JP3770673B2 - Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same - Google Patents

Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same Download PDF

Info

Publication number
JP3770673B2
JP3770673B2 JP33046596A JP33046596A JP3770673B2 JP 3770673 B2 JP3770673 B2 JP 3770673B2 JP 33046596 A JP33046596 A JP 33046596A JP 33046596 A JP33046596 A JP 33046596A JP 3770673 B2 JP3770673 B2 JP 3770673B2
Authority
JP
Japan
Prior art keywords
flange
rubber
wire
flexible joint
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33046596A
Other languages
Japanese (ja)
Other versions
JPH09296887A (en
Inventor
志津雄 横堀
英司 西川
信吉 石坂
清子 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP33046596A priority Critical patent/JP3770673B2/en
Publication of JPH09296887A publication Critical patent/JPH09296887A/en
Application granted granted Critical
Publication of JP3770673B2 publication Critical patent/JP3770673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Flanged Joints, Insulating Joints, And Other Joints (AREA)
  • Joints Allowing Movement (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、通水管路、特に上下水道等の通水管路の大口径地中埋設管の接続にも用いられる耐震性ならびに耐食性埋設可とう継手およびその製造方法の改良に関する。
【0002】
【従来の技術】
従来から地中埋設管、主として上水道、下水道、工業用水道、農業用水道等の埋設管の施工時の変位および地盤の不等沈下による変位の吸収用継手として、ゴムの可とう性を利用した短尺の継手が広く用いられてきた。
【0003】
これら可とう継手は大別して、継手外周面に軸方向に沿って複数の円弧状の山部を有する複数山型のものと、山部をもたないストレート型のものに分類される。ストレート型のものは、表面が平滑な内外ゴム円筒層間に鋼製リングと内外繊維補強層とのサンドイッチ体層を設け、その両端をリングでフランジに固定して構成され、複数山型のものは内外ゴム円筒層間に1ないし2個の鋼製リングと内外繊維補強層とのサンドイッチ体層を設け、その円筒胴壁を外側に膨らませて1ないし2個の円弧状山部を形成し、その両端をリングでフランジに固定したものである。そして複数山型のものが、山部の扁平化による伸びで変位を生ずるのに対して、ストレート型のものの変位は補強繊維の許容伸びの範囲内で生起する。
【0004】
しかしながら、1995年の阪神・淡路大地震により、この種の可とう継手を使用している地中埋設管路が壊滅的な被害を受けた。
すなわち、この種の継手のうち、ストレート型のものは、補強繊維の許容伸び率を超える大きな伸びを伴う地震力により、継手胴体の破断またはフランジからの分離などを起こし、複数山型のものは、複数の山型胴壁が大きな地震力により、その許容伸びを超えて直線的に伸ばされるため、胴壁径の縮小に伴って、ゴム層・繊維補強層と鋼製リングとが分離し、あるいは胴壁の破壊、またはフランジからの胴壁の脱離などを起こしたものと推測される。 このように、 従来の継手はその力学的強度を維持し、地中埋設管の継手としての機能を発揮することが不可能となった。
【0005】
本発明者らは、先に、これらの問題点を解決するために図14(a)および(b)に示す耐震性可とう継手を提案した(特願平8−80672号)。図14(a)のものは、内外面ゴム円筒層2、3間に鋼製コイル状補強線材7と内外側ゴム被覆繊維補強層4、5のサンドイッチ構造体層を設け、その4、5端部を端部リング8に巻き上げてニップル9の突起部で係り止めし、成形された円筒状の胴壁をコイル状補強線材7間で外側に膨らませて複数の円弧状山部を形成し、両端のニップル9をフランジ10に溶接して固定したものである。図14(b)は、上記の継手のニップル9内周面およびフランジ締結面にゴムライニング層17を設けた継手である。また、図15に示すように、内外ゴム層2、3と内外繊維補強ゴム層4、5とをフランジ締結面に成形し固定したものも用いられている。
【0006】
【発明が解決しようとする課題】
しかし、これらの改良継手も、またその偏心、伸長、圧縮等の諸特性許容値が耐震設計仕様値に対し不足していることが確認されたため、これら改良継手のもつ欠点をさらに改良することが必要となった。
【0007】
すなわち、図14(a)の継手は、複数山部を有する円筒状可とう部と連結したニップル9を、後からフランジ10に溶接などにより固定するとき、その溶接熱がゴム可とう部に伝導して変形、剥離などを起こさないように、フランジ10から長さLだけ離して可とう部を固定しなければならないという欠点をもっている。これは可とう継手の可とう性を支配する可とう部長さを縮小させ、その結果として、継手の偏心、圧縮、伸長、曲げ、ねじり等による変位量を減少させて、継手としての性能を低下させることになる。また、可とう部が、主として内外側ゴム被覆繊維補強層4、5と端部リング8によってニップル9に固定されているため、この固定力を超える偏心、伸長等の外力が働いたときには、この部分でのニップルと可とう部との分離、または鋼製コイル状補強線材とゴム層・繊維補強層との分離ないしは繊維補強層の破断を経て継手が破壊されるにいたる。さらに、この継手は、ニップル9内周面およびフランジ10締結面の開口部縁部は流体と常に接触しているので、腐食や流体による摩耗を受け、要求される製品の耐用年数の点からみても問題があった。
【0008】
また、図14(b)のものは、可とう部端部内周面からニップル9の内周面およびフランジ10締結面開口部縁部にかけてゴムライニング17を施して可とう部とフランジ10との結合力の改善を図っているが、強固な結合は得られず、むしろ防食効果をもつ。しかも、このライニング作業は、図14(a)の継手を一旦製作した後に行うことを必要とし、その上、可とう部内周面の加硫内面ゴム層とこの未加硫ライニングゴムの接着という不安定な工法を必要とする問題を有するほか、依然として、可とう部が短いという欠点をもつ。
【0009】
さらに、図15のものは、前記2者のものにみられる溶接熱や腐食の問題はないが、フランジ10を可とう部の端部から内側へある距離だけ一旦押し込んで嵌め込み、その後補強繊維層4、5を巻き上げ、重ねてからフランジ10を戻して固定するため、lの長さを必要とする。このため、この長さlという可とう部の部分には鋼製リング8などを嵌入することができないので、機械的強度が低下するという欠点がある。また図14(a)のものが、内外側ゴム被覆繊維補強層4、5と端部リング8の動きをニップル9の突起部で物理的に封じるという構成をとることにより、可とう部がフランジ10に強固に結合されているのに対し、この継手の可とう部は繊維補強層4、5と内外面ゴム層2、3の端縁部が端部で折り返され、フランジ10の締結面の1部とその内周面で接着されているだけであるため、この継手に伸長などの外力が加わると、フランジ10の締結面と内周面上の折り返し部分がフランジ面から剥離し、可とう部がフランジ10から脱離するという事故が生ずる可能性が大きい。
【0010】
また、大口径、特に600mmを超える可とう継手においては、埋戻し土砂による静土圧、車両が通過するときに生ずる動土圧および地震時の地盤ひずみによって、図16(a)および(b)に示すような、円筒状胴壁の座屈、すなわち、へこみ18(またはつぶれ、凹部)を生じて使用不能となることも少なくなかった。
【0011】
これは、上記可とう継手がこれら動、静土圧や地震時の地盤ひずみなどの外力によって、その円筒状胴壁に圧縮の円周応力が生じ、胴壁の円形状態を保持することが不可能になって変形することによるものである。このへこみ変形を生ずる圧力は可とう継手の口径が大きくなるにつれて急激に増大し、また、そのへこみの度合を表す葉19(凸部)の数も多くなる。
【0012】
このため、前記可とう継手胴壁の主要剛性部材である鋼製コイル状補強線材の線径を十分に太くすることも試みられたが、太い線の使用は、曲げ加工が困難なこと、加工精度も低いこと、可とう継手の胴壁が厚くなり重量が大きくなること、および変形反力も大きくなるといったような問題があった。
【0013】
他方、これらのゴム製可とう継手は、地下鉄、配送電ケーブル、通信線等の地下構造物や直流式電気鉄道、湿地等近辺の地中埋設管に接続し使用された場合には、フランジ内側のニップル外周面(サイドSS部)に上記諸施設からの迷走電流による電食を発生し、ニップル9(サイド管)に亀孔を生じて、流体が流出するという事故が発生していて、以前から埋設ゴム可とう継手の宿命的な改善課題であった。 これは、ゴム製可とう継手が金属製フランジと電気絶縁性のゴム製可とう部とから構成されているため、金属製の地中埋設管に流入し、管中を流れる迷走電流が電気絶縁体であるゴム製可とう部で遮断され、その手前のニップル外周面の露出部から流出するとき起こる電食、すなわちアノード反応によって金属が溶出し、消耗することにより亀孔を生ずることに起因する。
【0014】
これを防止するため、材料の耐食性改善、例えば、鉄よりもイオン化傾向の大きい材料、亜鉛などによりメッキを施すか、または可とう継手全体を完全防食、あるいは電流を通過させるアース線をゴム中に埋入する等の方法があるがいずれも安定性を欠き、かつ大幅なコスト増を強いられるので、ほとんど実用化されていないのが現状である。
【0015】
この発明は、上述した点に鑑みてなされたものであって、可とう部をフランジと一体成形して継手の機械的強度を向上させて、地震力による地盤のひずみに十分追随して変位させるとともに、迷走電流による電食を防止した埋設可とう継手およびその製造方法を提供しようとするものである。
【0016】
他の1つは、2列または3列、あるいはそれ以上の複数列の条数からならコイル状補強線材を、特に大口径を有する可とう部に使用して、継手の耐外圧および耐内圧強度を向上させ、地震力による地盤ひずみによってへこみなどの変形を生ずることなく、自在に追随して継手軸方向および軸直角方向に変位できる埋設可とう継手およびその製造方法を提供することにある。
【0017】
【課題を解決するための手段】
すなわち、この発明の可とう継手は、内外面ゴム層間にコイル状補強線材および内外面ゴム被覆繊維補強層とが設けられて形成された円筒状胴壁がコイル状補強線材間で外周方向に膨らんだ形状を有する埋設可とう継手において、前記内側ゴム被覆繊維補強層の両端部外周面上にフランジを単条または2列ないし3列の複数条からなるコイル状補強線材に近接するか又は接合して配置し、該フランジ締結面側外周面上に端部リングを設け、該フランジおよび端部リングに内側ゴム被覆繊維補強層と内面ゴム層の端縁部を一体的に接着・成形することを要旨とするものである。
【0018】
