JP3778442B2 - Gas sampling method and sampling device - Google Patents

Gas sampling method and sampling device Download PDF

Info

Publication number
JP3778442B2
JP3778442B2 JP2002245019A JP2002245019A JP3778442B2 JP 3778442 B2 JP3778442 B2 JP 3778442B2 JP 2002245019 A JP2002245019 A JP 2002245019A JP 2002245019 A JP2002245019 A JP 2002245019A JP 3778442 B2 JP3778442 B2 JP 3778442B2
Authority
JP
Japan
Prior art keywords
gas
absorption
sample
stage
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245019A
Other languages
Japanese (ja)
Other versions
JP2004085300A (en
Inventor
敏男 塚本
彰浩 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002245019A priority Critical patent/JP3778442B2/en
Publication of JP2004085300A publication Critical patent/JP2004085300A/en
Application granted granted Critical
Publication of JP3778442B2 publication Critical patent/JP3778442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス試料採取方法及び採取装置に関し、さらに詳しくは、湿りガス中の水分の影響を受けることなく、分析対象成分を、損失なく、正確に捕集できるガス試料採取方法及び採取装置に関する。
【0002】
【従来の技術】
煙道、煙突、ダクトに排出される排ガス中の特定ガス状成分を分析する場合、吸収液を入れた吸収瓶に試料ガスを導入して、特定ガス状成分を吸収液中に捕集し、分析用試料溶液とすることが行なわれている(日本工業規格K0095−1999「排ガス試料採取方法」)。
図3に示すように、吸収瓶1には、吸収液3を入れ、ガス導入管2より吸収液3に試料ガスを導入する構造となっており、吸収瓶の出口の先には、流量調整器7、吸引ポンプ8、ガスメーター9等が順次接続されている。なお、図3において、吸収瓶が2段に設けられている形式で、4は後段吸収瓶、5は後段吸収瓶のガス導入管、6はガス試料である。
【0003】
このような従来の装置において、分析対象成分を損失なく、正確に捕集するために次のような対策がとられている。
(1)吸収瓶を直列多段に接続する。
(2)吸収瓶を冷却槽又は冷却室に入れて冷却する。
【0004】
【発明が解決しようとする課題】
上述の対策は、分析対象成分の捕集性能を上げるのに有効であり、直列に接続する吸収瓶の数を増やすほど、また、吸収液の温度を下げるほど捕集効率は高くなる。しかしながら、捕集性能を上げるために吸収瓶の数を増やせば、装置が過大になるばかりでなく、大量の吸収液が必要になること、採取作業や分析作業が複雑になることなど問題点が多い。一方、吸収液の温度を下げることで、少ない吸収瓶の数で高い捕集性能を発揮することが可能であるものの、実際には、氷浴程度の冷却温度では捕集が不十分な場合が多く、ドライアイスなどを用いてより低温まで冷却することが望ましい。ドライアイスによる冷却は、ガス試料が乾燥ガスの場合は、従来の捕集方法及び捕集装置で問題なく実施できるものの、ガス試料が多量のミストや水蒸気を含んだ湿りガスの場合は、吸収瓶内、特にガス導入配管内等の狭い流路において水分が凝固して閉塞し、ガスの導入が不可能になってしまうという致命的な問題があった。
【0005】
従来、このような問題がある場合は、吸収瓶の前段に、塩化カルシウムや過塩素酸マグネシウム等の除湿剤を用いた除湿手段を設けて対応するのが一般的であるが、この方法は、対象成分の吸収手段の他に別途除湿手段が必要なため、試料採取装置及び採取方法を複雑にする間題があった。また、対象成分の中には、水分とともに除湿剤に捕捉されてしまうものも多く、除湿剤に捕捉された成分の回収は容易でないため、定量分析におけるマイナス誤差要因になるという大きな間題があった。一方、除湿剤に捕捉されにくい成分の場合も、捕捉されないことを確認するための予備的な検証が不可欠であり、手間のかかる方法であった。
【0006】
本発明は、上記の事情に鑑みてなされたもので、ガス試料が湿りガスであっても、ガス中に含まれる分析対象成分を損失無く正確に、しかも簡便に捕集できる試料ガス採取方法及び装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、下記の手段により上記課題を解決することができた。
(1)湿りガスを導入通路から導入して氷点以下に冷却しながらガス中の水分を凝固させると共にガス中の対象成分を捕集する前段の第1の吸収手段を通した後、該ガスを後段に設けたガス導入通路から導入して捕集しきれなかった対象成分を氷点以下の温度条件で第2の吸収手段で捕集して、湿りガス中に含まれる成分を分析するためのガスの試料採取方法において、
前段の前記湿りガスは後段のガス導入通路よりも広い導入通路を流れて第1の吸収手段に導入されることを特徴とするガス試料の採取方法。
【0008】
(2)ガスを氷点以下に冷却し、ガス中の水分を凝固させると共にガス中の対象成分を捕集する第1の吸収部と、第1の吸収部で捕集しきれなかった対象成分を氷点以下の温度条件で捕集する第2の吸収部と、ガスの吸引手段とを直列に備えた、湿りガス中に含まれる成分を分析するためのガスの試料採取装置において、
第1の吸収部内に導入されるガスの導入通路を前記第2の吸収部内のガス導入通路よりも広くしたことを特徴とするガス試料の採取装置。
【0009】
(3)前記第1の吸収部内に導入されるガスの通路が、前記第2の吸収部内へのガス導入管径より径の大きい管であることを特徴とする前記(2)記載のガス試料の採取装置。
(4)前記第1の吸収部と第2の吸収部のうち、第2の吸収部のみが又は何れの吸収部も、ガスと吸収媒体とが接触できるように構成されていることを特徴とする前記(2)又は(3)記載のガス試料の採取装置。
(5)前記第1及び第2の吸収部が共に吸収瓶であることを特徴とする前記(2)乃至(4)のいずれか記載のガス試料の採取装置。
(6)ガスの流れ方向に対して、前記第1の吸収部で用いる吸収瓶を逆方向に、かつ、第2の吸収部で用いる吸収瓶を順方向に接続して構成されていることを特徴とする前記(4)又は(5)記載のガス試料の採取装置。
【0010】
さらに、本発明の装置において、好ましい態様は以下のとおりである。
)前記第1の吸収部の導入管の径は10ミリ以上であり、第2の吸収部が汎用されている吸収性能の高い吸収瓶であることを特徴とする前記(2)記載のガス試料の採取装置。
【0011】
このように、吸収瓶のような吸収装置の構造を、湿りガス中の水分が凝固・付着してもガス流路が閉塞しないように工夫することによって、低温の冷浴を用いて対象成分の捕集効率を上げることができ、その結果、吸収瓶の数を削減することができるため、極めて簡便な装置で容易にガス試料の採取が高い効率で行うことができる。
【0012】
次に、本発明の内容について、詳細に説明する。
吸収瓶などのガス導入管径(内径)は、小さすぎると通気抵抗が増えるとともに、ガス中に含まれる固型分などにより閉塞する危険性がある。逆に、管径が大きすぎると、吸収液と吸収液中に導入されるガスの接触が悪くなり、対象成分の捕集効率が低下する懸念があるため、一般的には、管径が数ミリから10数ミリの管が用いられる。しかしながら、このような管径の場合、氷点以下の温度条件で、多量のミストや水蒸気を含んだ湿りガスを長時間にわたって導入すると、管内に凝固した水分が蓄積して閉塞する。したがって、ガスの水蒸気量やガスの導入時間にもよるが、本発明の第1の吸収手段における吸収瓶(以下、前段吸収瓶と称する)では、ガス導入管の径は10ミリ以上であることが好ましく、20ミリ以上であることがさらに好ましい。このように管径を大きくすると、凝固した水分が蓄積しても閉塞する危険性は減る反面、前述のとおり、試料ガスと吸収液との接触効率が悪くなる。
【0013】
しかし、本発明者等のこれまでの実際の経験から、試料ガスと吸収液との接触効率を多少犠牲にしても、氷点以下の低温条件に維持することで、高い捕集性能を発揮できる場合が多いことが分かった。仮に、前段吸収瓶において高い捕集性能が得られない場合でも、本発明における前段吸収瓶の最も重要な役割は、ガス中の水分を凝固させて除去することであるため、対象成分の捕集効率はさして大きな問題とはならない。前段吸収瓶において捕集しきれなかった対象成分は第2の吸収手段(以下、後段吸収瓶と称する)に導入されるのであるが、ガス中に含まれていた水分の殆どは前段吸収瓶において既に除去されているため、後段吸収瓶では、水分の凝固による流路閉塞の懸念がない。したがって、一般的に汎用されている吸収性能の高い吸収瓶を用いて、氷点以下の低温に冷却しながら、ガス試料採取を行うことができる。
【0014】
前段吸収瓶と後段吸収瓶が1本づつの計2本直列方式で満足な試料採取ができない場合は、前段吸収瓶又は/及び後段吸収瓶を必要に応じて追加して多段に接続すれば良い。前段吸収瓶の接続本数は、ガス中の水分の除去性能をもとに決めれば良いし、後段吸収瓶の接続本数は、対象成分の捕集性能をもとに決めれば良い。
【0015】
本発明では必ずしも吸収媒体中にガスを導入する必要はない。例えば、何も入れない吸収瓶を単に低温冷却してガス試料を導入し、対象成分を一旦吸収瓶の内壁等に付着させ、ガス試料の導入終了とともに少量の吸収液などで瓶内液を洗浄することによって対象成分の試料溶液とすることもできる。また、吸収媒体を用いる場合は、媒体の種類に特に制限はなく、液体であっても、又は、例えばビーズ状の固体のようなものでも良い。このため、本発明でいう「吸収媒体」は狭義の吸収のみを行なうものに限られず、吸着を行なう固体の媒体も含むものである。液体の場合は、ガスの通気を妨げないものであれば冷浴によって試料採取中に凝固してしまうものでも良いが、凝固しないものの方が好ましい。
【0016】
本発明は、水の凝固によるガス流路の閉塞が生じないようになされたものであるから、冷却温度の制限がないため、種々の冷媒を使用することができる。凝固点降下させた水やドライアイス等はもちろんのこと、吸収装置が冷却温度に耐えられるものであれば、液体酸素、液体アルゴン、液体窒素などを用いることも可能である。ただ、ガス中の対象成分及び共存成分が液化あるいは凝固するような温度とすると、ガス流路の閉塞が生じたり、捕集がかたよって不十分となるので、好ましくない。
【0017】
本発明の方法を最も簡単に実施するには、前段吸収瓶と後段吸収瓶のどちらも汎用されている吸収瓶を用い、ガスの流れ方向に対して前段吸収瓶は逆方向に、後段吸収瓶は順方向に接続してガス試料採取装置を構成すれば良い。前段吸収瓶を逆方向に接続することにより、ガスは吸収瓶底面近くの冷却された細い導入配管を経由せずに直接吸収瓶本体内に導入される。すなわち、ガスが最初に冷却される流路はガス導入管内ではなく、ガス導入管外若しくは吸収瓶本体内の広い流路であり、ガス中の水分は、吸収瓶本体の内壁やガス導入管の外壁面に付着する。その後、ガスはもともとガス導入部であった細い配管内を逆向きに流れて前段吸収瓶から排出されるのであるが、この時点では、既にガスは除湿されているため、導入管内が凝固した水分の蓄積によって閉塞することはない。この方法では、前段吸収瓶において吸収液中に試料ガスを吹き込むことは難しいものの(細い配管の下端が吸収液中に浸かっていると、細い配管から流出する試料ガスにより吸収液が細い配管を通って後吸収瓶へ流出してしまうため)、前述のとおり、極めて低い温度条件であるため吸収液を用いなくても、水分と共に対象成分の殆どが吸収瓶内に捕集される。このような形で水分と共に捕集された成分は、ガス採取終了後、低温条件のまま、後段吸収瓶の吸収液と同じ種類の吸収液で前段吸収瓶内を洗浄し、この洗浄液を後段吸収瓶中の吸収液と併せて試料溶液として分析に供せばよい。
【0018】
【発明の実施の形態】
以下に、本発明を図面を参照して詳細に説明する。図3で示した構成要素と同一構成要素は同一符号を用いて示す。
図1は、本発明のガス試料採取装置の一例を示す模式図である。
ガス試料採取装置は前段吸収瓶1、後段吸収瓶4、流量調整計7、吸引ポンプ8、ガスメーター9が直列に接続された構成である。前段吸収瓶1、後段吸収瓶4中は冷却槽11で冷却され、各吸収瓶中には吸収液3が入っている。前段吸収瓶1のガス導入管2は、ガス中の水分の凝固による流路の閉塞を防止するため、径の大きいものを用いている。ガス試料6は、吸引ポンプ8によって、まず前段吸収瓶1に導入され、瓶中もしくは吸収液3中でガス中の水分と分析対象成分が吸収される。ついで、後段吸収瓶4に導入され、前段吸収瓶1で捕集しきれなかった分析対象成分が後段吸収瓶4の吸収液3に捕集される。なお、図1において、10は冷媒である。
【0019】
図2は、本発明のガス試料採取装置の別の一例を示す模式図である。
ガス試料採取装置は前段吸収瓶1、後段吸収瓶4、流量調整計7、吸引ポンプ8、ガスメーター9が直列に接続された構成である。前段吸収瓶1、後段吸収瓶4中は冷却槽11で冷却され、吸収液3は後段吸収瓶4にのみ入っている。前段吸収瓶1は、ガス中の水分の凝固による流路の閉塞を防止するため、ガスの流れ方向に対して逆向きに設置されている。このため、前段吸収瓶1におけるガス導入管2Aは細くて短く、吸収瓶1内には吸収液3が入っていないこともあって、ガス試料が吸収液3内に吹き込まれることはない。湿りガスのガス試料6は、吸引ポンプ8によって、まず前段吸収瓶1に導入され、瓶1中でガス試料6中の水分と分析対象成分が吸収される。ついで、後段吸収瓶4に導入され、前段吸収瓶1で捕集しきれなかった分析対象成分が後段吸収瓶4の吸収液3に捕集される。
【0020】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
【0021】
実施例1
図1に示すガス試料採取装置を用いて、嫌気性消化ガス中に含まれる微量成分(シロキサン類)を捕集し、ガスクロマトグラフ質量分析計を用いて定量分析した。ガスの性状、ガス採取条件は次のとおりである。
【0022】

Figure 0003778442
【0023】
消化ガス中のシロキサン濃度を第1表に示す。
【0024】
実施例2
図2に示すガス試料採取装置を用いたこと以外は、実施例1と同じ条件で嫌気性消化ガス中に含まれるシロキサン類を捕集し、定量分析した。吸収瓶のガス導入管径(内径)は6mm(2A、5共に)である。(比較例1も同じ)
消化ガス中のシロキサン濃度を第1表に示す。
【0025】
比較例1
冷媒として氷を用いた他は、実施例1と同じ条件で嫌気性消化ガス中に含まれるシロキサン類を捕集し、定量分析した。
消化ガス中のシロキサン濃度を第1表に示す。シロキサン濃度は実施例1及び実施例2に比べて低かった。
【0026】
比較例2
前段吸収瓶に後段吸収瓶と同じものを用いた以外は、実施例1と同じ条件で嫌気性消化ガス中に含まれるシロキサン類を捕集し、定量分析した。
消化ガスの試料採取開始直後から、前段吸収瓶のガス試料導入管内に水分が凝固・付着した。30分程度経過時点で前段吸収瓶の通気抵抗が上昇し始め、1時間経過時点で完全に流路が閉塞し、ガス採取が不可能になった。
【0027】
【表1】
Figure 0003778442
【0028】
【発明の効果】
本発明に係るガス試料採取方法及び装置によれば、ガス試料中に大量の水分が含まれている場合でも吸収瓶の構造を、水分の凝固によってガス導入管内が閉塞しないように工夫しているため、氷点以下の低温の冷浴を用いて分析対象成分の捕集効率を上げることができ、その結果、吸収瓶の数を削減することができるため、極めて簡便な装置で、容易に試料ガス中に含まれる成分を、損失なく、正確に捕集できる。
【図面の簡単な説明】
【図1】本発明のガス試料採取装置の一例を示す模式図。
【図2】本発明のガス試料採取装置の別の例を示す模式図。
【図3】従来のガス試料採取装置の例を示す模式図。
【符号の説明】
1 前段吸収瓶
2 ガス導入管
2A ガス導入管
3 吸収液
4 後段吸収瓶
5 ガス導入管
6 試料ガス
7 流量調整器
8 吸引ポンプ
9 ガスメーター
10 冷媒
11 冷却槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas sampling method and a sampling device, and more particularly to a gas sampling method and a sampling device that can accurately collect an analysis target component without loss without being affected by moisture in a wet gas. .
[0002]
[Prior art]
When analyzing the specific gaseous component in the exhaust gas discharged into the flue, chimney, duct, introduce the sample gas into the absorption bottle containing the absorbing liquid, collect the specific gaseous component in the absorbing liquid, An analysis sample solution is used (Japanese Industrial Standard K0095-1999 “Exhaust gas sampling method”).
As shown in FIG. 3, the absorption bottle 1 is filled with the absorption liquid 3, and the sample gas is introduced into the absorption liquid 3 from the gas introduction pipe 2, and the flow rate is adjusted at the end of the absorption bottle. A vessel 7, a suction pump 8, a gas meter 9 and the like are sequentially connected. In FIG. 3, the absorption bottles are provided in two stages, 4 is a rear-stage absorption bottle, 5 is a gas introduction pipe of the rear-stage absorption bottle, and 6 is a gas sample.
[0003]
In such a conventional apparatus, the following measures are taken in order to accurately collect the analysis target component without loss.
(1) Connect the absorption bottles in multiple stages in series.
(2) The absorption bottle is put into a cooling tank or a cooling chamber and cooled.
[0004]
[Problems to be solved by the invention]
The above-described measures are effective in increasing the collection performance of the analysis target component, and the collection efficiency increases as the number of absorption bottles connected in series is increased and the temperature of the absorption liquid is lowered. However, if the number of absorption bottles is increased in order to improve the collection performance, not only the apparatus becomes excessive, but a large amount of absorption liquid is required, and the collection work and analysis work become complicated. Many. On the other hand, by reducing the temperature of the absorption liquid, it is possible to demonstrate high collection performance with a small number of absorption bottles, but in practice, collection may be insufficient at a cooling temperature of about an ice bath. In many cases, it is desirable to cool to a lower temperature using dry ice or the like. Cooling with dry ice can be carried out without problems using conventional collection methods and devices when the gas sample is dry gas, but when the gas sample is a wet gas containing a large amount of mist or water vapor, an absorption bottle can be used. In particular, there is a fatal problem that moisture is solidified and clogged in a narrow flow path such as in a gas introduction pipe, making it impossible to introduce gas.
[0005]
Conventionally, when there is such a problem, it is common to provide a dehumidifying means using a dehumidifying agent such as calcium chloride or magnesium perchlorate in the front stage of the absorption bottle, but this method is In addition to the absorption means for the target component, a separate dehumidifying means is required, and there is a problem that complicates the sampling device and the sampling method. In addition, many of the target components are trapped in the dehumidifying agent together with moisture, and it is not easy to recover the components trapped in the dehumidifying agent. It was. On the other hand, in the case of a component that is difficult to be captured by the dehumidifying agent, preliminary verification for confirming that it is not captured is indispensable, and this is a time-consuming method.
[0006]
The present invention has been made in view of the above circumstances, and even when the gas sample is a wet gas, a sample gas sampling method capable of accurately and simply collecting the analysis target component contained in the gas without loss and It is an object to provide an apparatus.
[0007]
[Means for Solving the Problems]
The present invention was able to solve the above problems by the following means.
(1) The wet gas is introduced from the introduction passage, and the moisture in the gas is solidified while being cooled below the freezing point, and the first absorption means for collecting the target component in the gas is passed through the first absorption means. Gas for collecting the target component that was introduced through the gas introduction passage provided in the subsequent stage and could not be collected by the second absorption means under the temperature condition below the freezing point, and for analyzing the component contained in the wet gas In the sampling method of
The method of collecting a gas sample, wherein the wet gas at the front stage flows through a wider introduction passage than the gas introduction passage at the rear stage and is introduced into the first absorption means.
[0008]
(2) The first absorption part that cools the gas below the freezing point, solidifies the moisture in the gas, and collects the target component in the gas, and the target component that cannot be collected by the first absorption part. In the gas sampling device for analyzing components contained in the wet gas, the second absorption unit for collecting under a temperature condition below the freezing point, and a gas suction means are provided in series.
An apparatus for collecting a gas sample, characterized in that an introduction passage for a gas introduced into the first absorption section is wider than a gas introduction passage in the second absorption section.
[0009]
(3) The gas sample according to (2), wherein the gas passage introduced into the first absorption section is a pipe having a diameter larger than the diameter of the gas introduction pipe into the second absorption section. Sampling device.
(4) Of the first absorption part and the second absorption part, only the second absorption part or any of the absorption parts is configured such that the gas and the absorption medium can be in contact with each other. The gas sample collecting device according to (2) or (3).
(5) The gas sample collection device according to any one of (2) to (4), wherein both the first and second absorption parts are absorption bottles.
(6) The absorption bottle used in the first absorption part is connected in the reverse direction with respect to the gas flow direction, and the absorption bottle used in the second absorption part is connected in the forward direction. The gas sample collecting apparatus according to (4) or (5), which is characterized in that
[0010]
Furthermore, in the apparatus of the present invention, preferred embodiments are as follows.
( 7 ) The diameter of the introduction pipe of the first absorption part is 10 mm or more, and the second absorption part is an absorption bottle with high absorption performance that is widely used. Gas sample collection device.
[0011]
In this way, by devising the structure of the absorption device such as an absorption bottle so that the gas flow path does not block even when moisture in the wet gas solidifies and adheres, The collection efficiency can be increased, and as a result, the number of absorption bottles can be reduced. Therefore, it is possible to easily collect a gas sample with a very simple apparatus with high efficiency.
[0012]
Next, the contents of the present invention will be described in detail.
If the gas introduction tube diameter (inner diameter) of the absorption bottle or the like is too small, the ventilation resistance increases and there is a risk of clogging due to a solid component contained in the gas. On the contrary, if the tube diameter is too large, the contact between the absorbing liquid and the gas introduced into the absorbing liquid is worsened, and there is a concern that the collection efficiency of the target component may be lowered. Pipes of millimeters to several tens of millimeters are used. However, in the case of such a tube diameter, when a humid gas containing a large amount of mist or water vapor is introduced over a long period of time under a temperature condition below the freezing point, the solidified water accumulates in the tube and becomes clogged. Therefore, depending on the amount of gas water vapor and the gas introduction time, in the absorption bottle (hereinafter referred to as the pre-stage absorption bottle) in the first absorption means of the present invention, the diameter of the gas introduction pipe is 10 mm or more. Is preferable, and it is more preferable that it is 20 mm or more. When the tube diameter is increased in this way, the risk of clogging is reduced even if the condensed water is accumulated, but the contact efficiency between the sample gas and the absorbing liquid is deteriorated as described above.
[0013]
However, from the actual experience of the present inventors so far, even when the contact efficiency between the sample gas and the absorbing liquid is somewhat sacrificed, by maintaining a low temperature condition below the freezing point, high collection performance can be demonstrated. I found that there are many. Even if high collection performance cannot be obtained in the front-stage absorption bottle, the most important role of the front-stage absorption bottle in the present invention is to coagulate and remove moisture in the gas. Efficiency is not a big problem. The target component that could not be collected in the front absorption bottle is introduced into the second absorption means (hereinafter referred to as the rear absorption bottle), but most of the water contained in the gas is in the front absorption bottle. Since it has already been removed, there is no fear of blockage of the flow path due to moisture coagulation in the latter-stage absorption bottle. Therefore, a gas sample can be collected while cooling to a low temperature below the freezing point using a generally used absorption bottle with high absorption performance.
[0014]
If satisfactory sample collection is not possible with a series of two front-stage absorption bottles and one rear-stage absorption bottle, the front-stage absorption bottles and / or the rear-stage absorption bottles may be added in multiple stages as necessary. . The number of connected front-stage absorption bottles may be determined based on the removal performance of moisture in the gas, and the number of connected rear-stage absorption bottles may be determined based on the collection performance of the target component.
[0015]
In the present invention, it is not always necessary to introduce gas into the absorption medium. For example, an absorption bottle containing nothing can be cooled at low temperature, a gas sample is introduced, the target component is once attached to the inner wall of the absorption bottle, etc., and the liquid in the bottle is washed with a small amount of absorption liquid when the gas sample is introduced. By doing so, a sample solution of the target component can be obtained. Moreover, when using an absorption medium, there is no restriction | limiting in particular in the kind of medium, For example, it may be a liquid or something like a bead-like solid. For this reason, the “absorbing medium” as used in the present invention is not limited to only performing narrow absorption, but also includes a solid medium that performs adsorption. In the case of a liquid, it may be solidified during sampling by a cold bath as long as it does not hinder gas flow, but it is preferable that it does not solidify.
[0016]
Since the present invention is made so as not to block the gas flow path due to the coagulation of water, there is no limitation on the cooling temperature, and various refrigerants can be used. Liquid oxygen, liquid argon, liquid nitrogen, or the like can be used as long as the absorption device can withstand the cooling temperature, as well as water and dry ice with a reduced freezing point. However, if the temperature is such that the target component and coexisting components in the gas are liquefied or solidified, it is not preferable because the gas flow path is clogged or insufficiently collected.
[0017]
In order to carry out the method of the present invention in the simplest manner, an absorption bottle that is widely used for both the front-stage absorption bottle and the rear-stage absorption bottle is used. May be connected in the forward direction to constitute a gas sampling device. By connecting the front absorption bottle in the reverse direction, the gas is directly introduced into the main body of the absorption bottle without going through the cooled narrow introduction pipe near the bottom of the absorption bottle. That is, the flow path in which the gas is first cooled is not in the gas introduction pipe, but is a wide flow path outside the gas introduction pipe or inside the absorption bottle body, and moisture in the gas is absorbed in the inner wall of the absorption bottle body or the gas introduction pipe. Adhere to the outer wall. After that, the gas flows in the opposite direction through the narrow pipe that was originally the gas introduction part and is discharged from the upstream absorption bottle. At this point, the gas has already been dehumidified, so that the moisture inside the introduction pipe has solidified. It will not be blocked by the accumulation of. In this method, although it is difficult to blow the sample gas into the absorption liquid in the upstream absorption bottle (if the lower end of the thin pipe is immersed in the absorption liquid, the absorption liquid passes through the thin pipe due to the sample gas flowing out of the thin pipe. As described above, since the temperature is extremely low as described above, most of the target components are collected in the absorption bottle together with moisture without using the absorption liquid. The components collected together with moisture in such a form are washed in the former absorption bottle with the same kind of absorption liquid as the absorption liquid in the latter-stage absorption bottle at the low temperature condition after the gas sampling is finished, and this washing liquid is absorbed in the latter-stage. What is necessary is just to use for analysis as a sample solution with the absorption liquid in a bottle.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. The same components as those shown in FIG. 3 are denoted by the same reference numerals.
FIG. 1 is a schematic view showing an example of a gas sampling device of the present invention.
The gas sampling apparatus has a configuration in which a front absorption bottle 1, a rear absorption bottle 4, a flow rate adjustment meter 7, a suction pump 8, and a gas meter 9 are connected in series. The front-stage absorption bottle 1 and the rear-stage absorption bottle 4 are cooled in the cooling tank 11, and the absorption liquid 3 is contained in each absorption bottle. The gas inlet pipe 2 of the front-stage absorption bottle 1 has a large diameter in order to prevent the channel from being blocked due to the solidification of moisture in the gas. The gas sample 6 is first introduced into the front-stage absorption bottle 1 by the suction pump 8, and moisture and analysis target components in the gas are absorbed in the bottle or the absorption liquid 3. Next, the analysis target component introduced into the rear-stage absorption bottle 4 and not collected by the front-stage absorption bottle 1 is collected in the absorption liquid 3 of the rear-stage absorption bottle 4. In FIG. 1, 10 is a refrigerant.
[0019]
FIG. 2 is a schematic view showing another example of the gas sampling device of the present invention.
The gas sampling apparatus has a configuration in which a front absorption bottle 1, a rear absorption bottle 4, a flow rate adjustment meter 7, a suction pump 8, and a gas meter 9 are connected in series. The front-stage absorption bottle 1 and the rear-stage absorption bottle 4 are cooled in the cooling tank 11, and the absorbent 3 is contained only in the rear-stage absorption bottle 4. The pre-stage absorption bottle 1 is installed in the opposite direction to the gas flow direction in order to prevent the channel from being blocked by the coagulation of moisture in the gas. For this reason, the gas introduction pipe 2A in the front-stage absorption bottle 1 is thin and short, and the absorption liquid 3 is not contained in the absorption bottle 1, so that the gas sample is not blown into the absorption liquid 3. The gas sample 6 of the wet gas is first introduced into the upstream absorption bottle 1 by the suction pump 8, and the moisture and the analysis target component in the gas sample 6 are absorbed in the bottle 1. Next, the analysis target component introduced into the rear-stage absorption bottle 4 and not collected by the front-stage absorption bottle 1 is collected in the absorption liquid 3 of the rear-stage absorption bottle 4.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
[0021]
Example 1
Using the gas sampling device shown in FIG. 1, trace components (siloxanes) contained in the anaerobic digestion gas were collected and quantitatively analyzed using a gas chromatograph mass spectrometer. Gas properties and gas sampling conditions are as follows.
[0022]
Figure 0003778442
[0023]
Table 1 shows the siloxane concentration in the digestion gas.
[0024]
Example 2
The siloxanes contained in the anaerobic digestion gas were collected and quantitatively analyzed under the same conditions as in Example 1 except that the gas sampling apparatus shown in FIG. 2 was used. The gas inlet tube diameter (inner diameter) of the absorption bottle is 6 mm (both 2A and 5). (Comparative example 1 is the same)
Table 1 shows the siloxane concentration in the digestion gas.
[0025]
Comparative Example 1
Except for using ice as the refrigerant, siloxanes contained in the anaerobic digestion gas were collected under the same conditions as in Example 1 and quantitatively analyzed.
Table 1 shows the siloxane concentration in the digestion gas. The siloxane concentration was lower than that in Example 1 and Example 2.
[0026]
Comparative Example 2
The siloxanes contained in the anaerobic digestion gas were collected and quantitatively analyzed under the same conditions as in Example 1 except that the same absorbent bottle as that used in the latter stage was used.
Immediately after the start of sampling of the digestion gas, moisture coagulated and adhered in the gas sample introduction tube of the former absorption bottle. When about 30 minutes passed, the ventilation resistance of the pre-stage absorption bottle began to rise, and when 1 hour passed, the flow path was completely blocked and gas sampling became impossible.
[0027]
[Table 1]
Figure 0003778442
[0028]
【The invention's effect】
According to the gas sample collection method and apparatus according to the present invention, the structure of the absorption bottle is devised so that the inside of the gas introduction pipe is not blocked by the solidification of the moisture even when the gas sample contains a large amount of moisture. Therefore, it is possible to increase the collection efficiency of components to be analyzed using a cold bath below the freezing point, and as a result, it is possible to reduce the number of absorption bottles. The components contained in it can be collected accurately without loss.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a gas sampling device of the present invention.
FIG. 2 is a schematic view showing another example of the gas sampling device of the present invention.
FIG. 3 is a schematic diagram showing an example of a conventional gas sampling device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 First stage absorption bottle 2 Gas introduction pipe 2A Gas introduction pipe 3 Absorption liquid 4 Later stage absorption bottle 5 Gas introduction pipe 6 Sample gas 7 Flow rate regulator 8 Suction pump 9 Gas meter 10 Refrigerant 11 Cooling tank

Claims (6)

湿りガスを導入通路から導入して氷点以下に冷却しながらガス中の水分を凝固させると共にガス中の対象成分を捕集する前段の第1の吸収手段を通した後、該ガスを後段に設けたガス導入通路から導入して捕集しきれなかった対象成分を氷点以下の温度条件で第2の吸収手段で捕集して、湿りガス中に含まれる成分を分析するためのガスの試料採取方法において、The wet gas is introduced from the introduction passage and cooled to below the freezing point to solidify the moisture in the gas, and after passing through the first absorption means in the previous stage for collecting the target component in the gas, the gas is provided in the subsequent stage. Gas sample for analyzing the components contained in the wet gas by collecting the target components that could not be collected after being introduced through the gas introduction passage by the second absorption means under the temperature condition below the freezing point. In the method
前段の前記湿りガスは後段のガス導入通路よりも広い導入通路を流れて第1の吸収手段に導入されることを特徴とするガス試料の採取方法。  The method of collecting a gas sample, wherein the wet gas at the front stage flows through the introduction passage wider than the gas introduction passage at the rear stage and is introduced into the first absorption means.
ガスを氷点以下に冷却し、ガス中の水分を凝固させると共にガス中の対象成分を捕集する第1の吸収部と、第1の吸収部で捕集しきれなかった対象成分を氷点以下の温度条件で捕集する第2の吸収部と、ガスの吸引手段とを直列に備えた、湿りガス中に含まれる成分を分析するためのガスの試料採取装置において、The first absorption part that cools the gas to below the freezing point, solidifies the moisture in the gas and collects the target component in the gas, and the target component that could not be collected by the first absorption part is below the freezing point In a gas sampling device for analyzing a component contained in a wet gas, which is provided with a second absorption section that collects under temperature conditions and a gas suction means in series.
第1の吸収部内に導入されるガスの導入通路を前記第2の吸収部内のガス導入通路よりも広くしたことを特徴とするガス試料の採取装置。  An apparatus for collecting a gas sample, characterized in that a gas introduction passage into the first absorption section is wider than a gas introduction passage in the second absorption section.
前記第1の吸収部内に導入されるガスの通路が、前記第2の吸収部内へのガス導入管径より径の大きい管であることを特徴とする請求項2記載のガス試料の採取装置。3. The gas sample collecting apparatus according to claim 2, wherein the gas passage introduced into the first absorption section is a pipe having a diameter larger than a diameter of a gas introduction pipe into the second absorption section. 前記第1の吸収部と第2の吸収部のうち、第2の吸収部のみが又は何れの吸収部も、ガスと吸収媒体とが接触できるように構成されていることを特徴とする請求項2又は3記載のガス試料の採取装置。The first absorption unit and the second absorption unit are configured such that only the second absorption unit or any of the absorption units can contact the gas and the absorption medium. The gas sample collecting device according to 2 or 3. 前記第1及び第2の吸収部が共に吸収瓶であることを特徴とする請求項2乃至4のいずれか記載のガス試料の採取装置。The gas sample collection device according to any one of claims 2 to 4, wherein the first and second absorption parts are both absorption bottles. ガスの流れ方向に対して、前記第1の吸収部で用いる吸収瓶を逆方向に、かつ、第2の吸収部で用いる吸収瓶を順方向に接続して構成されていることを特徴とする請求項4又は5記載のガス試料の採取装置。The absorption bottle used in the first absorption unit is connected in the reverse direction to the gas flow direction, and the absorption bottle used in the second absorption unit is connected in the forward direction. The gas sample collecting device according to claim 4 or 5.
JP2002245019A 2002-08-26 2002-08-26 Gas sampling method and sampling device Expired - Fee Related JP3778442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245019A JP3778442B2 (en) 2002-08-26 2002-08-26 Gas sampling method and sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245019A JP3778442B2 (en) 2002-08-26 2002-08-26 Gas sampling method and sampling device

Publications (2)

Publication Number Publication Date
JP2004085300A JP2004085300A (en) 2004-03-18
JP3778442B2 true JP3778442B2 (en) 2006-05-24

Family

ID=32053333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245019A Expired - Fee Related JP3778442B2 (en) 2002-08-26 2002-08-26 Gas sampling method and sampling device

Country Status (1)

Country Link
JP (1) JP3778442B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402445B2 (en) * 2013-12-09 2018-10-10 ケイディケイ株式会社 A sheet folding device that is in the form of continuous paper.
CN107430081B (en) 2014-08-27 2020-03-27 苏伊士处理解决加拿大有限合伙公司 Ozone concentration analyzer and using method thereof

Also Published As

Publication number Publication date
JP2004085300A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
WO2005100947A1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP4705110B2 (en) Sample collection device with moisture pretreatment means for air pollution analysis
CN109959538B (en) Device and method for testing sulfur trioxide and condensable particles emitted by fixed pollution source
JP5762273B2 (en) Mist-containing gas analyzer
JP5067873B2 (en) Apparatus and method for selectively concentrating and detecting complex gaseous chemical substances
CA2480531C (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
JP3778442B2 (en) Gas sampling method and sampling device
JPH07113796A (en) Automatic gas gathering method and automatic gas analyzing method
JP2010156592A (en) Exhaust gas sampling device
CN208366946U (en) The device that gas is analyzed in a kind of pair of high-sulfur atmosphere
CN209662857U (en) A kind of iron alloy electric furnace tail gas recycling classified use device
CN208512224U (en) The on-line monitoring system of VOCs exhaust gas lower explosion limit
JP3616876B2 (en) Method for collecting exhaust gas for analysis containing highly adsorbable gas components
JP2001330540A (en) Method of collecting sample gas for exhaust gas analyzer
JP3030282B2 (en) Air purification system
JP2020204553A (en) Device and method for collecting and detecting hydrophilic substance in gas
KR100655786B1 (en) Preconcentrator equipped with removing ability of water vapor
JPH06174613A (en) Impurity trap device
KR100787378B1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP2001083054A (en) Exhaust gas sample collecting method and device
CN213364369U (en) Purification, transmission and sampling device for volatile organic compounds in waste gas of fixed pollution source
CN214584328U (en) SO in fixed pollution source flue gas3Sampling device of
JP2003262625A (en) System and method for monitoring air-borne organic matter
CN219830480U (en) Greenhouse gas sampling and online analysis system
JP3061644U (en) Exhaust gas sampling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Ref document number: 3778442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees