reaction. The change in absorbance per minute (see Table 1) was determined, and the hemolytic ability of various hemolytic reagents was examined.
[0020]
In FIG. 2, 2 is a light source comprising a halogen lamp that emits irradiation light L such as near infrared light or infrared light, 3 is a condenser lens, 4 is a diffraction grating, 6 is an amplifier, 7 is a computer, etc. It is a calculation / recording device. S is whole blood subjected to hemolysis as a sample contained in the cell 5.
[0021]
As shown in FIG. 5, in the unhemolyzed reagent j (physiological saline), the absorbance at all wavelengths is 2.5 or more due to its turbidity, which has an effect on optically detecting the latex agglutination reaction. It was. On the other hand, as shown in the figure, it was found that by using the reagent a (pure water) and the reagent b (saponin aqueous solution), the above turbidity disappears and the degree of latex aggregation can be detected. Also. From Table 1 and FIG. 6, reagent a (pure water), reagent b (saponin), reagent c (Triton X-100), reagent f (sodium lauryl sulfate) and reagent g (benzalkonium chloride) are obtained from whole human blood. It can be seen that it has the ability to hemolyze in a short time.
[0022]
[Example 2]: Hemolysis method by freezing FIG. 3 shows an example of a frozen cell holder 9 used for hemolyzing whole blood. The cell holder 9 can be inserted and held, and is made of aluminum provided with a photometric window 10. The cell block 11 is formed by joining a Peltier element (for example, made by Melcor) 12. Reference numeral 13 denotes a power source for supplying an appropriate direct current to the Peltier element 12, and L denotes near infrared light or infrared light from the light source 2.
[0023]
As shown in FIG. 3, 0.04 mL of human whole blood collected by a normal blood collection method using an EDTA-2K anticoagulant is accommodated in the cell 5 set in the frozen cell holder 9 and is stored in the Peltier element 12. The human whole blood was completely frozen by applying a current in a predetermined direction for 10 minutes. Thereafter, the frozen human whole blood was thawed by applying a current in the direction opposite to the direction to the Peltier element 12, and 2.0 ml of physiological saline was added thereto for thawing dilution, and then the spectrophotometer 1 was used. The absorbance at a wavelength of 800 nm at the fifth minute after the start of the reaction and the change in absorbance per minute at the fourth to fifth minutes after the start of the reaction (see Table 1) were determined to examine the hemolytic ability of the hemolytic reagent. As indicated by h in Table 1, it can be seen that the whole human blood can be lysed by freezing and thawing.
[0024]
[Example 3]: Hemolysis method by ultrasonic vibration FIG. 4 shows an example of an ultrasonic nozzle 14 used for hemolyzing whole blood. An ultrasonic oscillator 16 is coupled to a stainless steel nozzle 15. Reference numeral 17 is an oscillation circuit, and 18 is a suction syringe.
[0025]
0.04 mL of whole human blood collected by a normal blood collection method using an EDTA-2K anticoagulant is sucked into the nozzle 15, and the ultrasonic oscillator 16 is operated for 5 minutes in this state. Human whole blood B was hemolyzed. Thereafter, the hemolyzed human whole blood B is stored in the whole cell 5 and further diluted with 2.0 mL of physiological saline, and then 5 minutes after the start of the reaction at a wavelength of 800 nm using the spectrophotometer 1. The absorbance of the eyes and the change in absorbance per minute (see Table 1) at 4 to 5 minutes after the start of the reaction were determined, and the hemolysis ability of the hemolysis reagent was examined. As shown by the symbol i in Table 1, it is understood that this can be hemolyzed by applying ultrasonic vibration to human whole blood.
[0026]
[Example 4]: CRP measurement method 1
1) Preparation of anti-CRP antibody-sensitized latex solution To 10 mL of polystyrene latex having an average particle size of 0.2 μm (for example, Nippon Synthetic Rubber Co., Ltd .: solid content 10%), about 10 mg / mL anti-human CRP rabbit antibody solution (pH 7. 5, 100 mmol / L Tris-HCl buffer solution, 0.1% Na azide), left standing at 30 ° C. overnight, and then centrifuged at 3600 rpm to the precipitate, 0.2 W / V% bovine serum albumin pH 8. 5, 100 mmol / L Tris-HCl buffer was added to prepare an anti-human CRP antibody-sensitized latex suspension.
[0027]
2) CRP measurement method 0.04 mL of human whole blood collected by an ordinary blood collection method using an EDTA-2K anticoagulant is placed in the cell 1, and the hemolytic reagent aqueous solutions a to g shown in Table 1 are stored in 0. After adding 5 mL and incubating at 37 ° C. for 3 minutes, 1.5 mL of the anti-human CRP antibody-sensitized latex suspension prepared in 1) above was added, and the reaction was started at a wavelength of 800 nm using the spectrophotometer 1. The change in absorbance per minute at 4 to 5 minutes was determined.
[0028]
Separately, the sample was assayed using a commercially available latex immunoturbidimetric CRP measurement kit using plasma as a sample to prepare a calibration curve. FIG. 7 shows a calibration curve created based on the results obtained in the CRP measurement. In the case where whole blood was forcibly hemolyzed using pure water a, saponin aqueous solution b, etc., As indicated by symbols a and b, a calibration curve with good sensitivity was obtained. However, when various surfactants c to g were used, the agglutination reaction was inhibited, and as shown by the symbols c to g in the figure, the result was that it was not suitable for the immune reaction.
[0029]
[Example 5]: CRP measurement method using hemolyzed sample by freezing method or ultrasonic vibration method Prepared in Example 4 instead of dilution operation with physiological saline after hemolysis in Example 2 or Example 3 2.0 mL of the anti-human CRP antibody-sensitized latex suspension was added, and the change in absorbance per minute was determined using the spectrophotometer 1 at 4 to 5 minutes after the start of the reaction at a wavelength of 800 nm.
[0030]
Separately, a calibration curve was prepared by assaying the sample using a commercially available latex immunoturbidimetric CRP measurement kit using serum or plasma as a sample. In this case, as shown by the symbols h and i in FIG. 7 , a calibration curve with good sensitivity was obtained.
[0031]
[Example 6]: CRP measurement method 2
Instead of the anti-human CRP antibody-sensitized latex suspension used in Example 4, a commercially available latex immunoturbidimetric CRP measurement kit was used, except that a 0.5 W / V% saponin aqueous solution was used as a hemolysis reagent. By the same measurement method as in Example 4, the change in absorbance per minute at 4 to 5 minutes after the start of the reaction at a wavelength of 800 nm was obtained, and the analytical value of the present invention using whole blood as a sample was determined from a calibration curve prepared in advance. When a correlation test (n = 40) with an analysis value using serum as a specimen was performed, good results were obtained as shown in FIG.
[0032]
[Example 7]: Hematocrit correction In the above Example 6, the hematocrit value was measured with a blood cell counter (for example, LC-240A, manufactured by HORIBA, Ltd.) at the same time as the measured whole blood sample for the analysis value according to the present invention.
A ′ = A × 100 / (100−hematocrit%) (1)
Where, A: the actually measured change in absorbance, A ′: the change in absorbance obtained by converting the plasma component in the sample to 100%)
When a correlation test (n = 40) between the analysis value obtained by performing the above calculation and the analysis value using serum as a sample was performed, a better result than the result of Example 6 was obtained as shown in FIG. Obtained.
[0033]
In the above-described embodiment, the change in absorbance due to light irradiation on the aggregated mixture is measured, but instead, the change in scattered light may be measured.
[0034]
【The invention's effect】
In this invention , an antibody or an insoluble particle immobilized with an antigen that specifically reacts with an antigen or antibody in a specimen sample and an antigen or antibody in the specimen sample are subjected to an agglutination reaction, and light generated from the agglutination mixture is generated. In an immunoassay method for measuring a change in absorbance or a change in scattered light by irradiation, whole blood is used as the specimen sample, and the whole blood is mixed with a hypotonic solution, freeze-thawed, or subjected to ultrasonic vibration. Hemolysis is forced to occur by a technique that does not affect the agglutination reaction .
[0035]
Therefore, according to the present invention, the whole blood test solution can be used directly without performing a pretreatment such as a centrifugation operation on the whole blood test solution. The measurement operation can be simplified. In addition, fewer machines are needed for testing personnel to contact the blood, greatly reducing the risk of infection.
[0036]
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a cell used in the method of the present invention.
FIG. 2 is a diagram schematically showing the configuration of a spectrophotometer used in the method of the present invention.
FIG. 3 is a perspective view showing an example of a frozen cell holder used in the method of the present invention.
FIG. 4 is a perspective view showing an example of an ultrasonic nozzle used in the method of the present invention.
FIG. 5 is a diagram showing absorption spectra at wavelengths of 300 to 1000 nm of samples obtained by hemolyzing whole blood using various hemolytic reagent aqueous solutions.
FIG. 6 is a view showing a hemolysis reaction time course at a wavelength of 800 nm of a sample obtained by hemolyzing whole blood using various hemolysis reagent aqueous solutions.
FIG. 7 is a diagram showing an example of a calibration curve obtained when CRP measurement is performed.
FIG. 8 is a diagram showing a correlation between a whole blood sample and a plasma sample when hematocrit correction is not performed.
FIG. 9 is a diagram showing a correlation between a whole blood sample and a plasma sample when hematocrit correction is performed.
[Explanation of symbols]
B: whole blood, S: whole blood subjected to hemolysis treatment, L: irradiation light.

Claims (1)

被検体試料中の抗原あるいは抗体と特異的に反応する抗体あるいは抗原を固定化した不溶性粒子と被検体試料中の抗原あるいは抗体とを凝集反応させ、生じた凝集混合液に対する光照射による吸光度変化または散乱光変化を測定する免疫測定方法において、前記被検体試料として全血を用い、この全血を、低張液と混合、凍結融解、または超音波振動を与えるのいずれかの手法により、強制的に溶血させるようにしたことを特徴とする血漿成分の免疫測定方法。An insoluble particle immobilized with an antibody or antigen that specifically reacts with an antigen or antibody in an analyte sample and an antigen or antibody in the analyte sample are agglutinated, and the change in absorbance due to light irradiation on the resulting aggregated mixture or In an immunoassay method for measuring a change in scattered light, whole blood is used as the specimen sample, and the whole blood is forcedly mixed with a hypotonic solution, freeze-thawed, or subjected to ultrasonic vibration. A method for immunoassay of a plasma component, characterized in that hemolysis is performed in a blood vessel .
JP2001087253A 2001-03-26 2001-03-26 Immunoassay method Expired - Lifetime JP3779885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087253A JP3779885B2 (en) 2001-03-26 2001-03-26 Immunoassay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087253A JP3779885B2 (en) 2001-03-26 2001-03-26 Immunoassay method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21796696A Division JP3249919B2 (en) 1996-07-30 1996-07-30 Immunoassay method

Publications (2)

Publication Number Publication Date
JP2001296292A JP2001296292A (en) 2001-10-26
JP3779885B2 true JP3779885B2 (en) 2006-05-31

Family

ID=18942523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087253A Expired - Lifetime JP3779885B2 (en) 2001-03-26 2001-03-26 Immunoassay method

Country Status (1)

Country Link
JP (1) JP3779885B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004106930A1 (en) * 2003-05-27 2006-07-20 株式会社三菱化学ヤトロン Immunochromatographic method
JP5164320B2 (en) * 2005-09-06 2013-03-21 キヤノン株式会社 Sensing device and sensing method
DK2321643T3 (en) 2008-07-16 2017-04-10 Radiometer Medical Aps DEVICE FOR HEMOLYZING A BLOOD SAMPLE AND MEASURING AT LEAST A PARAMETER THEREOF
EP2149793A1 (en) * 2008-07-25 2010-02-03 SeBo GmbH Disintegration of cellular components in body fluids
WO2014054389A1 (en) 2012-10-03 2014-04-10 コニカミノルタ株式会社 Immunoassay method utilizing surface plasmon
WO2014112318A1 (en) * 2013-01-16 2014-07-24 富士レビオ株式会社 Method for immunologically assaying hemoglobin a1c in specimen
US20160195522A1 (en) * 2013-05-31 2016-07-07 Sekisui Medical Co., Ltd. Method of agglutination immunoassay

Also Published As

Publication number Publication date
JP2001296292A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP3249919B2 (en) Immunoassay method
US4118192A (en) Method and apparatus for the measurement of antigens and antibodies
KR102149318B1 (en) Low-volume coagulation assay
US7691642B1 (en) Spectrophotometric method and apparatus for the cross-matching of platelets
US4208185A (en) Method and apparatus for the measurement of antigens and antibodies
EP0091636A2 (en) Method for the photometric determination of biological agglutination
JP2003520942A (en) Reagent-free analysis of biological samples
US4203724A (en) Method and apparatus for the measurement of antigens and antibodies
JP2022153471A (en) Methods, devices, and systems for sample analysis
DK174032B1 (en) Kit as well as immunometric dosing method that can be applied to whole cells
WO2016022604A2 (en) Methods and compositions for analyzing glucose-6-phosphate dehydrogenase activity in blood samples
JPH0650315B2 (en) Immunological analysis reagent and immunological analysis method
JP3779885B2 (en) Immunoassay method
US10228326B2 (en) Immunoassay method utilizing surface plasmon
US7326579B2 (en) Immunoassay method for lyzed whole blood
Anthony A simplified visible/near-infrared spectrophotometric approach to blood typing for automated transfusion safety
JPS61202142A (en) Analyzing method and apparatus using absorbance
JPS59231451A (en) Immune analytical method
EP2560005B1 (en) Test instrument for measuring analyte in sample, and method for measuring analyte using same
Hicks et al. Evaluation of a new blood-collecting device (" microtainer") that is suited for pediatric use.
JPS6281567A (en) Quantification method using particle agglutination reaction
JPS6262291B2 (en)
JPH0233097B2 (en)
US20040161774A1 (en) Analyte sampling element, analyte treatment device and analyte treatment method
RU2104540C1 (en) Method for differential diagnosis of hemorrhagic fever

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term