また、この発明の可とう継手の製造方法は、マンドレルに内面ゴム層および内側ゴム被覆繊維補強層を積層し、該内側ゴム被覆繊維補強層の両端部外周面上にフランジを中央部領域外周面上の単条または2列ないし3列の複数条からなるコイル状補強線材に近接するか又は接合して配置し、該フランジの締結面側外周面上に端部リングを設け、該フランジおよび端部リングに内側ゴム被覆繊維補強層と内面ゴム層の端縁部を一体的に接着・成形し、該コイル状補強線材のピッチ間を埋めるための中間ゴム層、外側ゴム被覆繊維補強層および外面ゴム層を設けてフランジ付円筒状成形体を形成した後、該成形体とマンドレルの間に水圧または空気圧を加えながら、成形体を軸方向に圧縮して、コイル状補強線材間の円筒状胴壁を外周方向に膨らませ、さらに加硫することを要旨とする。
【0019】
【作用】
この発明の可とう継手によれば、継手可とう部の内側ゴム被覆繊維補強層の単縁部を端部リングに巻き上げ折り返してフランジニップル内周面に接合するととともに、内面ゴム層の端縁部もその表面およびフランジ締結面に接合することにより、継手の可とう部をフランジに強固に結合させているので、地中埋設管に接続して使用した場合、大きな地震力により継手が偏心、圧縮、伸長、曲げ、ねじり等の大きな変位を受けて、フランジを可とう部の間に大きな引張荷重が働いても、上記の両者締結機構によりフランジと可とう部の結合を維持することができる。
【0020】
また、コイル状補強線材が2列、または3列などの複数列に配列して大口径継手を形成した場合には、その複数線材の配列方法によっては、引張、圧縮、曲げ、剪断などの機械的強度を増加させたり、または、断面二次モ−メントを増加させたりすることにより、継手の耐外内圧強度を向上させて土圧、地盤ひずみなどの外圧による胴壁のへこみ(凹み)を防止することができ、あるいは胴壁の肉厚を減少させたりして継手を軽量にすることができる。
【0021】
さらに、継手の可とう部断面中央部に長手方向全体にわたって鋼製コイル状補強線材を配置し、この線材の両端部をフランジニップル端部に溶接などにより接合して継手を導体化することにより、迷走電流を遮断することなく、継手を通過させることができる。
【0022】
また、この発明の可とう継手の製造方法によれば、コイル状補強線材の両端部に一対のフランジをニップルを介して溶接などで接合して一体構造部することにより、内側ゴム被覆繊維補強層の外周面上に嵌入配置する作業工数も、従来の3部品の嵌入作業に比べ、1部品の嵌入作業工数で作業を終えることができる。
【0023】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態を具体的に説明する。
図1は本発明の可とう継手の構成を示す部分破断側面図である。
すなわち、この可とう継手1は、内外面ゴム層2、3間の円筒状胴壁断面中央部に単条または2列ないし3列の複数条からなるコイル状補強線材7が中間ゴム層6で埋められて配置され、そのコイル状補強線材7の内側および外側にゴム被覆繊維補強層4、5が設けられ、さらにこれらから形成される円筒状胴壁がコイル状補強線材7間において外周方向に膨らんだ形状に成形されて可とう部が構成され、その両端部にフランジ10と端部リング8を前記内側ゴム被覆繊維補強層4と内面ゴム層2の端縁部により一体的に接着固定したものである。
【0024】
内外面ゴム層2、3は天然ゴム、または合成ゴムからなる公知の、ゴム管に準じたゴム配合物を予めシートに成形し、これを積層して形成される。
【0025】
内外側ゴム被覆繊維補強層4、5は、繊維からなるすだれ織布に未加硫ゴムをトッピング処理したものを内面ゴム層2の外周面上、及びコイル状補強線材7、中間ゴム層6の外周面上に、継手の軸線に対し、所定の成形角度で繊維方向が交差するように交互に偶数枚(プライ)巻付け、積層して形成される。この成形角度は、通常、継手の軸線に対し45°〜65°の範囲で設定される。内外側ゴム被覆繊維補強層4、5に使用する繊維としては、ナイロン、ポリエステル、アミラド、カーボンなどの有機繊維およびガラス、スチールなどの無機、金属繊維などがあげられる。
【0026】
中間ゴム層6は、内外面ゴム層と同じ公知のゴム配合物からなるものであって、コイル状補強線材7を固定するとともに外周方向に膨らんだ円弧形状の胴壁の伸長・彎曲作用を容易にする。
【0027】
コイル状補強線材7は、単線材またはその複数条配列構成体が所定ピッチで連続的に螺旋状に巻かれたコイルばねであって、小さいばね定数を有していて、継手円筒状胴壁の円弧形状山部の伸びとともに継手軸方向、または軸直角方向に容易に変位するものである。このコイル状補強線材7は、地震時の地盤ひずみから継手の変位量を予測し、埋設管径に応じて、好ましい横弾性係数そのほかの機械的特性を有する線材を適宜に選択し、線径、巻数等を決定し、所定のばね定数が得られるように設計し、製作される。そして、このコイル状補強線材7を形成する線材としては、弾性限度の高い金属線材料、例えば、ばね鋼線、ピアノ線などのばね用炭素鋼線、ステンレス鋼線などのばね用合金鋼線、またはりん青銅線などのばね用銅合金線などの単線あるいはその複数条配列構成体を用いることができる。この配列構成体は、コイル状補強線材の単線を、図5(a)、(b)および(c)に示すように、2条、3条、4条などに適宜に配列したものであって、これらのうち、断面二次モーメント、または断面係数が大きい配列が好ましい。これら構成体の各単線は部分的に溶接したり、あるいは金属バンドで締結したりして一体化することができる。また、コイル状補強線材7は、断面が図5に示した円形のほか、三角形、四角形、短形、楕円形などの形状のものであって、特に断面二次モーメント、または断面係数の大きい、コイル状補強線材の軸線直角方向に長軸断面を有する、短形、楕円形などが好ましい。このコイル状補強線材7は、製造時には形成された内側ゴム被覆繊維補強層4の外周面上にその端部から軸方向に嵌め通されて長手方向全体にわたって配置される。また、コイル状補強線材7は、上記のように単独に用いるほか、図11に示すように、予めその両端部にフランジ10をニップル9を介して溶接などにより固定し、一体構造部品として使用することもできる。
【0028】
端部リング8は、図10に示すように、フランジ10の締結面上の開口部近傍に設けられ、内側ゴム被覆繊維補強層4の端縁部4aを巻き上げ、折り返してフランジ10のニップル9内周面との間に挟み込んで固定するとともに、内面ゴム層2の端縁部2aも巻き上げてフランジ10の締結面に固定させることにより、可とう部を強固にフランジ10に結合させる役割を担うものである。この端部リング8としては機械的強度を有する、断面矩形の環状鋼製部材が望ましい。
【0029】
ニップル9は、予めフランジ10に溶接などにより固定されていて、継手の製造時には、フランジと一体となった単一部品となるものである。
【0030】
フランジ10は、予めニップル9を溶接などで取り付け、製造時には単一部品として扱うことができる。そして、配管施工時には埋設管フランジにボルト締結などにより接続される。また、このフランジ10は、コイル状補強線材7の両端部にニップル9の端部を溶接などして固定することにより、コイル状補強線材7と一体構造部品として使用することができる。
【0031】
マンドレル11は、継手積層成形体の芯型であって、図13に示すように、その中央部胴壁に水又は空気の流通孔14が設けられたもの[同図(a)]、または上記マンドレル[同図(a)]の全外周面上および両側面上を弾性材シート製バッグ15で気密に密封して覆い、胴壁中央部の流通孔14から流出される水または空気の圧力により前記バッグ15を外周方向に膨らませるようにしたもの[同図(b)]などを適宜使用することができる。
【0032】
この可とう継手1の製造方法としては、図2に示すように、まず、マンドレル11の表面に、所定の幅のゴムシートを巻き付け、突き合わせ部を接着剤などで接合して円筒状の内面ゴム層2をつくる。また、ゴムシートの代わりにゴムチューブを用いてもよくこの場合は接合作業を省くことができる。
【0033】
次に、図3に示すように、この内面ゴム層2の外周面上に、予め所定の幅に裁断された帯状のトッピング処理繊維コード12を継手の軸線に対し、所定の成形角度φで繊維方向13が交叉するように、交互に偶数プライ巻付けて積層し、内側ゴム被覆繊維補強層4を形成する。
【0034】
続いて、図4(a)に示すように、この内側ゴム被覆繊維補強層4の左端部外周面上に端部リング8を嵌め込み、次いでニップル9付きフランジ10、同図(b)に示す、単線からなるコイル状補強線材7およびニップル9’付きフランジ10’を補強層4の外周面上他端からその表面を滑らすように嵌め込んで行き、長手方向全体にわたって嵌入、配置したのち、端部リング8’を嵌入する。
【0035】
また、耐外圧強度の不足する可とう継手、特に、大口径可とう継手製造の場合には、図5(a)に示すように、コイル状補強線7を2列に構成して、内側ゴム繊維補強層4の周面上に配置する。この場合、コイル状補強線材7は、上記2列の配列のほか、同図(b)および(c)に示すように、3列、4列など適宜の複数条配列構成体を選び使用することができる。
【0036】
図6に示すように、両端の端部リング8、8’を介して、内側ゴム被覆繊維補強層4の端縁部4a、4a’を巻き上げ折り返し重ね、その後に内面ゴム層2の端縁部2a、2a’も巻き上げる。
【0037】
次いで、図7に示すように、フランジ10、10’およびコイル状補強線材7を両側へ引き延ばし、フランジ10、10’を端部リング8、8’に密着させるとともに、コイル状補強線材7の両端部をフランジニップル9、9’に近接させる。
【0038】
その後、図8に示すように、この内側ゴム被覆繊維補強層4の外周面上に、ゴムシート6をコイル状補強線材7のピッチ間を埋めるように巻付け、中間ゴム層6をつくる。
【0039】
次に、中間ゴム層6の表面に、外側ゴム被覆繊維補強層5を内側ゴム被覆繊維補強層4と同じ構成と方法で形成し、その外側ゴム被覆繊維補強層5の端縁部をフランジニップル9の外周面に貼りつける。さらに、この外側ゴム被覆繊維補強層5の表面にゴムシートを巻き、接合して外面ゴム層3をつくる。
【0040】
このようにして得られた、図8に示すフランジ10付きの円筒成形体を、図9に示すように、その成形体とマンドレル11との間に空気圧または水圧を加えながら、押し金具12により軸方向に圧縮して、コイル状補強線材7間の円筒状胴壁を外周方向に膨らませて、円弧状山形に成形する。空気圧または水圧は積層された各ゴム層を密着させ、かつ両端の押し金具12による圧縮力を成形体全長にわたって均一にするとともに、コイル状補強線材7間の成形体胴壁を外周方向に膨らませて、円弧状山形を形成させる役割を担うものである。この圧力は通常1〜20kgf/cm2の範囲内で適用される。上記圧力は得ようとする円弧の径の大きさによって決定され、封入圧を高くすると円弧の半径は小さくなる。また、上記押し金型12により圧縮してコイル補強線材間に円弧状山部を形成する場合、一定ピッチのコイル補強線材を用いて、その線材間を一定のピッチに形成したり、または図12に示すように、端部へ向って漸減したピッチに成形することもできる。
【0041】
続いて、この円弧状山形の胴壁の外周面を布ラッピングで締め付けてから、加硫を行った後、マンドレル11と押し金具12を外して図1の製品を得る。
【0042】
なお、図11に示すように、コイル状補強線材7をフランジ10に固定する方法は、その両端部をニップル9の内側断面に突き合わせて接合しても良いし[(a)]、またはニップル9の外周面に重ねて接合したり[(b)]、あるいは突き合わせ接合に加えて、ニップル9の外周面の補助カバー16の内面に重ね接合したり[(c)]してもよい。
【0043】
また、図5に示す2列または3列、あるいはそれ以上の複数配列から構成されるコイル状補強線材は、大口径、特に600mmを超える可とう継手に使用できるほか、両車、特に大型車両の往来頻度の多い軟弱地盤、あるいは地盤急変部の埋設管に接続される予定の可とう継手に、口径の大小を問わず、適用して耐外内圧強度を向上させることができる。
【0044】
【実施例1】
直径200mmのゴム製バッグ付きマンドレルに天然ゴムシートを巻きつけ接合して内面ゴム層(硬度60°、厚さ6mm)を形成し、その外周面上に天然ゴムでトッピング処理した1260デニールナイロンすだれ織コードを製品の軸線に対し成形角度50°で交互に2プライ積層して内側ゴム被覆繊維層(2層、厚さ1mm)を得た。次に、この外周面上の左端部に端部リング(SS400、外径240mm、内径220mm、厚さ10mm)を嵌入し、他方右端部から50mmピッチを有する硬鋼線コイル(SW−C、線径10mm、内径216mm、有効巻数10)とニップル(STK、外径220mm、厚さ5mm)付フランジ(200A JIS 10K)との一体構造部品(フランジ外面間長さ900mm)を中央部領域に、続いてもう1つの端部リングを右端部に順次嵌入して配置した。両端の端部リングを介して、内側ゴム被覆繊維補強層を折り返した後、その上にさらに内面ゴム層も折り上げた。次いで一体構造部品の両端のフランジを両側へ引き伸ばして、フランジの締結側面を端部リングに密着させた。そして硬鋼線コイル線間に中間ゴム層(天然ゴム、厚さ10mm)を巻き込んで埋め、さらにその上に内側ゴム被覆繊維補強層のときと同じ要領で外側ゴム被覆繊維補強層(天然ゴムトッピング処理1260デニールナイロンすだれコード、2プライ、厚さ1mm)を形成した。次にその上に外面ゴム層(天然ゴム、硬度60°、厚さ3mm)を巻きつけた後、両端の押し金具をそれぞれ50mmだけ内側へ押しつけて、上記のようにして得られた積層成形品を長さ1000mmに圧縮した。この圧縮と同時にマドレル内に圧力10kgf/cm2の水を封入した。そして、この未加硫成形品を全長1000mmにセットした状態で、加熱加硫(145 ℃ × 60分)を行った後、マンドレルと押し金具を外して、長さ1000mm、内径200mmの継手サンプルを得た。
【0045】
【参考例】
実施例1の線形10mmの単条の硬鋼線コイルを用いて、600mmの大口径可とう継手を製作した場合の土圧(外圧)による胴壁のへこみを生ずる事例およびさらにその単条コイルの線径を増してへこみを防止した事例を示す。直径600mm、線形10mmならびに14mmのそれぞれ単条の硬鋼線コイル(SW−C、内径216mm、ピッチ30mm、有効巻数20)を用いたことおよびピッチ25mmになるように積層成形体を圧縮したことを除いては、実施例1と同じ方法で製作し、長さ1000mm、内径600mmの2種類の大口径可とう継手サンプルを得た。これらのサンプルを地中埋設管に接続して、耐外圧試験を行なったところ、線形10mmの硬鋼線コイルを有するサンプルは、外圧1kgf/cm2で胴壁がへこみを生じたのに対し、線形14mmのものは同じ外圧では胴壁に何ら異状は認められなかった。
【0046】
【実施例2】
線形14mm単線の1/2断面積を有する線径10mm、ピッチ30mmの部分的に溶接して2列に配列した硬鋼線コイル(SW−C、内径216mm、有効巻数20)を用いたことを除いては、実施例1と同じ方法で製作し、長さ1000mm、内径600mmの大口径可とう継手サンプルを得た。このサンプルを地中に埋設して、耐外圧試験を行なったことろ、外圧1kgf/cm2で胴壁に何ら異状は認められなかった。しかし、外圧2kgf/cm2では少しへこみを生じた。
【0047】
【実施例3】
線径10mm、ピッチ30mmの、部分的に溶接して3列(最密充填正三角形状)に配列した硬鋼線コイル(SW−C、内径216mm、有効巻数20)を用いたことを除いては、実施例1と同じ方法で製作し、長さ1000mm、内径600mmの大口径可とう継手サンプルを得た。このサンプルにつぃて同様のテストを行なったところ、外圧を2kgf/cm2に増加しても胴壁の異状はなかった。
【0048】
本発明の実施例1および本発明による製造方法を用い口径のみを変化させ得られた継手サンプルの破断圧力−伸長量、偏心量および変位反力−変位量関係線図を従来品のそれとともに、図17および図18に示す。図17および図18から明らかなように、本発明により得られる可とう継手は、従来品と比較して、継手の機械的強度を示す破断強さおよび変位の追随性能を示す変位反力に著しい向上がみられた。特に図17に示す継手の破断圧力が、従来品に比べ、標準使用領域において、大きく増大したことは大きな変位に耐えるとともに、その耐用年数に寄与するものと期待される。また、図18に示す変位反力曲線の勾配が従来品に比べ小さいことは、その差異だけ変位しやすいことを意味する。そして実用上では、その分だけ小さい変位荷重で変位することができるから、地盤の変動にそれだけ追随しやすい特徴をもつ。これらはフランジと可とう部の強固な一体成形化、及びフランジとコイル状補強線材との強固な一体構成部品化が顕著に寄与しているものと推測される。
【0049】
また、実施例2から明らかなように、参考例の線径14mm単線の断面積を1/2に減じた鋼線を2列に配列してコイル状補強線材を構成して使用した場合には、元の単線と同一の補強効果を示し、その上可とう継手の肉厚が2mm薄く、軽量となり、その分だけ変位反力も低下した。さらに、実施例3は、参考例の線径14mm単線の断面積を1/2に減じた3条の鋼線を正三角形状に配列して断面二次モ−メントを元の単線の2倍以上に増大でき、耐外圧強度を倍増できることを示した。 これらは、コイル状補強鋼線材の2列、または3列の配列化による断面形状効果および線径の縮小の相乗作用によるものと推測される。
【0050】
【発明の効果】
以上、説明したように、この発明の可とう継手によれば、継手の可とう部の内側ゴム被覆繊維補強層の端縁部を端部リングに巻き上げ折り返してフランジニップル内周面に接合するとともに、内面ゴム層の端縁部もその表面およびフランジ締結面に接合することにより、継手の可とう部をフランジに強固に結合させているので、継手を地中埋設管に接続して使用した場合、大きな地震力によって、継手が偏心、圧縮、伸長、曲げ、ねじり等の大きな変位を受けてフランジと可とう部との間に大きな引張荷重が働いても、上記の両者締結機構により、フランジと可とう部の結合を維持することができ、その結果、従来にみられたフランジから可とう部が脱離するという事故を有効に防止できるようになった。
【0051】
また、コイル状補強線材を複数条に配列するこにより、従来の大口径、あるいは大きな輪圧を受ける地盤に埋設された小、中口径可とう継手にみられた胴壁のへこみを防止することができるようになった。特に、線材の線径の縮小および複数線材の配列構成を断面二次モ−メントが大きくなるように選択することにより、経済的で耐外圧強度に優れた可とう継手を得ることができた。
【0052】
さらに、継手の可とう部断面中央部に軸方向に沿って全長にわたって鋼製コイル状補強線材を配置し、この線材の両端部をフランジニップル端部に溶接などにより接合して継手を導体化したので、迷走電流を遮断することなく、継手を通過させることができるようになった。その結果、従来にみられたニップル外周面露出部(サイドSS部)の電食を有効に防止できた。
【0053】
さらに、この発明の可とう継手の製造方法においても、コイル状補強線材の両端部に一対のフランジをニップルを介して溶接などにより接合して一体構造部品としたので、内側ゴム被覆繊維補強層外周面上に嵌入、配置する作業工数も、従来の3部品嵌入作業に比べ、一部品の嵌入作業工数で終えることができるなど総成形工数は従来の製品に比較して1/3程度に短縮することができた。
【図面の簡単な説明】
【図1】(a)本発明の可とう継手の構成を示す部分破断側面図である。
(b)2列のコイル状補強線材を有する本発明可とう継手の構成を示す部分破断断面図である。
【図2】マンドレルに内面ゴム層を形成した状態を示す部分破断側面図である。
【図3】内面ゴム層に内側ゴム被覆繊維補強シートを巻回、積層する状態を示す部分破断側面図である。
【図4】(a)内側ゴム被覆繊維補強層に端部リング、ニップル付フランジとコイル状補強線材を配置した状態を示す部分破断側面図である。
(b)単線からなるコイル状補強線材を配置した状態を示す要部側面図である。
【図5】(a)内側ゴム被覆繊維補強層に2列のコイル状補強線材を配置した状態を示す要部側面図である。
(b)コイル状補強線材が3列に配列された構成の例を示す断面図である。
(c)コイル状補強線材が4列に配列された構成の例を示す断面図である。
【図6】内側ゴム被覆繊維層および内面ゴム層を端部リングに巻き上げて固定した状態を示す部分破断側面図である。
【図7】フランジと端部リングを内側ゴム被覆繊維補強層と内面ゴム層で固定した状態を示す要部断面図である。
【図8】コイル状補強線材間に中間ゴム層、その上に外側ゴム被覆繊維補強層、外面ゴム層を形成し、ニップルに固定した要部断面図である。
【図9】積層成形体を圧縮して胴壁を膨らませた状態を示す胴壁要部断面図である。
【図10】端部リングが内側ゴム被覆繊維補強層と内面ゴム層で固定された状態を示す要部断面図である。
【図11】(a)、(b)および(c) コイル状補強線材をフランジに固定する方法を例示した要部断面図である。
【図12】端部に向ってピッチを漸減させたコイル状補強線材を有する本発明可とう継手の要部断面図である。
【図13】(a)中央部胴壁に流通孔を有するマンドレルの構造を示す縦断面図である。
(b)マンドレルの胴体外面と側面を弾性材シート製バックで覆った場合を示す縦断面図である。
【図14】(a)および(b) 従来の可とう継手を示す要部断面図である。
【図15】別の従来の可とう継手を示す要部断面図である。
【図16】(a)および(b) 従来の可とう継手が外圧によりへこみを2箇所および3箇所生じた状態を示す断面図である。
【図17】本発明で得られた可とう継手の破断圧力−伸長量、偏心量の関係線図を従来品のそれと比較した図である。
【図18】本発明で得られた可とう継手の変位反力−変位量の関係線図を従来品のそれと比較した図である。
【図19】埋設可とう継手の圧縮、伸長、偏心と曲げの変位特性の考え方を示す図である。
【符号の説明】
1 本発明の可とう継手
2 内面ゴム層、2a、2a’内面ゴム層の端縁部
3 外面ゴム層
4 内側ゴム被覆繊維補強層、4a、4a’内側ゴム被覆繊維補強層の端縁部
5 外側ゴム被覆繊維補強層
6 中間ゴム層
7 コイル状補強線材
8、8’ 端部リング
9、9’ ニップル
10、10’ フランジ
11 マンドレル
12 トッピング処理繊維コード
13 繊維方向
14 流通孔
15 弾性シート製バッグ
16 補助カバー
17 ゴムランニング
18 へこみ
19 へこみで生ずる葉
A 本発明実施例可とう継手
B 従来技術によるストレート型可とう継手
C 従来技術による複数山型可とう継手
L フランジからのニップル長さ
P ピッチ
W 外力
l フランジからの可とう部長さ
δ 変位量
θ 変位角度
φ 成形角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an earthquake-resistant and corrosion-resistant buried flexible joint that is also used for connecting large-diameter underground pipes of water pipes, particularly water pipes such as water and sewage systems, and an improvement of the manufacturing method thereof.
[0002]
[Prior art]
Conventionally, rubber flexibility has been used as a joint for absorbing displacement during construction of underground pipes, mainly water supply, sewerage, industrial water supply, agricultural water supply, etc., and displacement due to uneven settlement of the ground. Short joints have been widely used.
[0003]
These flexible joints are roughly classified into a plurality of ridges having a plurality of arc-shaped ridges along the axial direction on the outer peripheral surface of the joint and a straight type having no ridges. In the straight type, a sandwich body layer of steel rings and inner and outer fiber reinforcement layers is provided between the inner and outer rubber cylinder layers with a smooth surface, and both ends are fixed to the flange with the ring. A sandwich body layer of one or two steel rings and inner and outer fiber reinforcing layers is provided between the inner and outer rubber cylindrical layers, and the cylindrical body wall is expanded outward to form one or two arc-shaped peaks, Is fixed to the flange with a ring. The multi-peak type has a displacement due to the elongation due to the flattening of the peak portion, whereas the straight-type has a displacement within the allowable elongation range of the reinforcing fiber.
[0004]
However, the Great Hanshin-Awaji Earthquake in 1995 caused catastrophic damage to underground pipes using this type of flexible joint.
That is, among these types of joints, straight type ones cause fracture of the joint body or separation from the flange due to seismic force with large elongation exceeding the allowable elongation rate of the reinforcing fiber, Since the multiple shell walls are stretched linearly beyond their permissible elongation due to large seismic forces, the rubber layer / fiber reinforcement layer and the steel ring are separated as the shell wall diameter decreases. Alternatively, it is presumed that the body wall was broken or the body wall was detached from the flange. As described above, the conventional joint can maintain its mechanical strength and cannot function as a joint for underground pipes.
[0005]
The present inventors have previously proposed an earthquake-resistant flexible joint shown in FIGS. 14A and 14B in order to solve these problems (Japanese Patent Application No. 8-80672). 14 (a) is provided with a sandwich structure layer of a steel coiled reinforcing wire 7 and inner and outer rubber-coated fiber reinforcing layers 4 and 5 between the inner and outer rubber cylindrical layers 2 and 3; The part is wound up on the end ring 8 and locked by the protrusion of the nipple 9, and the formed cylindrical body wall is inflated outwardly between the coiled reinforcing wires 7 to form a plurality of arcuate peaks. The nipple 9 is fixed to the flange 10 by welding. FIG. 14B is a joint in which a rubber lining layer 17 is provided on the inner peripheral surface of the nipple 9 and the flange fastening surface of the joint. Further, as shown in FIG. 15, the inner and outer rubber layers 2 and 3 and the inner and outer fiber reinforced rubber layers 4 and 5 are molded and fixed on the flange fastening surface.
[0006]
[Problems to be solved by the invention]
However, these improved joints have also been confirmed to have insufficient allowable values for various characteristics such as eccentricity, extension, and compression relative to the seismic design specifications. It became necessary.
[0007]
That is, in the joint shown in FIG. 14 (a), when the nipple 9 connected to the cylindrical flexible portion having a plurality of crests is fixed to the flange 10 by welding or the like, the welding heat is conducted to the rubber flexible portion. Thus, there is a drawback that the flexible portion must be fixed by being separated from the flange 10 by a length L so as not to cause deformation, peeling, and the like. This reduces the length of the flexible part that governs the flexibility of the flexible joint and, as a result, reduces the amount of displacement due to eccentricity, compression, extension, bending, torsion, etc. of the joint, thereby reducing the performance as a joint. I will let you. In addition, since the flexible portion is fixed to the nipple 9 mainly by the inner and outer rubber-coated fiber reinforcing layers 4 and 5 and the end ring 8, when an external force such as eccentricity or extension exceeding this fixing force is applied, The joint is broken through separation of the nipple and the flexible part at the part, separation of the steel coiled reinforcing wire and the rubber layer / fiber reinforcing layer, or breakage of the fiber reinforcing layer. Further, this joint has an inner peripheral surface of the nipple 9 and an opening edge of the flange 10 fastening surface that are always in contact with the fluid, so that it is subject to corrosion and wear due to the fluid, and from the viewpoint of the required service life of the product. There was also a problem.
[0008]
14 (b) shows the connection between the flexible portion and the flange 10 by applying a rubber lining 17 from the inner peripheral surface of the flexible portion end to the inner peripheral surface of the nipple 9 and the flange 10 fastening surface opening edge. Although the power is improved, a strong bond is not obtained, but rather it has an anticorrosive effect. In addition, this lining operation needs to be performed after the joint shown in FIG. 14 (a) is once manufactured. In addition, the vulcanized inner rubber layer on the inner peripheral surface of the flexible portion and the unvulcanized lining rubber are not bonded. In addition to having the problem of requiring a stable construction method, it still has the disadvantage that the flexible part is short.
[0009]
Further, in FIG. 15, there is no problem of welding heat or corrosion seen in the above two, but the flange 10 is once pushed inward from the end of the flexible portion by a certain distance, and then the reinforcing fiber layer is inserted. Since the flanges 10 are returned and fixed after the rolls 4 and 5 are rolled up and overlapped, a length of 1 is required. For this reason, since the steel ring 8 etc. cannot be inserted in the part of this flexible part of this length l, there exists a fault that mechanical strength falls. 14A has a configuration in which the movement of the inner and outer rubber-coated fiber reinforcing layers 4 and 5 and the end ring 8 is physically sealed by the protrusions of the nipple 9, so that the flexible portion is a flange. 10, while the flexible portion of this joint has the edge portions of the fiber reinforcing layers 4 and 5 and the inner and outer rubber layers 2 and 3 folded back at the ends, Since only one part is bonded to the inner peripheral surface, when an external force such as extension is applied to the joint, the fastening surface of the flange 10 and the folded portion on the inner peripheral surface are peeled off from the flange surface, which is flexible. There is a high possibility that an accident will occur where the part is detached from the flange 10.
[0010]
Further, in a flexible joint having a large diameter, particularly 600 mm, the static earth pressure due to the backfilling earth, the dynamic earth pressure generated when the vehicle passes, and the ground strain at the time of earthquake are shown in FIGS. In many cases, the cylindrical body wall buckled as shown, that is, dents 18 (or collapses, recesses) were made unusable.
[0011]
This is because it is difficult for the flexible joint to maintain the circular shape of the shell wall due to the compression, stress on the cylindrical shell wall due to external forces such as these movements, static earth pressure and ground strain during an earthquake. This is because it becomes possible to deform. The pressure causing the dent deformation increases rapidly as the diameter of the flexible joint increases, and the number of leaves 19 (convex portions) indicating the degree of the dent increases.
[0012]
For this reason, attempts have been made to sufficiently increase the wire diameter of the steel coiled reinforcing wire that is the main rigid member of the flexible joint body wall. However, the use of the thick wire is difficult to bend, There have been problems such as low accuracy, thick body wall of the flexible joint, increased weight, and deformation reaction force.
[0013]
On the other hand, these rubber flexible joints are connected to underground structures such as subways, distribution cables, communication lines, and underground underground pipes such as DC electric railways and wetlands. There has been an accident in which galvanic corrosion due to stray currents from the above facilities occurred on the nipple outer surface (side SS portion) of the nipple, and a fluted hole was formed in the nipple 9 (side tube), causing fluid to flow out. It was a fateful improvement problem for buried rubber flexible joints. This is because the rubber flexible joint consists of a metal flange and an electrically insulating rubber flexible part, so that the stray current flowing into the metal underground pipe is electrically insulated. It is blocked by the rubber flexible part that is the body, and when it flows out from the exposed part of the outer peripheral surface of the nipple in front of it, the metal is eluted by the anode reaction, resulting in the formation of a burrow due to consumption .
[0014]
To prevent this, improve the corrosion resistance of the material, for example, plating with a material that has a higher ionization tendency than iron, zinc, etc., or completely protecting the entire flexible joint, or grounding wire that allows current to pass through the rubber. There are methods such as embedding, but none of them are stable and the cost is greatly increased.
[0015]
The present invention has been made in view of the above-described points. The flexible portion is integrally formed with the flange to improve the mechanical strength of the joint, and is displaced sufficiently following the strain of the ground due to the seismic force. At the same time, it is an object of the present invention to provide an embedded flexible joint that prevents electric corrosion due to stray current and a method for manufacturing the same.
[0016]
The other is that the outer and inner pressure strengths of the joints are obtained by using a coiled reinforcing wire, especially in a flexible part having a large diameter, from two, three or more rows. It is an object of the present invention to provide a buried flexible joint that can freely follow and displace in the joint axial direction and a direction perpendicular to the axis without causing deformation such as dents due to ground strain due to seismic force, and a method for manufacturing the same.
[0017]
[Means for Solving the Problems]
That is, in the flexible joint of the present invention, the cylindrical body wall formed by providing the coiled reinforcing wire and the inner and outer rubber-coated fiber reinforcing layers between the inner and outer rubber layers expands in the outer peripheral direction between the coiled reinforcing wires. In the buried flexible joint having an elliptical shape, a flange is provided on the outer peripheral surface of both end portions of the inner rubber-coated fiber reinforcing layer in the vicinity of or joined to a coiled reinforcing wire composed of a single or a plurality of two or three rows. And arranging an end ring on the flange fastening surface side outer peripheral surface, and integrally bonding and molding the end edges of the inner rubber-coated fiber reinforcing layer and the inner rubber layer on the flange and the end ring. It is a summary.
[0018]
Also, the method for manufacturing a flexible joint of the present invention includes laminating an inner rubber layer and an inner rubber-coated fiber reinforcing layer on a mandrel, and flanges on the outer peripheral surfaces at both ends of the inner rubber-coated fiber reinforcing layer. An end ring is provided on the outer peripheral surface on the fastening surface side of the flange, arranged close to or joined to the coiled reinforcing wire consisting of a single strip or a plurality of rows of 2 to 3 rows, and the flange and end An intermediate rubber layer, an outer rubber-coated fiber reinforcing layer, and an outer surface for integrally bonding and molding the edge portions of the inner rubber-coated fiber reinforcing layer and the inner rubber layer to the inner ring and filling the gap between the pitches of the coiled reinforcing wire After forming a cylindrical molded body with a flange by providing a rubber layer, the molded body is compressed in the axial direction while applying hydraulic pressure or air pressure between the molded body and the mandrel, and the cylindrical body between the coiled reinforcing wires Inflates the wall in the outer circumferential direction It was further summarized in that the vulcanization.
[0019]
[Action]
According to the flexible joint of this invention, the single edge portion of the inner rubber-coated fiber reinforcing layer of the joint flexible portion is wound up and folded around the end ring and joined to the inner peripheral surface of the flange nipple, and the edge portion of the inner rubber layer Since the flexible part of the joint is firmly bonded to the flange by joining to the surface and the flange fastening surface, the joint will be eccentric and compressed by a large seismic force when used in connection with underground pipes. Even when a large tensile load is applied between the flexible portion of the flange due to a large displacement such as extension, bending, or twisting, the coupling between the flange and the flexible portion can be maintained by the above-described both fastening mechanisms.
[0020]
In addition, when a large-diameter joint is formed by arranging coil-shaped reinforcing wires in a plurality of rows such as two rows or three rows, depending on the method of arranging the plurality of wires, a machine such as tension, compression, bending, shearing, etc. Increase the strength of the joint or increase the secondary moment of the cross section to improve the external pressure resistance of the joint and reduce the indentation (dent) in the trunk wall due to external pressure such as earth pressure and ground strain. This can be prevented, or the thickness of the body wall can be reduced to reduce the weight of the joint.
[0021]
Furthermore, by arranging a steel coil-shaped reinforcing wire over the entire length in the center of the cross section of the flexible part of the joint, and joining both ends of this wire to the flange nipple end by welding or the like, The joint can be passed without interrupting the stray current.
[0022]
Further, according to the method of manufacturing a flexible joint of the present invention, the inner rubber-coated fiber reinforcing layer is formed by joining a pair of flanges to both ends of the coiled reinforcing wire by welding or the like via a nipple to form an integral structure. The work man-hours to be fitted and arranged on the outer peripheral surface can be completed with one man-hour of insertion work compared to the conventional three-part fitting work.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 is a partially broken side view showing the configuration of the flexible joint of the present invention.
That is, in this flexible joint 1, a coil-shaped reinforcing wire 7 consisting of a single strip or a plurality of strips in two or three rows is formed in the middle rubber layer 6 at the central section of the cylindrical body wall between the inner and outer rubber layers 2 and 3. The rubber-coated fiber reinforcement layers 4 and 5 are provided inside and outside the coil-shaped reinforcing wire 7, and the cylindrical body wall formed from these is disposed between the coil-shaped reinforcing wires 7 in the outer circumferential direction. A flexible portion is formed by being formed into a swollen shape, and the flange 10 and the end ring 8 are integrally bonded and fixed to the both ends by the edge portions of the inner rubber-coated fiber reinforcing layer 4 and the inner rubber layer 2. Is.
[0024]
The inner and outer rubber layers 2 and 3 are formed by previously molding a known rubber compound made of natural rubber or synthetic rubber according to a rubber tube into a sheet and laminating them.
[0025]
The inner and outer rubber-coated fiber reinforcement layers 4 and 5 are made of a fiber weave fabric topped with unvulcanized rubber on the outer peripheral surface of the inner rubber layer 2, the coil-shaped reinforcing wire 7, and the intermediate rubber layer 6. On the outer peripheral surface, an even number (ply) is alternately wound and laminated so that the fiber direction intersects the axis of the joint at a predetermined forming angle. This forming angle is usually set in the range of 45 ° to 65 ° with respect to the axis of the joint. Examples of the fibers used for the inner and outer rubber-coated fiber reinforcing layers 4 and 5 include organic fibers such as nylon, polyester, amyrad, and carbon, and inorganic and metal fibers such as glass and steel.
[0026]
The intermediate rubber layer 6 is made of the same known rubber compound as the inner and outer surface rubber layers, and fixes the coiled reinforcing wire 7 and easily expands and curves the arc-shaped body wall that swells in the outer peripheral direction. To.
[0027]
The coil-shaped reinforcing wire 7 is a coil spring in which a single wire or a multi-row arrangement structure thereof is continuously spirally wound at a predetermined pitch, and has a small spring constant. It is easily displaced in the joint axial direction or the direction perpendicular to the axis along with the extension of the arc-shaped crest. The coil-shaped reinforcing wire 7 predicts the displacement of the joint from the ground strain at the time of the earthquake, and appropriately selects a wire having a preferable transverse elastic modulus and other mechanical characteristics according to the buried pipe diameter, The number of turns and the like are determined and designed and manufactured so as to obtain a predetermined spring constant. And as a wire which forms this coiled reinforcement wire 7, metal wire material with a high elastic limit, for example, spring steel wire, carbon steel wire for springs such as piano wire, alloy steel wire for springs such as stainless steel wire, Alternatively, a single wire such as a copper alloy wire for a spring such as phosphor bronze wire or a multi-row arrangement structure thereof can be used. In this arrangement structure, single wires of coiled reinforcing wires are appropriately arranged in two, three, four, etc. as shown in FIGS. 5 (a), (b) and (c). Of these, an array having a large section moment of inertia or section modulus is preferable. The single wires of these components can be integrated by being partially welded or fastened with a metal band. Further, the coil-shaped reinforcing wire 7 has a cross-sectional shape such as a triangle, a quadrangle, a short shape, an ellipse, etc. in addition to the circular shape shown in FIG. A short shape, an elliptical shape or the like having a long-axis cross section in the direction perpendicular to the axis of the coiled reinforcing wire is preferable. The coil-shaped reinforcing wire 7 is fitted over the outer peripheral surface of the inner rubber-coated fiber reinforcing layer 4 formed at the time of manufacture from the end in the axial direction and arranged over the entire longitudinal direction. In addition to using the coiled reinforcing wire 7 alone as described above, as shown in FIG. 11, the flanges 10 are fixed to the both ends in advance by welding or the like via nipples 9 and used as an integral structural component. You can also.
[0028]
As shown in FIG. 10, the end ring 8 is provided in the vicinity of the opening on the fastening surface of the flange 10, winds up the end edge 4 a of the inner rubber-coated fiber reinforcing layer 4, and turns it back into the nipple 9 of the flange 10. While being sandwiched between and fixed to the peripheral surface, the end portion 2a of the inner rubber layer 2 is also rolled up and fixed to the fastening surface of the flange 10 so as to firmly connect the flexible portion to the flange 10 It is. The end ring 8 is preferably an annular steel member having mechanical strength and a rectangular cross section.
[0029]
The nipple 9 is previously fixed to the flange 10 by welding or the like, and becomes a single part integrated with the flange when the joint is manufactured.
[0030]
The flange 10 can be handled as a single part at the time of manufacture by attaching the nipple 9 by welding or the like in advance. And at the time of piping construction, it is connected to the buried pipe flange by bolt fastening or the like. Also, the flange 10 can be used as an integral structural part with the coiled reinforcing wire 7 by fixing the ends of the nipple 9 to the both ends of the coiled reinforcing wire 7 by welding or the like.
[0031]
The mandrel 11 is a core type of a joint laminated molded body, and as shown in FIG. 13, a mandrel 11 provided with a water or air circulation hole 14 in its central body wall [the same figure (a)], or the above The entire outer peripheral surface and both side surfaces of the mandrel [FIG. (A)] are hermetically sealed and covered with an elastic material sheet bag 15, and the pressure of water or air flowing out from the circulation hole 14 at the center of the trunk wall is covered. What inflated the said bag 15 in the outer peripheral direction [the same figure (b)] etc. can be used suitably.
[0032]
As shown in FIG. 2, the flexible joint 1 is manufactured by first winding a rubber sheet having a predetermined width around the surface of the mandrel 11, and joining the butt portion with an adhesive or the like to form a cylindrical inner rubber. Create layer 2. Further, a rubber tube may be used instead of the rubber sheet, and in this case, the joining work can be omitted.
[0033]
Next, as shown in FIG. 3, on the outer peripheral surface of the inner rubber layer 2, a strip-like topping treated fiber cord 12 cut in advance to a predetermined width is formed at a predetermined molding angle φ with respect to the joint axis. Even number plies are alternately wound and laminated so that the direction 13 intersects to form the inner rubber-coated fiber reinforcing layer 4.
[0034]
Subsequently, as shown in FIG. 4A, an end ring 8 is fitted on the outer peripheral surface of the left end portion of the inner rubber-coated fiber reinforcing layer 4, and then a flange 10 with a nipple 9 is shown in FIG. After inserting the coil-like reinforcing wire 7 made of a single wire and the flange 10 ′ with the nipple 9 ′ so as to slide the surface from the other end on the outer peripheral surface of the reinforcing layer 4, and inserting and arranging the entire longitudinal direction, the end portion Insert the ring 8 '.
[0035]
Further, in the case of manufacturing a flexible joint having insufficient external pressure resistance strength, particularly a large-diameter flexible joint, as shown in FIG. It arrange | positions on the surrounding surface of the fiber reinforcement layer 4. FIG. In this case, for the coiled reinforcing wire 7, in addition to the above-mentioned two-row arrangement, as shown in FIGS. Can do.
[0036]
As shown in FIG. 6, the end edges 4a and 4a 'of the inner rubber-coated fiber reinforcing layer 4 are rolled up and folded through end rings 8 and 8' at both ends, and then the end edges of the inner rubber layer 2 2a and 2a 'are also rolled up.
[0037]
Next, as shown in FIG. 7, the flanges 10, 10 ′ and the coiled reinforcing wire 7 are extended to both sides to bring the flanges 10, 10 ′ into close contact with the end rings 8, 8 ′, and both ends of the coiled reinforcing wire 7. The part is brought close to the flange nipple 9, 9 '.
[0038]
Thereafter, as shown in FIG. 8, the rubber sheet 6 is wound around the outer peripheral surface of the inner rubber-coated fiber reinforcing layer 4 so as to fill the gap between the pitches of the coiled reinforcing wires 7, thereby forming the intermediate rubber layer 6.
[0039]
Next, the outer rubber-coated fiber reinforcement layer 5 is formed on the surface of the intermediate rubber layer 6 by the same configuration and method as the inner rubber-coated fiber reinforcement layer 4, and the edge of the outer rubber-coated fiber reinforcement layer 5 is a flange nipple. 9 is attached to the outer peripheral surface. Further, a rubber sheet is wound around the surface of the outer rubber-coated fiber reinforcing layer 5 and joined to form the outer rubber layer 3.
[0040]
As shown in FIG. 9, the cylindrical molded body with the flange 10 shown in FIG. 8 obtained as described above is pivoted by the pressing metal 12 while applying air pressure or water pressure between the molded body and the mandrel 11. Compressed in the direction, the cylindrical body wall between the coiled reinforcing wires 7 is expanded in the outer peripheral direction and formed into an arcuate chevron. Air pressure or water pressure brings the laminated rubber layers into close contact with each other, makes the compression force of the pressing metal fittings 12 at both ends uniform over the entire length of the molded body, and expands the molded body body wall between the coiled reinforcing wires 7 in the outer circumferential direction. It plays the role of forming an arcuate chevron. This pressure is usually 1-20 kgf / cm 2 Applies within the scope of The pressure is determined by the size of the diameter of the arc to be obtained, and the radius of the arc decreases as the sealing pressure increases. When the arc-shaped crests are formed between the coil reinforcing wires by being compressed by the pressing die 12, the coil reinforcing wires having a constant pitch may be used to form a space between the wires, or FIG. As shown in FIG. 4, it can be formed into a pitch that gradually decreases toward the end.
[0041]
Subsequently, the outer peripheral surface of the arcuate chevron body wall is fastened by cloth wrapping, and after vulcanization, the mandrel 11 and the press fitting 12 are removed to obtain the product of FIG.
[0042]
As shown in FIG. 11, the method of fixing the coiled reinforcing wire 7 to the flange 10 may be performed by joining both end portions to the inner cross section of the nipple 9 [(a)], or In addition to butt joining, [(b)] may be overlapped with the outer peripheral surface of the auxiliary cover 16 or [(c)] may be overlapped with the inner surface of the auxiliary cover 16 on the outer peripheral surface of the nipple 9.
[0043]
In addition, the coil-shaped reinforcing wire composed of a plurality of arrays of two rows, three rows, or more shown in FIG. 5 can be used for a flexible joint having a large diameter, particularly over 600 mm. Regardless of the diameter, it can be applied to flexible joints that are planned to be connected to soft ground that is frequently visited or buried pipes in suddenly changing grounds, so that the external pressure resistance can be improved.
[0044]
[Example 1]
A natural rubber sheet is wrapped around a mandrel with a rubber bag with a diameter of 200 mm to form an inner rubber layer (hardness 60 °, thickness 6 mm), and a 1260 denier nylon weave weave treated with natural rubber on the outer peripheral surface. The cord was alternately laminated with two plies at a molding angle of 50 ° with respect to the axis of the product to obtain an inner rubber-coated fiber layer (two layers, thickness 1 mm). Next, an end ring (SS400, outer diameter 240 mm, inner diameter 220 mm, thickness 10 mm) is inserted into the left end portion on the outer peripheral surface, and a hard steel wire coil (SW-C, wire having a 50 mm pitch from the other right end portion). Integral structure part (200mm JIS 10K) with flange (200A JIS 10K) with nipple (STK, outer diameter 220mm, thickness 5mm) and nip (STK, outer diameter 216mm, effective winding number 10) in the center area The other end ring was sequentially inserted into the right end. After the inner rubber-coated fiber reinforcing layer was folded back through the end rings at both ends, the inner rubber layer was further folded over it. Next, the flanges at both ends of the monolithic structural part were extended to both sides, and the fastening side surfaces of the flanges were brought into close contact with the end ring. Then, an intermediate rubber layer (natural rubber, 10 mm thick) is wrapped between hard steel wire and coil wire, and the outer rubber-coated fiber reinforcement layer (natural rubber topping) is further formed in the same manner as the inner rubber-coated fiber reinforcement layer. A processed 1260 denier nylon tin cord, 2 plies, 1 mm thick) was formed. Next, an outer surface rubber layer (natural rubber, hardness 60 °, thickness 3 mm) is wound thereon, and then the metal fittings at both ends are pressed inward by 50 mm to obtain a laminated molded product obtained as described above. Was compressed to a length of 1000 mm. Simultaneously with this compression, the pressure in the mandrel is 10 kgf / cm. 2 Of water. Then, after this unvulcanized molded product was set to a total length of 1000 mm, heat vulcanization (145 ° C. × 60 minutes) was performed, and then the mandrel and the press fitting were removed, and a joint sample having a length of 1000 mm and an inner diameter of 200 mm was obtained. Obtained.
[0045]
[Reference example]
Example of producing a dent of the body wall due to earth pressure (external pressure) when manufacturing a 600 mm large diameter flexible joint using the linear 10 mm hard steel wire coil of Example 1, and further, An example of increasing the wire diameter to prevent dents is shown. The use of a single hard steel wire coil (SW-C, inner diameter 216 mm, pitch 30 mm, effective number of turns 20) having a diameter of 600 mm, linear 10 mm and 14 mm, respectively, and compression of the laminated molded body to a pitch of 25 mm Except for this, the same method as in Example 1 was used to obtain two types of large-diameter flexible joint samples having a length of 1000 mm and an inner diameter of 600 mm. When these samples were connected to underground pipes and subjected to an external pressure resistance test, a sample having a linear 10 mm hard steel wire coil had an external pressure of 1 kgf / cm. 2 On the other hand, while the body wall was dented, no abnormality was observed on the body wall at the same external pressure.
[0046]
[Example 2]
The use of a hard steel wire coil (SW-C, inner diameter 216 mm, effective number of turns 20) partially welded with a wire diameter of 10 mm and a pitch of 30 mm having a 1/2 cross-sectional area of a linear 14 mm single wire and arranged in two rows Except for this, the same method as in Example 1 was used to obtain a large-diameter flexible joint sample having a length of 1000 mm and an inner diameter of 600 mm. This sample was buried in the ground and an external pressure resistance test was conducted. The external pressure was 1 kgf / cm. 2 No abnormalities were found on the trunk wall. However, external pressure 2kgf / cm 2 Then there was a slight dent.
[0047]
[Example 3]
Except for using a hard steel wire coil (SW-C, inner diameter 216 mm, effective number of turns 20) that was partially welded and arranged in three rows (close-packed equilateral triangular shape) with a wire diameter of 10 mm and a pitch of 30 mm. Was manufactured in the same manner as in Example 1, and a large-diameter flexible joint sample having a length of 1000 mm and an inner diameter of 600 mm was obtained. When the same test was performed on this sample, the external pressure was 2 kgf / cm. 2 There was no abnormality of the torso wall even if it was increased.
[0048]
Example 1 of the present invention and the fracture pressure-elongation amount, eccentricity amount and displacement reaction force-displacement amount relationship diagram of the joint sample obtained by changing only the diameter using the manufacturing method according to the present invention, together with that of the conventional product, FIG. 17 and FIG. As is apparent from FIGS. 17 and 18, the flexible joint obtained by the present invention is significantly more resistant to the displacement reaction force indicating the breaking strength and the tracking performance of the displacement than the conventional product. An improvement was seen. In particular, it is expected that the breaking pressure of the joint shown in FIG. 17 is greatly increased in the standard use region as compared with the conventional product, and it can withstand a large displacement and contribute to its useful life. Further, the fact that the gradient of the displacement reaction force curve shown in FIG. 18 is smaller than that of the conventional product means that the displacement is easily displaced by the difference. And in practical use, it can be displaced with a correspondingly small displacement load, so it has the feature that it easily follows the fluctuation of the ground. These are presumably due to the strong integration of the flange and the flexible part and the strong integration of the flange and the coiled reinforcing wire.
[0049]
In addition, as apparent from Example 2, when the steel wire in which the cross-sectional area of the 14 mm single wire of the reference example is reduced to ½ is arranged in two rows and used as a coiled reinforcing wire, The same reinforcing effect as that of the original single wire was exhibited, and the thickness of the flexible joint was 2 mm thinner and lighter, and the displacement reaction force was reduced accordingly. Furthermore, in Example 3, three steel wires obtained by reducing the cross-sectional area of the 14 mm single wire of the reference example to 1/2 are arranged in an equilateral triangle shape, and the secondary moment is double that of the original single wire. It has been shown that the resistance to external pressure can be doubled. These are presumed to be due to the synergistic effect of the cross-sectional shape effect and the reduction of the wire diameter due to the arrangement of two or three rows of coiled reinforcing steel wires.
[0050]
【The invention's effect】
As described above, according to the flexible joint of the present invention, the end edge portion of the inner rubber-coated fiber reinforcing layer of the flexible portion of the joint is wound up and folded around the end ring and joined to the inner peripheral surface of the flange nipple. In addition, by joining the edge part of the inner rubber layer to the surface and the flange fastening surface, the flexible part of the joint is firmly bonded to the flange, so the joint is used by connecting it to an underground pipe Even if the joint is subjected to a large displacement such as eccentricity, compression, extension, bending, torsion, etc. due to a large seismic force, a large tensile load acts between the flange and the flexible part. The coupling of the flexible parts can be maintained, and as a result, it has been possible to effectively prevent the accident that the flexible parts are detached from the flanges that have been seen in the past.
[0051]
In addition, by arranging coiled reinforcing wires in multiple strips, it is possible to prevent dents in the body wall seen in conventional large-diameter or small- and medium-diameter flexible joints embedded in the ground that receives large ring pressure. Can now. In particular, by selecting a wire diameter reduction and an arrangement configuration of a plurality of wire rods so that the secondary moment of the cross section becomes large, a flexible joint that is economical and excellent in resistance to external pressure can be obtained.
[0052]
Furthermore, a steel coil-shaped reinforcing wire is arranged over the entire length along the axial direction in the central section of the flexible section of the joint, and both ends of this wire are joined to the flange nipple end by welding or the like to make the joint a conductor. As a result, the joint can be passed without interrupting the stray current. As a result, it was possible to effectively prevent galvanic corrosion at the exposed portion of the nipple outer peripheral surface (side SS portion) as seen in the past.
[0053]
Furthermore, in the method for manufacturing a flexible joint of the present invention, since the pair of flanges are joined to both ends of the coiled reinforcing wire by welding or the like through nipples to form an integral structural part, The number of work steps to insert and place on the surface can be completed with one part insertion work time compared to the conventional three-part insertion work, and the total molding time is reduced to about 1/3 compared to the conventional product. I was able to.
[Brief description of the drawings]
FIG. 1 (a) is a partially broken side view showing the configuration of a flexible joint of the present invention.
(B) It is a partially broken sectional view which shows the structure of the flexible joint of this invention which has a coil-shaped reinforcement wire of 2 rows.
FIG. 2 is a partially cutaway side view showing a state in which an inner rubber layer is formed on a mandrel.
FIG. 3 is a partially broken side view showing a state in which an inner rubber-coated fiber reinforced sheet is wound and laminated on an inner rubber layer.
FIG. 4 (a) is a partially cutaway side view showing a state in which an end ring, a flange with a nipple and a coiled reinforcing wire are arranged on the inner rubber-coated fiber reinforcing layer.
(B) It is a principal part side view which shows the state which has arrange | positioned the coil-shaped reinforcement wire which consists of a single wire.
FIG. 5 (a) is a side view of the main part showing a state in which two rows of coiled reinforcing wires are arranged on the inner rubber-coated fiber reinforcing layer.
(B) It is sectional drawing which shows the example of the structure by which the coil-shaped reinforcement wire was arranged in 3 rows.
(C) It is sectional drawing which shows the example of the structure by which the coil-shaped reinforcement wire was arranged in 4 rows.
FIG. 6 is a partially broken side view showing a state in which an inner rubber-coated fiber layer and an inner rubber layer are wound and fixed on an end ring.
FIG. 7 is a cross-sectional view of a principal part showing a state in which a flange and an end ring are fixed by an inner rubber-coated fiber reinforcing layer and an inner rubber layer.
FIG. 8 is a cross-sectional view of a main part in which an intermediate rubber layer is formed between coiled reinforcing wires, an outer rubber-coated fiber reinforcing layer, and an outer rubber layer are formed thereon and fixed to a nipple.
FIG. 9 is a cross-sectional view of the main part of the trunk wall showing a state in which the laminated molded body is compressed to expand the trunk wall.
FIG. 10 is a cross-sectional view of an essential part showing a state in which an end ring is fixed by an inner rubber-coated fiber reinforcing layer and an inner rubber layer.
FIGS. 11A, 11B, and 11C are cross-sectional views of relevant parts illustrating a method of fixing a coiled reinforcing wire to a flange. FIGS.
FIG. 12 is a cross-sectional view of an essential part of the flexible joint of the present invention having a coil-shaped reinforcing wire whose pitch is gradually reduced toward the end.
FIG. 13 (a) is a longitudinal sectional view showing the structure of a mandrel having a flow hole in the central body wall.
(B) It is a longitudinal cross-sectional view which shows the case where the trunk | drum outer surface and side surface of a mandrel are covered with the back made from an elastic material sheet.
14 (a) and 14 (b) are cross-sectional views showing the main parts of a conventional flexible joint.
FIG. 15 is a cross-sectional view of a main part showing another conventional flexible joint.
FIGS. 16A and 16B are cross-sectional views showing a state in which a conventional flexible joint has two and three dents due to external pressure. FIGS.
FIG. 17 is a diagram comparing the relationship diagram of the fracture pressure-elongation amount and the eccentric amount of the flexible joint obtained in the present invention with that of the conventional product.
FIG. 18 is a diagram comparing a relationship diagram of displacement reaction force-displacement amount of a flexible joint obtained in the present invention with that of a conventional product.
FIG. 19 is a view showing the concept of displacement characteristics of compression, extension, eccentricity and bending of an embedded flexible joint.
[Explanation of symbols]
1 Flexible joint of the present invention
2 Edge rubber layer, 2a, 2a '
3 Outer rubber layer
4 Inner rubber-covered fiber reinforcing layer, 4a, 4a 'End edge part of inner rubber-coated fiber reinforcing layer
5 Outer rubber covered fiber reinforced layer
6 Intermediate rubber layer
7 Coiled reinforcing wire
8, 8 'end ring
9, 9 'nipple
10, 10 'flange
11 Mandrel
12 Topping treated fiber cord
13 Fiber direction
14 Distribution hole
15 Elastic sheet bag
16 Auxiliary cover
17 Rubber running
18 Dents
19 Leaves caused by dents
A Inventive Example Flexible Joint
B Straight type flexible joint by conventional technology
C Conventional multi-threaded flexible joint
L Nipple length from flange
P pitch
W external force
l Length of flexible part from flange
δ Displacement
θ Displacement angle
φ Forming angle

Claims (8)

内外面ゴム層間にコイル状補強線材および内外側ゴム被覆繊維補強層が設けられて形成された円筒状胴壁がコイル状補強線材間で外周方向に膨らんだ形状を有する埋設可とう継手において、前記内側ゴム被覆繊維補強層の両端部外周面上にフランジをコイル状補強線材に近接して配置し、該フランジ締結面側外周面上に端部リングを設け、該フランジおよび端部リングに内側ゴム被覆繊維補強層と内面ゴム層の端縁部を一体的に接着・成形したことを特徴とするフランジと一体成形された鋼製コイル補強埋設可とう継手。In the buried flexible joint, the cylindrical body wall formed by providing the coiled reinforcing wire and the inner and outer rubber-coated fiber reinforcing layers between the inner and outer rubber layers has a shape bulging in the outer peripheral direction between the coiled reinforcing wires. A flange is disposed on the outer peripheral surface of both ends of the inner rubber-coated fiber reinforcing layer in the vicinity of the coiled reinforcing wire, and an end ring is provided on the outer peripheral surface of the flange fastening surface, and an inner rubber is provided on the flange and the end ring. A steel coil reinforced buried flexible joint integrally formed with a flange, wherein the edge portions of the coated fiber reinforcing layer and the inner rubber layer are integrally bonded and molded. フランジがコイル状補強線材と接合されている請求項1記載のフランジと一体成形された鋼製コイル補強埋設可とう継手。2. A steel coil reinforced buried flexible joint integrally formed with a flange according to claim 1, wherein the flange is joined to a coiled reinforcing wire. マンドレルに内面ゴム層および内側ゴム被覆繊維補強層を積層し、該内側ゴム被覆繊維補強層の両端部外周面上にフランジを中央部領域外周面上のコイル状補強線材に近接して配置し、該フランジの締結面側外周面上に端部リングを設け、該フランジおよび端部リングに内側ゴム被覆繊維補強層と内面ゴム層の端縁部を一体的に接着・成形し、該コイル状補強線材のピッチ間を埋めるための中間ゴム層、外側ゴム被覆繊維補強層および外面ゴム層を設けてフランジ付円筒状成形体を形成した後、該成形体とマンドレルの間に空気圧または水圧を加えながら、該成形体を軸方向に圧縮して、コイル状補強線材間の円筒状胴壁を外周方向に膨らませ、さらに加硫することを特徴とするフランジと一体成形された鋼製コイル補強埋設可とう継手の製造方法。Laminating an inner rubber layer and an inner rubber-coated fiber reinforcing layer on the mandrel, and placing flanges on both outer peripheral surfaces of the inner rubber-coated fiber reinforcing layer in proximity to the coiled reinforcing wire on the outer peripheral surface of the central region, An end ring is provided on the outer peripheral surface of the fastening surface side of the flange, and the end edges of the inner rubber-coated fiber reinforcing layer and the inner rubber layer are integrally bonded and molded to the flange and the end ring, thereby reinforcing the coil. After forming a flanged cylindrical molded body by providing an intermediate rubber layer, an outer rubber-coated fiber reinforcing layer, and an outer rubber layer for filling the gap between the wires, while applying air pressure or water pressure between the molded body and the mandrel The molded body is compressed in the axial direction, the cylindrical body wall between the coiled reinforcing wires is expanded in the outer peripheral direction, and further vulcanized. Fitting made Method. フランジをコイル状補強線材に接合する請求項3記載のフランジと一体成形された鋼製コイル補強埋設可とう継手の製造方法。The manufacturing method of the steel coil reinforcement embedded flexible joint integrally formed with the flange of Claim 3 which joins a flange to a coil-shaped reinforcement wire. マンドレルがその中央部胴壁に水または空気の流通孔を有する請求項3または請求項4記載のフランジと一体成形された鋼製コイル補強埋設可とう継手の製造方法。The manufacturing method of the steel coil reinforcement embedding embedded flexible joint integrally formed with the flange of Claim 3 or Claim 4 in which a mandrel has a flow hole of water or air in the center part trunk wall. 請求項5記載のマンドレルがその胴壁外周面上および両端側面上を弾性材シート製バッグで気密に密封されて、該胴壁中央部の流通孔から流出される水または空気により前記バッグが外周方向に膨らむことを特徴とする請求項3または請求項4記載のフランジと一体成形された鋼製コイル補強埋設可とう継手の製造方法。The mandrel according to claim 5 is hermetically sealed on the outer peripheral surface and both side surfaces of the body wall with a bag made of an elastic material sheet, and the bag is surrounded by water or air flowing out from a circulation hole in the center of the body wall. 5. A method for manufacturing a steel coil reinforced buried flexible joint integrally formed with a flange according to claim 3 or 4, characterized by bulging in a direction. コイル状補強線材が2列または3列の条数から構成される請求項1ないし請求項2記載のフランジと一体成形された鋼製コイル補強埋設可とう継手。3. A steel coil reinforced buried flexible joint integrally formed with a flange according to claim 1, wherein the coiled reinforcing wire is composed of two or three rows. コイル状補強線材が2列または3列の条数から構成される請求項3ないし請求項4記載のフランジと一体成形された鋼製コイル補強埋設可とう継手の製造方法。The manufacturing method of the steel coil reinforcement embeddable flexible joint integrally formed with the flange of Claim 3 thru | or 4 with which a coil-shaped reinforcement wire is comprised from the row | line number of 2 rows or 3 rows.
JP33046596A 1996-03-08 1996-11-25 Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same Expired - Fee Related JP3770673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33046596A JP3770673B2 (en) 1996-03-08 1996-11-25 Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-80672 1996-03-08
JP8067296 1996-03-08
JP33046596A JP3770673B2 (en) 1996-03-08 1996-11-25 Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09296887A JPH09296887A (en) 1997-11-18
JP3770673B2 true JP3770673B2 (en) 2006-04-26

Family

ID=26421648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33046596A Expired - Fee Related JP3770673B2 (en) 1996-03-08 1996-11-25 Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3770673B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19858634A1 (en) * 1998-12-18 2000-06-21 Volkswagen Ag Flexible hose
JP2002005344A (en) * 2000-06-21 2002-01-09 Sumitomo Rubber Ind Ltd Rubber sleeve hose
JP2009036225A (en) * 2007-07-31 2009-02-19 Sankei Giken:Kk Pipe joint
JP5236936B2 (en) * 2007-11-22 2013-07-17 株式会社サンケイ技研 Flexible pipe fittings
CN117895418B (en) * 2024-03-14 2024-05-31 山东万博科技股份有限公司 Communication cable joint protector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330735Y2 (en) * 1973-03-31 1978-08-01
JPS5545980Y2 (en) * 1974-08-12 1980-10-28
JPS58163789U (en) * 1982-04-28 1983-10-31 水谷 政静 Fastening part structure of flexible hose with flange
JPS58125782U (en) * 1982-09-16 1983-08-26 東拓工業株式会社 bellows tube
JP2556355B2 (en) * 1988-07-11 1996-11-20 極東ゴム株式会社 Rubber expansion joint and manufacturing method thereof
JPH0257785A (en) * 1988-08-23 1990-02-27 Toyo Tire & Rubber Co Ltd Oscillation-proof flexible pipe joint
JPH04257415A (en) * 1991-02-12 1992-09-11 Tokai Rubber Ind Ltd Manufacture of resin hose
JP3392174B2 (en) * 1993-03-03 2003-03-31 東洋ゴム工業株式会社 Gasket-integrated flange joint
JP2534621B2 (en) * 1993-12-24 1996-09-18 防衛庁技術研究本部長 Large diameter high pressure hose end seal structure

Also Published As

Publication number Publication date
JPH09296887A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
AU722738B2 (en) Flexible pipe with internal gasproof undulating metal tube
US4403631A (en) Flexible pipe
US4241763A (en) Rubber hose with spiral fiber reinforcing core
CN101718375B (en) Steel belt reinforced composite strip for spiral corrugated plastic steel winding pipe
KR20050062437A (en) Pressure-resistance composite pipe
JP3770673B2 (en) Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same
CN116379230B (en) Steel wire braiding reinforced hydraulic rubber hose
JP4964706B2 (en) Pipe fitting
US4493140A (en) Method of manufacturing a flexible pipe
JP3908309B2 (en) Steel coil reinforced flexible tube and method for manufacturing the same
JP3981419B2 (en) Embedded flexible joint and manufacturing method thereof
KR20040049948A (en) Double lay pipe and manufacturing method thereof
JPS5926838B2 (en) flexible pipe fittings
JP3839923B2 (en) Rubber hose flange structure and flexible joint
JP2009036225A (en) Pipe joint
JPH1163337A (en) Flexible expansion joint and manufacture thereof
JPS5952319B2 (en) flexible joint pipe
CN219692636U (en) Vibration-resistant and wear-resistant metal hose for compressor
GB1594756A (en) Flexible expansion joint
JP2005001335A (en) Method for manufacturing flexible pipe with externally corrugated shape
KR200235130Y1 (en) Synthetic Resin Double Wall Spiral Tube
CN214222262U (en) Pressure-resistant braided hose for toilet
JPH034877Y2 (en)
JP3666913B2 (en) Flexible hose
JP3393833B2 (en) Pressure-resistant hose and its connection structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees