JP3771873B2 - Adsorbent test method and apparatus - Google Patents

Adsorbent test method and apparatus Download PDF

Info

Publication number
JP3771873B2
JP3771873B2 JP2002169747A JP2002169747A JP3771873B2 JP 3771873 B2 JP3771873 B2 JP 3771873B2 JP 2002169747 A JP2002169747 A JP 2002169747A JP 2002169747 A JP2002169747 A JP 2002169747A JP 3771873 B2 JP3771873 B2 JP 3771873B2
Authority
JP
Japan
Prior art keywords
adsorbent
temperature distribution
adsorption
thermometer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002169747A
Other languages
Japanese (ja)
Other versions
JP2004012410A (en
Inventor
雅幸 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002169747A priority Critical patent/JP3771873B2/en
Publication of JP2004012410A publication Critical patent/JP2004012410A/en
Application granted granted Critical
Publication of JP3771873B2 publication Critical patent/JP3771873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸着剤の性能評価を行う吸着剤試験方法および装置に関する。
【0002】
【従来の技術】
一般に、脱湿等の吸着処理を行う場合、ゼオライト、シリカゲルなどの吸着剤を用いてPSA(圧力スイング吸着),TSA(温度スイング吸着)といった処理が行われている。
PSAは、圧力を高くすることにより吸着剤による吸着を行い、圧力を低くすることで脱着を行う。これによって吸脱着サイクルを繰り返して空気中の脱湿やガスの回収などを行うことができる。同様にTSAは温度の高低によって吸脱着サイクルを繰り返す。
【0003】
【発明が解決しようとする課題】
従来、このような吸着剤において、吸着剤の吸脱着過程における吸着剤内部の状態を知ることは行われていなかった。しかし、吸着剤内部の状態、すなわち吸脱着性能を知ることで吸着剤の性能評価が可能となることから、吸着性能を測定することが望まれている。
【0004】
本発明は上記事情に鑑みて成されたものであり、吸着剤の吸着性能を測定することができる吸着剤試験方法および装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の吸着剤試験方法は、吸着剤の一側面に湿ったガスを接触させるとともに該吸着剤の他側面に乾燥したガスを接触させた後、前記吸着剤の厚さ方向の温度分布の時間変化を測定することを特徴とする。
【0006】
吸着剤は水分を吸着することで吸着熱が生ずる。吸着熱によって吸着剤には厚さ方向に温度分布が生ずる。
ここで、吸着剤内部のエネルギーは以下の式で表される。
【0007】
【数1】

Figure 0003771873
【0008】
吸着剤厚さ方向の温度分布の時間変化を測定することで、上記の式の吸脱着熱項を推定することができる。
【0009】
請求項2に記載の発明は、請求項1に記載の吸着剤試験方法において、赤外線温度計を使用して前記吸着剤に対して非接触で該吸着剤の温度分布を測定することを特徴とする。
【0010】
この発明においては、赤外線温度計は吸着剤に対して非接触で測定することにより、測定結果が温度計自体の熱容量に影響されない。
【0011】
請求項3に記載の発明は、請求項2に記載の吸着剤試験方法において、前記赤外線温度計と吸着剤との間に位置して、前記吸着剤を空気に露出させない被覆材を設けたことを特徴とする。
【0012】
赤外線温度計は吸着剤の端面の温度を測ることで厚さ方向の温度分布を測定するが、本発明によれば吸着剤端面が大気に露出していないから、端面には吸着剤内部の温度が十分に伝わり、端面の温度分布は吸着剤内部の温度分布により近くなる。
【0013】
請求項4に記載の発明は、吸着剤を挟んで二分割される測定室を備え、該測定室には、前記吸着剤に対して一側に湿ったガスが導入され、他側に乾燥したガスが導入され、さらに、前記吸着剤の厚さ方向の温度分布変化を測定する温度計を有していることを特徴とする。
【0014】
吸着剤は水分を吸着することで吸着熱が生ずる。吸着熱によって吸着剤には厚さ方向に温度分布が生ずる。
ここで、吸着剤内部のエネルギーは以下の式で表される。
【0015】
【数2】
Figure 0003771873
【0016】
吸着剤厚さ方向の温度分布の時間変化を測定することで、上記式の吸脱着熱項を推定することができる。
【0017】
請求項5に記載の発明は、請求項4に記載の吸着剤試験装置において、前記温度計は赤外線温度計であることを特徴とする。
【0018】
この発明においては、赤外線温度計は吸着剤に対して非接触で測定することができるため、測定結果が温度計自体の熱容量に影響されない。
【0019】
請求項6に記載の発明は、請求項5に記載の吸着剤試験装置において、前記赤外線温度計と前記吸着剤との間に位置して、該吸着剤を空気に露出させない被覆材が設けられていることを特徴とする。
【0020】
赤外線温度計は吸着剤の端面の温度を測ることで厚さ方向の温度分布を測定するが、本発明によれば吸着剤端面が大気に露出していないから、端面には吸着剤内部の温度が十分に伝わり、端面の温度分布は吸着剤内部の温度分布により近くなる。
【0021】
【発明の実施の形態】
次に、本発明の実施形態について、図面を参照して説明する。
図1は本発明の一実施形態として示した吸着剤試験装置1である。図において、符号2は吸着剤3を挟んで二分割されるアクリル製の測定室である。測定室2には、後述するように、吸着剤3に対して一側の空間2aに湿ガスが導入され、他側の空間2bに乾ガスが導入されるようになっている。
空間2bに乾燥したガスを供給する手段として、以下の構成が設けられている。符号5は窒素タンクであり、この窒素タンク5から吐出される窒素ガスは、塩化カルシウムを用いて除湿を行う除湿器6によって除湿されるようになっている。除湿された窒素ガスは分岐し、一方が空間2bに設けられたガス導入口10を介して空間2b内に導入されるようになっている。また、空間2bにはガス排出口11が設けられており、空間2bに乾ガスが導入されると共にガス排出口11から排出され、空間2b内は常に十分に乾燥した状態となっている。
【0022】
一方、除湿器6を通過した後に分岐した窒素ガスの他方は、加湿器13によって加湿される。そして空間2aに設けられたガス導入口14を介して空間2a内に導入されるようになっている。また、空間2aにはガス排出口15が設けられており、空間2aに湿ガスが導入されると共にガス排出口15から排出され、空間2a内は常に十分な湿度とすることができる。
なお、加湿器13は切換によって加湿を行う場合と、加湿を行わず乾ガスとして吐出する場合とに切り替えることができる。
【0023】
さらに、図2に示すように、吸着剤3の上端面3aの温度分布を検出するためのサーモビュアカメラ(赤外線温度計)20が設けられている。サーモビュアカメラ20は、吸着剤3とは非接触で該吸着剤3の上方に位置している。吸着剤3の上方端面3aには、吸着剤3を空気に露出させないための被覆材として、ガラス板21が設けられている。サーモビュアカメラ20はガラス板21を通して吸着剤3の測定を行う。
【0024】
さて、このように構成された本実施形態の吸着剤試験装置は、以下のようにして用いられる。
まず、空間2aおよび空間2bの双方に乾ガスを供給し、測定室2と吸着剤3とを乾燥状態とする。そして、加湿器13を切り替えて空間2aに湿ガスをパルス的に送る。空間2aの湿度が上昇することによって、吸着剤3は水分を吸着し、吸着熱が生ずる。吸着熱は吸着剤3の内部に非定常的に生じ、上端面3aには内部の状態と同様の温度分布が生ずる。この温度分布の変化はサーモビュアカメラ20により測定される。その後は空間2aに乾ガスを送り、引き続きサーモビュアカメラ20により温度分布の変化を測定する。
【0025】
図3は吸着剤3の温度分布の変化である。図の左側が湿ガス側、右側が乾ガス側である。吸着剤3の厚さ方向の温度分布は、湿ガスが供給された時点においてはT0となっている。時間の経過につれ、T1、T2…と変化していく。
ここで、吸着剤内部のエネルギーは以下の式で表される。
【0026】
【数3】
Figure 0003771873
【0027】
図3のように変化する吸着剤3厚さ方向の温度分布の時間変化を測定することで、上記の式の顕熱上昇、熱伝導項を得るから、該式より吸脱着熱項を推定することができる。
吸脱着熱項を得ることで、吸着剤の吸脱着性能がわかるから、例えばPSA,TSA等における性能評価に利用することができる。具体的にはΔHが得られることにより、図4のように濃度・吸脱着量・温度の関係を得ることができる。したがって、例えばPSAの場合には、濃度(圧力)と吸脱着量との関係を得ることができる。
また、温度計としてサーモビュアカメラ20を用いているから、吸着剤3に対して非接触で測定することができる。したがって、測定結果が温度計自体の熱容量に影響されず、正確な温度分布を測定することができる。
また、吸着剤3の上端面3aがガラス板21で被われているため、上端面3aには吸着剤3内部の温度が十分に伝わり、上端面3aの温度分布は吸着剤3内部の温度分布により近くなる。したがってより正確な温度分布を測定することができる。
【0028】
なお、サーモビュアカメラではなく熱電対を吸着剤3の厚さ方向に複数設けて厚さ方向の温度分布を測定するようにしてもよい。
【0029】
【発明の効果】
以上説明したように、本発明においては以下の効果を得ることができる。
請求項1に記載の発明によれば、吸着剤厚さ方向の温度分布の時間変化を測定することで、吸脱着性能を評価することができる。
請求項2に記載の発明によれば、赤外線温度計は吸着剤に対して非接触で測定することにより、測定結果が温度計自体の熱容量に影響されない。したがって正確な温度分布を測定することができる。
請求項3に記載の発明によれば、吸着剤端面が大気に露出していないから、端面には吸着剤内部の温度が十分に伝わり、端面の温度分布は吸着剤内部の温度分布により近くなる。したがって正確な温度分布を測定することができる。
【0030】
請求項4に記載の発明によれば、吸着剤厚さ方向の温度分布の時間変化を測定することで、吸脱着性能を評価することができる。
請求項5に記載の発明によれば、赤外線温度計は吸着剤に対して非接触で測定することができるため、測定結果が温度計自体の熱容量に影響されない。したがって正確な温度分布を測定することができる。
請求項6に記載の発明によれば、吸着剤端面が大気に露出していないから、端面には吸着剤内部の温度が十分に伝わり、端面の温度分布は吸着剤内部の温度分布により近くなる。したがって正確な温度分布を測定することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態として示した吸着剤試験装置の全体図である。
【図2】 同吸着剤試験装置の吸着剤とサーモビュアカメラとを示した側面図である。
【図3】 吸着剤の温度分布変化を示した図である。
【図4】 吸着剤における濃度・吸脱着量・温度の特性関係を示した図である。
【符号の説明】
2 測定室
3 吸着剤
20 サーモビュアカメラ(赤外線温度計)
21 ガラス板(被覆材)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorbent test method and apparatus for evaluating the performance of an adsorbent.
[0002]
[Prior art]
In general, when performing an adsorption treatment such as dehumidification, treatments such as PSA (pressure swing adsorption) and TSA (temperature swing adsorption) are performed using an adsorbent such as zeolite or silica gel.
PSA performs adsorption with an adsorbent by increasing the pressure, and desorbs by decreasing the pressure. In this way, it is possible to perform dehumidification and gas recovery in the air by repeating the adsorption / desorption cycle. Similarly, TSA repeats the adsorption / desorption cycle depending on the temperature.
[0003]
[Problems to be solved by the invention]
Conventionally, in such an adsorbent, it has not been known to know the state of the adsorbent in the adsorbent adsorption / desorption process. However, since it is possible to evaluate the performance of the adsorbent by knowing the state inside the adsorbent, that is, the adsorption / desorption performance, it is desired to measure the adsorption performance.
[0004]
The present invention has been made in view of the above circumstances, and an object thereof is to provide an adsorbent test method and apparatus capable of measuring the adsorption performance of an adsorbent.
[0005]
[Means for Solving the Problems]
The adsorbent test method according to claim 1, wherein a wet gas is brought into contact with one side surface of the adsorbent and a dry gas is brought into contact with the other side surface of the adsorbent, and then the temperature in the thickness direction of the adsorbent is measured. It measures the time change of distribution.
[0006]
The adsorbent generates heat of adsorption by adsorbing moisture. Due to the heat of adsorption, the adsorbent has a temperature distribution in the thickness direction.
Here, the energy inside the adsorbent is expressed by the following equation.
[0007]
[Expression 1]
Figure 0003771873
[0008]
By measuring the time change of the temperature distribution in the adsorbent thickness direction, the adsorption / desorption heat term in the above equation can be estimated.
[0009]
The invention according to claim 2 is characterized in that, in the adsorbent test method according to claim 1, the temperature distribution of the adsorbent is measured without contact with the adsorbent using an infrared thermometer. To do.
[0010]
In the present invention, the infrared thermometer is measured without contact with the adsorbent, so that the measurement result is not affected by the heat capacity of the thermometer itself.
[0011]
According to a third aspect of the present invention, in the adsorbent test method according to the second aspect, a covering material is provided between the infrared thermometer and the adsorbent so as not to expose the adsorbent to the air. It is characterized by.
[0012]
The infrared thermometer measures the temperature distribution in the thickness direction by measuring the temperature of the end face of the adsorbent, but according to the present invention, the end face of the adsorbent is not exposed to the atmosphere, so the end face has a temperature inside the adsorbent. Is sufficiently transmitted, and the temperature distribution at the end face is closer to the temperature distribution inside the adsorbent.
[0013]
The invention described in claim 4 includes a measurement chamber that is divided into two parts with an adsorbent interposed therebetween, and a wet gas is introduced into one side of the adsorbent and dried to the other side. Gas is introduced, and further, a thermometer for measuring a temperature distribution change in the thickness direction of the adsorbent is provided.
[0014]
The adsorbent generates heat of adsorption by adsorbing moisture. Due to the heat of adsorption, the adsorbent has a temperature distribution in the thickness direction.
Here, the energy inside the adsorbent is expressed by the following equation.
[0015]
[Expression 2]
Figure 0003771873
[0016]
By measuring the time change of the temperature distribution in the adsorbent thickness direction, the adsorption / desorption heat term in the above equation can be estimated.
[0017]
The invention described in claim 5 is the adsorbent test apparatus according to claim 4, wherein the thermometer is an infrared thermometer.
[0018]
In this invention, since the infrared thermometer can be measured without contact with the adsorbent, the measurement result is not affected by the heat capacity of the thermometer itself.
[0019]
According to a sixth aspect of the present invention, in the adsorbent test apparatus according to the fifth aspect, a covering material is provided between the infrared thermometer and the adsorbent so as not to expose the adsorbent to the air. It is characterized by.
[0020]
The infrared thermometer measures the temperature distribution in the thickness direction by measuring the temperature of the end face of the adsorbent, but according to the present invention, the end face of the adsorbent is not exposed to the atmosphere, so the end face has a temperature inside the adsorbent. Is sufficiently transmitted, and the temperature distribution at the end face is closer to the temperature distribution inside the adsorbent.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an adsorbent test apparatus 1 shown as an embodiment of the present invention. In the figure, reference numeral 2 denotes an acrylic measurement chamber that is divided into two with the adsorbent 3 interposed therebetween. As will be described later, wet gas is introduced into the space 2a on one side of the adsorbent 3, and dry gas is introduced into the space 2b on the other side in the measurement chamber 2.
As means for supplying the dried gas to the space 2b, the following configuration is provided. Reference numeral 5 denotes a nitrogen tank, and nitrogen gas discharged from the nitrogen tank 5 is dehumidified by a dehumidifier 6 that dehumidifies using calcium chloride. The dehumidified nitrogen gas is branched, and one is introduced into the space 2b through the gas inlet 10 provided in the space 2b. Further, the space 2b is provided with a gas discharge port 11, and dry gas is introduced into the space 2b and discharged from the gas discharge port 11, so that the space 2b is always sufficiently dry.
[0022]
On the other hand, the other of the nitrogen gas branched after passing through the dehumidifier 6 is humidified by the humidifier 13. And it introduce | transduces in the space 2a via the gas inlet 14 provided in the space 2a. Further, a gas discharge port 15 is provided in the space 2a, and wet gas is introduced into the space 2a and discharged from the gas discharge port 15, so that the inside of the space 2a can always have a sufficient humidity.
In addition, the humidifier 13 can be switched between a case where humidification is performed by switching and a case where discharge is performed as dry gas without performing humidification.
[0023]
Further, as shown in FIG. 2, a thermoview camera (infrared thermometer) 20 for detecting the temperature distribution of the upper end surface 3a of the adsorbent 3 is provided. The thermoview camera 20 is positioned above the adsorbent 3 without contact with the adsorbent 3. A glass plate 21 is provided on the upper end surface 3a of the adsorbent 3 as a covering material for preventing the adsorbent 3 from being exposed to the air. The thermoview camera 20 measures the adsorbent 3 through the glass plate 21.
[0024]
Now, the adsorbent test apparatus of the present embodiment configured as described above is used as follows.
First, dry gas is supplied to both the space 2a and the space 2b, and the measurement chamber 2 and the adsorbent 3 are brought into a dry state. Then, the humidifier 13 is switched to send the humid gas in a pulse manner to the space 2a. As the humidity of the space 2a rises, the adsorbent 3 adsorbs moisture and generates heat of adsorption. The heat of adsorption is generated unsteadyly inside the adsorbent 3, and a temperature distribution similar to the internal state is generated on the upper end surface 3a. This change in temperature distribution is measured by the thermoview camera 20. After that, dry gas is sent to the space 2a, and the change of the temperature distribution is continuously measured by the thermoview camera 20.
[0025]
FIG. 3 shows changes in the temperature distribution of the adsorbent 3. The left side of the figure is the wet gas side, and the right side is the dry gas side. The temperature distribution in the thickness direction of the adsorbent 3 is T0 when the wet gas is supplied. As time passes, T1, T2,... Change.
Here, the energy inside the adsorbent is expressed by the following equation.
[0026]
[Equation 3]
Figure 0003771873
[0027]
By measuring the temporal change of the temperature distribution in the thickness direction of the adsorbent 3 that changes as shown in FIG. 3, the sensible heat rise and the heat conduction term of the above formula are obtained, so the adsorption / desorption heat term is estimated from this formula. be able to.
Since the adsorption / desorption performance of the adsorbent is known by obtaining the heat of adsorption / desorption, it can be used for performance evaluation in, for example, PSA, TSA and the like. Specifically, by obtaining ΔH, the relationship among concentration, adsorption / desorption amount, and temperature can be obtained as shown in FIG. Therefore, for example, in the case of PSA, the relationship between the concentration (pressure) and the adsorption / desorption amount can be obtained.
In addition, since the thermoview camera 20 is used as a thermometer, the measurement can be performed without contact with the adsorbent 3. Therefore, the measurement result is not affected by the heat capacity of the thermometer itself, and an accurate temperature distribution can be measured.
Since the upper end surface 3a of the adsorbent 3 is covered with the glass plate 21, the temperature inside the adsorbent 3 is sufficiently transmitted to the upper end surface 3a, and the temperature distribution of the upper end surface 3a is the temperature distribution inside the adsorbent 3. Closer. Therefore, a more accurate temperature distribution can be measured.
[0028]
Note that a plurality of thermocouples may be provided in the thickness direction of the adsorbent 3 instead of the thermoview camera, and the temperature distribution in the thickness direction may be measured.
[0029]
【The invention's effect】
As described above, the following effects can be obtained in the present invention.
According to invention of Claim 1, adsorption / desorption performance can be evaluated by measuring the time change of the temperature distribution of the adsorbent thickness direction.
According to the invention described in claim 2, the measurement result is not influenced by the heat capacity of the thermometer itself by measuring the infrared thermometer without contact with the adsorbent. Therefore, an accurate temperature distribution can be measured.
According to the invention described in claim 3, since the end surface of the adsorbent is not exposed to the atmosphere, the temperature inside the adsorbent is sufficiently transmitted to the end surface, and the temperature distribution of the end surface becomes closer to the temperature distribution inside the adsorbent. . Therefore, an accurate temperature distribution can be measured.
[0030]
According to the fourth aspect of the present invention, the adsorption / desorption performance can be evaluated by measuring the time change of the temperature distribution in the adsorbent thickness direction.
According to the invention described in claim 5, since the infrared thermometer can measure the adsorbent in a non-contact manner, the measurement result is not influenced by the heat capacity of the thermometer itself. Therefore, an accurate temperature distribution can be measured.
According to the invention described in claim 6, since the end surface of the adsorbent is not exposed to the atmosphere, the temperature inside the adsorbent is sufficiently transmitted to the end surface, and the temperature distribution of the end surface becomes closer to the temperature distribution inside the adsorbent. . Therefore, an accurate temperature distribution can be measured.
[Brief description of the drawings]
FIG. 1 is an overall view of an adsorbent test apparatus shown as an embodiment of the present invention.
FIG. 2 is a side view showing an adsorbent and a thermoview camera of the adsorbent test apparatus.
FIG. 3 is a graph showing changes in temperature distribution of the adsorbent.
FIG. 4 is a diagram showing a characteristic relationship among concentration, adsorption / desorption amount, and temperature in an adsorbent.
[Explanation of symbols]
2 Measurement room 3 Adsorbent 20 Thermoview camera (infrared thermometer)
21 Glass plate (coating material)

Claims (6)

吸着剤の一側面に湿ったガスを接触させるとともに該吸着剤の他側面に乾燥したガスを接触させた後、前記吸着剤の厚さ方向の温度分布の時間変化を測定することを特徴とする吸着剤試験方法。A wet gas is brought into contact with one side surface of the adsorbent and a dry gas is brought into contact with the other side surface of the adsorbent, and then the time change of the temperature distribution in the thickness direction of the adsorbent is measured. Adsorbent test method. 請求項1に記載の吸着剤試験方法において、
赤外線温度計を使用して前記吸着剤に対して非接触で該吸着剤の温度分布を測定することを特徴とする吸着剤試験方法。
The adsorbent test method according to claim 1,
A method for testing an adsorbent, comprising measuring the temperature distribution of the adsorbent in a non-contact manner with respect to the adsorbent using an infrared thermometer.
請求項2に記載の吸着剤試験方法において、
前記赤外線温度計と吸着剤との間に位置して、前記吸着剤を空気に露出させない被覆材を設けたことを特徴とする吸着剤試験方法。
In the adsorbent test method according to claim 2,
A method for testing an adsorbent, characterized in that a coating material is provided between the infrared thermometer and the adsorbent so as not to expose the adsorbent to air.
吸着剤を挟んで二分割される測定室を備え、該測定室には、前記吸着剤に対して一側に湿ったガスが導入され、他側に乾燥したガスが導入され、さらに、前記吸着剤の厚さ方向の温度分布変化を測定する温度計を有していることを特徴とする吸着剤試験装置。A measurement chamber is provided that is divided into two with an adsorbent in between. A wet gas is introduced to one side of the adsorbent and a dry gas is introduced to the other side of the adsorbent. An adsorbent test apparatus comprising a thermometer for measuring a change in temperature distribution in the thickness direction of the adsorbent. 請求項4に記載の吸着剤試験装置において、
前記温度計は赤外線温度計であることを特徴とする吸着剤評価装置。
The adsorbent test apparatus according to claim 4,
The adsorbent evaluation apparatus, wherein the thermometer is an infrared thermometer.
請求項5に記載の吸着剤試験装置において、
前記赤外線温度計と前記吸着剤との間に位置して、該吸着剤を空気に露出させない被覆材が設けられていることを特徴とする吸着剤試験装置。
The adsorbent test apparatus according to claim 5,
An adsorbent testing apparatus, characterized in that a coating material is provided between the infrared thermometer and the adsorbent so as not to expose the adsorbent to the air.
JP2002169747A 2002-06-11 2002-06-11 Adsorbent test method and apparatus Expired - Fee Related JP3771873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169747A JP3771873B2 (en) 2002-06-11 2002-06-11 Adsorbent test method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169747A JP3771873B2 (en) 2002-06-11 2002-06-11 Adsorbent test method and apparatus

Publications (2)

Publication Number Publication Date
JP2004012410A JP2004012410A (en) 2004-01-15
JP3771873B2 true JP3771873B2 (en) 2006-04-26

Family

ID=30436218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169747A Expired - Fee Related JP3771873B2 (en) 2002-06-11 2002-06-11 Adsorbent test method and apparatus

Country Status (1)

Country Link
JP (1) JP3771873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102467141A (en) * 2010-10-28 2012-05-23 汉唐科技股份有限公司 Integration device for baking object and controlling baked object in low-temperature dry environment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674217B2 (en) * 2007-01-29 2011-04-20 オリオン機械株式会社 Adsorbent adsorption capacity measuring device
JP4674216B2 (en) * 2007-01-29 2011-04-20 オリオン機械株式会社 Adsorbent adsorption capacity measuring device
JP2013195392A (en) * 2012-03-22 2013-09-30 Hitachi High-Technologies Corp Liquid chromatograph analyzer and temperature control method of the same
CN111879724B (en) * 2020-08-05 2021-05-04 中国工程物理研究院流体物理研究所 Human skin mask identification method and system based on near infrared spectrum imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102467141A (en) * 2010-10-28 2012-05-23 汉唐科技股份有限公司 Integration device for baking object and controlling baked object in low-temperature dry environment

Also Published As

Publication number Publication date
JP2004012410A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
CN102207314B (en) Adsorbing/desorbing device and adsorbate exchange status monitoring method
EP1081440B1 (en) Dehumidifier
KR20140068181A (en) Apparatus and method for control of solid desiccant dehumidifiers
TW550111B (en) Gas removal method and gas removal filter
JP3771873B2 (en) Adsorbent test method and apparatus
JP2024097938A (en) Method for drying compressed gases
WO2012011271A1 (en) Gas removal system
JP2011152494A (en) Dehumidifier and method of determining deterioration of dehumidifier
JP3277136B2 (en) Humidifier
JP2001004573A (en) Method and device for measuring dew point and method and device for dehumidifying gas
TW202102802A (en) Device of kinetic quantization of absorption/desorption for desiccant wheel
JPH0143569B2 (en)
JP3795630B2 (en) Deterioration diagnosis method of rotor of dry type dehumidifier
Gao et al. Experimental study of a LiCl-modified fibrous core material for energy wheels
JPH08178399A (en) Dehumidifying/humidifying apparatus
CN110646577A (en) Water activity detection method
CN206027391U (en) Standard humidity generator's air dryer
CN211825599U (en) A novel test machine for novel EVA sole inspection
Sheng et al. Can a Clean-Air Heat Pump (CAHP) maintain air purification capability when using polluted air for regeneration?
CN111298852B (en) Adsorption type low-humidity device for constant-temperature and constant-humidity box
CN216284748U (en) Tablet friability tester with moisture-proof function
JPH06273312A (en) Migration test equipment
CN115683923A (en) Device and method for measuring residual water content in adsorbent regeneration
JP3012433U (en) Dehumidifier
KR101046363B1 (en) Method and apparatus for measuring calorie change according to moisture adsorption and desorption of sheet-like fiber samples

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

LAPS Cancellation because of no payment of annual fees