JP3770512B2 - Steel corrosion or crack detection device - Google Patents

Steel corrosion or crack detection device Download PDF

Info

Publication number
JP3770512B2
JP3770512B2 JP21567097A JP21567097A JP3770512B2 JP 3770512 B2 JP3770512 B2 JP 3770512B2 JP 21567097 A JP21567097 A JP 21567097A JP 21567097 A JP21567097 A JP 21567097A JP 3770512 B2 JP3770512 B2 JP 3770512B2
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
steel material
coil
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21567097A
Other languages
Japanese (ja)
Other versions
JPH1144674A (en
Inventor
秀昭 菊地
靖男 蛭間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Densetsu Service Co Ltd
Original Assignee
Tokyo Densetsu Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Densetsu Service Co Ltd filed Critical Tokyo Densetsu Service Co Ltd
Priority to JP21567097A priority Critical patent/JP3770512B2/en
Publication of JPH1144674A publication Critical patent/JPH1144674A/en
Application granted granted Critical
Publication of JP3770512B2 publication Critical patent/JP3770512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管等の鋼材の亀裂およびその内面の腐食の有無を検出するための鋼材の腐食または亀裂等の検出装置に関するものである。
【0002】
【従来の技術】
送電線用の鉄塔等にあっては、一般的に鋼管を構造材として建設されている。そこで、鉄塔の安全性の観点から、これらの鋼管の腐食や亀裂が問題となっている。特に、工業地帯などの大気汚染の厳しい地域にあっては、腐食が大きな問題である。また、豪雪地帯などにあっては、電線への着雪により鉄塔に過大な力が繰り返して作用し、鋼管に亀裂が生ずる虞がある。
【0003】
鋼管の外面に関しては、目視検査により比較的容易に腐食状況が判別でき、万一にも腐食が確認されれば、適宜な塗装によって腐食の進行を阻止することができる。しかるに、鋼管の内面の腐食状況は、容易には目視検査をすることができない。そこで、従来は、鋼管内に光ファイバースコープを挿入して内面の確認がなされていた。
【0004】
【発明が解決しようとする課題】
上述の鋼管の内面を光ファイバースコープにより確認する作業は、点検装置自体が高価であるとともに、鋼管の内面の腐食状況を目視により検査員が判別するので、その判別結果は個人差が大きく、正確な判断が困難であった。
【0005】
また、鋼管の亀裂にあっては、目視では確認することが困難な場合が多く、熟練者の経験と勘に依存せざるを得ないものであった。
【0006】
本発明は、上述のごとき従来技術の事情に鑑みてなされたもので、鋼材の腐食および亀裂を、作業員の勘などに依存することなしに、磁気を用いて正確に判別することのできる鋼材の腐食または亀裂等の検出装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するために、本発明の鋼材の腐食または亀裂等の検出装置は、鋼材に、2つの励磁コイルを離して巻回配設して前記鋼材内に向きが反対で透過磁束密度の同じ磁束が透過するように励磁し、前記2つの励磁コイルの中間位置に巻回配設して前記鋼材内を透過する透過磁束密度を透過磁束密度検出コイルで検出し、前記鋼材に対して前記2つの励磁コイルと前記透過磁束密度検出コイルを相対的に移動させ、前記透過磁束密度検出コイルで検出される透過磁束密度の変化により前記鋼材の腐食または亀裂等の存在を検出する鋼材の腐食または亀裂等の検出装置において、第1のフレキシブル基板上に矩形渦巻き状のパターンを設け、この第1のフレキシブル基板を前記鋼材に1ターン巻回して前記2つの励磁コイルを形成し、第2のフレキシブル基板上の両端部に複数の端子を有し接続分離自在なコネクタをそれぞれに配設するとともに、これらのコネクタを略平行で前記端子が1つづつずれて接続されて前記コネクタが接続された状態で一本のラインに電気的接続されるようにパターンを設け、この第2のフレキシブル基板を前記鋼材に1ターン巻回するとともに前記コネクタを接続して前記透過磁束密度検出コイルを形成し、前記第1と第2のフレキシブル基板を重ねて配設固定して、前記2つの励磁コイルと前記透過磁束密度検出コイルの相対的位置が変化しないようにして構成されている。
【0008】
【発明の実施の形態】
以下、本発明の実施例を図1ないし図4を参照して説明する。図1は、本発明の鋼材の腐食または亀裂等の検出装置の一実施例の構成図である。図2は、本発明の鋼材の腐食または亀裂等の検出装置の動作原理を説明する図であり、(a)は検出電圧を示し、(b)は検出対象とされた鋼管を示す。図3は、図1における2つの励磁コイルの構造例を示し、(a)は一般的なコイル構造を示し、(b)は変形したコイル構造を示す。図4は、2つの励磁コイルと透過磁束密度検出コイルを1ターンの巻回で形成する構造例を示し、(a)は図3(b)に示す構造の2つの励磁コイルを形成する第1のフレキシブル基板の平面図を示し、(b)は透過磁束密度検出コイルを形成する第2のフレキシブル基板の平面図であり、(c)は第1のフレキシブル基板に第2のフレキシブル基板を重ねて固定配設した平面図である。
【0009】
まず、図1を参照して構造を説明する。測定の対象となる鋼管10には、離して2つの励磁コイル12a、12bが巻回配設される。そして、これらの2つの励磁コイル12a、12bの中間位置で鋼管10に透過磁束密度検出コイル14が巻回配設される。これらの2つの励磁コイル12a、12bと透過磁束密度検出コイル14は、その相対的位置が変化せずに、鋼管10に対して軸方向に相対的位置を移動できるように構成される。さらに、これらの2つの励磁コイル12a、12bと透過磁束密度検出コイル14の軸方向の移動距離を検出するロータリエンコーダ16が設けられる。
【0010】
そして、発振器18から出力される正弦波交流電圧が増幅器20で電力増幅されて、直列接続された2つの励磁コイル12a、12bに印加される。ここで、2つの励磁コイル12a、12bは同じターン数であり、しかも発生させる磁束の向きが反対となるように形成されている。そこで、2つの励磁コイル12a、12bにより、鋼管10内の2つの離れた位置で、反対方向に透過するとともに同じ透過磁束密度の磁束が励磁される。そして、透過磁束密度検出コイル14で検出された検出電圧が、増幅器22で電圧増幅されてA/D変換器24に与えられるとともに、オシログラフ26に与えられる。このオシログラフ26は、検出電圧の変化を目視により確認できるようにするものである。また、ロータリエンコーダ16の検出信号は、カウンタ28に与えられ、移動距離に応じた信号が出力されてA/D変換器24に与えられる。
【0011】
A/D変換器24は、透過磁束密度検出コイル14による検出電圧とロータリエンコーダ16による移動距離に応じた信号をそれぞれデジタルデータに変換する。そして、これらのデジタルデータが中央演算装置30に与えられ、検出電圧と移動距離との対応したデータとして記憶装置32に記憶される。
【0012】
この記憶装置32に記憶されたデータが、演算処理部34に読み込まれ、キー入力部36の操作による処理命令および判定用データベース38からの判定用データに基づいて、適宜に処理され、腐食および亀裂などの有無が判別され、その結果が表示部40で表示され、またこれらの処理データが記憶部42に記憶保存される。
【0013】
なお、2つの励磁コイル12a、12bと透過磁束密度検出コイル14およびロータリエンコーダ16により、励磁検出部44が構成されている。また、発振器18と増幅器20、22とA/D変換器24とカウンタ28と中央演算装置30および記憶装置32により、計測部46が構成されている。そして、励磁検出部44と計測部46が鉄塔上に持ち上げられて検査作業がなされる。また、演算処理部34とキー入力部36と判定用データベース38と表示部40および記憶部42により、本体部48が構成され、この本体部48は地上に設置されている。オシログラフ26も地上に設置されており、地上の検査員が監視し、検出電圧の変動から鋼管10の腐食および亀裂などが存在しそうな箇所で、必要により鉄塔上の作業員に適宜な指示を与える。なお、鉄塔上の検査作業で記憶装置32に記憶されたデータを、作業後に本体部48の演算処理部34に読み込んで、鋼管10の腐食および亀裂などの有無の判別を行うようにしても良い。
【0014】
かかる構成において、本発明装置は以下のごとく動作する。まず、2つの励磁コイル12a、12bは、透過磁束密度が同じで向きが反対な磁束を励磁するので、2つの励磁コイル12a、12bが設けられた両位置と中央位置の間の鋼管10の磁気抵抗が均一であるならば、その中間位置では磁束が互いにうち消しあってその透過磁束密度は零となる。そこで、透過磁束密度検出コイル14で検出される検出電圧は零である。また、鋼管10に腐食および亀裂などがあって、両位置と中間位置までの磁気抵抗のバランスが崩れていると、中間位置において一方の励磁コイルによる透過磁束密度が大きく、磁気抵抗の大きい側の他方の励磁コイルによる透過磁束密度は小さなものとなる。すると、透過磁束密度検出コイル14を透過する透過磁束密度が大きくなって、検出電圧が大きくなる。そこで、この検出電圧の変動から腐食および亀裂などの有無を検出できる。
【0015】
さらに、図2を参照して、より具体的に磁気抵抗の変化により腐食および亀裂の存在を検出できることを説明する。鋼管10には、腐食および亀裂などに代えて、図2(a)のごとく、距離Pの位置に2つの穴10a、10aが穿設され、また距離Qの位置に1つの穴10aが穿設されている。2つの励磁コイル12a、12bが鋼管10に対して図2(b)で左側から移動され、距離Pの位置に未だ到達してない状態では、鋼管10の磁気抵抗は2つの励磁コイル12a、12bとその間の透過磁束密度検出コイル14の間でほぼ均一であり、透過磁束密度検出コイル14による検出電圧は小さい。そして、一方の励磁コイルが距離Pの位置を越えると、2つの励磁コイル12a、12bの間に鋼管10の穴10a、10aが存在することとなり、一方の励磁コイルと透過磁束密度検出コイル14の間と他方の励磁コイルと透過磁束密度検出コイル14の間で、鋼管10の磁気抵抗のバランスが崩れ、透過磁束密度検出コイル14の検出電圧が大きなものとなる。さらに、2つの励磁コイル12a、12bが移動されて、透過磁束密度検出コイル14が鋼管10の距離Pの位置に至ると、2つの励磁コイル12a、12bと透過磁束密度検出コイル14間の鋼管10の磁気抵抗はバランスして、透過磁束密度検出コイル14の検出電圧は再び小さいものとなる。そして、さらに移動されて透過磁束密度検出コイル14が鋼管10の距離Pの位置を越えると、再び一方の励磁コイルと透過磁束密度検出コイル14の間と他方の励磁コイルと透過磁束密度検出コイル14の間で、鋼管10の磁気抵抗のバランスが崩れ、透過磁束密度検出コイル14の検出電圧が大きなものとなる。さらに、移動されて他方の励磁コイルが鋼管10の距離Pの位置を越えると検出電圧は小さなものとなる。
【0016】
また、2つの励磁コイル12a、12bと透過磁束密度検出コイル14が、鋼管10の距離Qの位置を越えるように移動された場合も、透過磁束密度検出コイル14の検出電圧は同様に変動する。これらの透過磁束密度検出コイル14の検出電圧の変動が図2(a)に示されている。この図2(a)において、距離Pの位置の検出電圧の大きさに比較して、距離Qの位置の検出電圧の大きさは小さいものとなる。これは、距離Pの位置に設けた2つの穴10a、10aによる磁気抵抗の変化よりも、距離Qの位置に設けた1つの穴10aによる磁気抵抗の変化が小さいためである。
【0017】
図2で示すごとく、検査の対象となる鋼管10において、磁気抵抗が均一でなく、何らかの要因によりその一部分で磁気抵抗が変化していれば、これを検出することができる。したがって、鋼管10の内面に腐食が生じた状態では、その箇所で磁気抵抗が増大するため検出が可能である。また、鋼管10の亀裂によっても、磁気抵抗が増加しその検出が可能である。そこで、発明者らは、鉄塔の構造材であった鋼管10を対象として本発明装置による検査を行ったところ、腐食されておらずまたは僅かな腐食箇所では、透過磁束密度検出コイル14による検出電圧は小さく、その変動も僅かなものであった。これに対して、腐食がかなり進行した箇所ほど透過磁束密度検出コイル14による検出電圧が大きく、その変動も大きなものであった。そこで、透過磁束密度検出コイル14による検出電圧の大きさおよび変動の大きさから、鋼管10の内面の腐食を確実に判別できることが確認された。
【0018】
なお、腐食は、通常は面としての広がりを有するために、透過磁束密度検出コイル14の検出電圧が大きくその変動も大きな状態が、ある幅をもって継続して検出される。これに対して、鋼管10に亀裂がある場合には、透過磁束密度検出コイル14の検出電圧は大きくなるが、それが継続する幅は狭いものとして検出される。そこで、大きな検出電圧の継続する幅から、腐食と亀裂を識別することが可能である。
【0019】
ところで、図3(a)に示す直列接続された2つの励磁コイル12a、12bは、、図3(b)のごとく、1ターン毎に一方と他方で交互に巻回しても2つの励磁コイル12a、12bを構成することができる。ここで、2つの励磁コイル12a、12bを1ターン毎に連結接続する連結線は、交互に電流の方向が逆であり、該電流により発生する磁束は互いにうち消し合い、何ら不具合を生じさせるものでない。
【0020】
そこで、図4(a)に示すごとく、第1のフレキシブル基板50上に矩形渦巻き状のパターン52が設けられ、この第1のフレキシブル基板50を鋼管10に1ターンだけ巻き付けることで、2つの励磁コイル12a、12bが構成できる。
【0021】
また、図4(b)に示すごとく、第2のフレキシブル基板54の両端部に接続分離自在で複数の端子を有する1対のコネクタ56a、56bが設けられ、これらのコネクタ56a、56b間が略平行でしかも複数の対応する端子が1つづつずれた状態に接続するパターン58が設けられる。このパターン58は、コネクタ56a、56bが接続されると、一本のラインとして電気的接続される。そこで、この第2のフレキシブル基板54を鋼管10に1ターンだけ巻き付けてコネクタ56a、56bを接続すれば、透過磁束密度検出コイル14を構成することができる。
【0022】
さらに、図4(c)に示すごとく、第1のフレキシブル基板50上に第2のフレキシブル基板54が重ねて固定配設される。この構成により、2つの励磁コイル12a、12bと透過磁束密度検出コイル14との相対位置が固定されてずれるようなことがない。しかも、これを鋼管10に1ターンほど巻き付けてコネクタ56a、56bを接続するだけで、実質的に鋼管10に2つの励磁コイル12a、12bと透過磁束密度検出コイル14を容易に巻回して装着することができる。
【0023】
なお、発振器18から発信される励磁用の交流周波数は例えば5〜20KHzを用いるが、発明者らの実験によれば20KHz近くの高い周波数で最も検出感度が優れているようである。また、腐食および亀裂の検出の対象は、強磁性体からなる鋼材であれば良く、鋼管10に限られるものでない。そして、励磁手段を適宜に構成するならば、平面状の鋼板の裏面に発生した腐食等も検出することができる。さらに、鋼管10に対する相対的な移動距離の測定は、ロータリエンコーダ16に限られるものでなく、移動距離の測定ができるとともに中央演算装置30で処理できるデータとして出力できるならば、いかなる手段であっても良い。
【0024】
【発明の効果】
以上説明したように、本発明の鋼材の腐食または亀裂等の検出装置は構成されているので、以下のごとき格別な効果を奏する。
【0025】
請求項1記載の鋼材の腐食または亀裂等の検出装置では、鋼材の離れた2つの位置で、向きが反対で透過磁束密度が同じ磁束を励磁コイルによって確実に励磁することができるとともに、2つの励磁コイルの中央位置に配設した透過磁束密度検出コイルで、中央位置での透過磁束密度の変化を検出するので、2つの励磁コイルとその中央位置に配設した透過磁束密度検出コイル間で腐食および亀裂などにより磁気抵抗のバランスが崩れた状態ではその磁気抵抗の差に応じた検出電圧が得られ、バランスのとれた状態では検出電圧は小さく、検出感度が優れており、腐食または亀裂等の検出を確実になし得る。しかも、第1と第2のフレキシブル基板を鋼材に1ターン巻回するとともにコネクタを接続することで、鋼材に2つの励磁コイルと透過磁束密度検出コイルを巻回装着することができ、検出作業が容易である。さらに、2つの励磁コイルに透過磁束密度検出コイルが重ねて固定配設されているので、その相対的位置が変化するようなことがなく、その相対的位置ずれによる検出精度の低下を生じさせる虞がない。
【図面の簡単な説明】
【図1】 本発明の鋼材の腐食または亀裂等の検出装置の一実施例の構成図である。
【図2】 本発明の鋼材の腐食または亀裂等の検出装置の動作原理を説明する図であり、(a)は検出電圧を示し、(b)は検出対象とされた鋼管を示す。
【図3】 図1における2つの励磁コイルの構造例を示し、(a)は一般的なコイル構造を示し、(b)は変形したコイル構造を示す。
【図4】 2つの励磁コイルと透過磁束密度検出コイルを1ターンの巻回で形成する構造例を示し、(a)は図3(b)に示す構造の励磁コイルを形成する第1のフレキシブル基板の平面図を示し、(b)は透過磁束密度検出コイルを形成する第2のフレキシブル基板の平面図であり、(c)は第1のフレキシブル基板に第2のフレキシブル基板を重ねて固定配設した平面図である。
【符号の説明】
10 鋼管
12a、12b 励磁コイル
14 透過磁束密度検出コイル
16 ロータリエンコーダ
18 発振器
30 中央演算装置
34 演算処理部
50 第1のフレキシブル基板
52、58 パターン
54 第2のフレキシブル基板
56a、56b コネクタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a detection apparatus for corrosion or crack of a steel material for detecting cracks in a steel material such as a steel pipe and the presence or absence of corrosion on the inner surface thereof.
[0002]
[Prior art]
Steel towers for power transmission lines are generally constructed using steel pipes as structural materials. Therefore, corrosion and cracking of these steel pipes are a problem from the viewpoint of the safety of the steel tower. In particular, corrosion is a major problem in areas with severe air pollution such as industrial zones. Further, in heavy snowfall areas, excessive force repeatedly acts on the steel tower due to snow on the electric wire, and there is a risk that the steel pipe will crack.
[0003]
With respect to the outer surface of the steel pipe, the corrosion state can be distinguished relatively easily by visual inspection, and if corrosion is confirmed, the progress of corrosion can be prevented by appropriate coating. However, the corrosion state of the inner surface of the steel pipe cannot be easily visually inspected. Therefore, conventionally, the inner surface has been confirmed by inserting an optical fiber scope into the steel pipe.
[0004]
[Problems to be solved by the invention]
The operation of checking the inner surface of the steel pipe with the optical fiber scope is expensive for the inspection device itself, and the inspector visually determines the corrosion status of the inner surface of the steel pipe. Judgment was difficult.
[0005]
Also, cracks in steel pipes are often difficult to confirm visually, and have to depend on the experience and intuition of skilled workers.
[0006]
The present invention has been made in view of the circumstances of the prior art as described above, and is a steel material that can accurately determine the corrosion and cracking of the steel material using magnetism without depending on the intuition of an operator or the like. It is an object of the present invention to provide a detection device for corrosion or cracks in the steel.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, the steel material corrosion or crack detection device of the present invention has two excitation coils separated from each other by being wound around the steel material so that the direction of the transmitted magnetic flux density is opposite in the steel material. Excitation is performed so that the same magnetic flux is transmitted, and the magnetic flux density detecting coil detects the transmitted magnetic flux density that is wound around the intermediate position of the two exciting coils and transmits the steel material, and the steel material is The two exciting coils and the transmitted magnetic flux density detection coil are moved relative to each other, and the corrosion of the steel material or the presence of the steel material detected by the change of the transmitted magnetic flux density detected by the transmitted magnetic flux density detection coil In a detection device such as a crack, a rectangular spiral pattern is provided on the first flexible substrate, and the two flexible coils are formed by winding the first flexible substrate around the steel material for one turn, 2 are provided with a plurality of terminals on both ends of the flexible substrate, and the connectors are connected to each other so that the connectors are connected substantially in parallel with the terminals being shifted one by one. In this state, a pattern is provided so as to be electrically connected to one line, the second flexible board is wound around the steel material for one turn, and the connector is connected to form the transmitted magnetic flux density detection coil. In addition, the first and second flexible substrates are arranged and fixed in an overlapping manner so that the relative positions of the two excitation coils and the transmitted magnetic flux density detection coil do not change.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of an embodiment of a detection device for corrosion or cracking of a steel material according to the present invention. 2A and 2B are diagrams for explaining the operating principle of a detection apparatus for corrosion or cracking of a steel material according to the present invention. FIG. 2A shows a detection voltage, and FIG. 2B shows a steel pipe to be detected. FIG. 3 shows an example of the structure of the two exciting coils in FIG. 1, (a) shows a general coil structure, and (b) shows a deformed coil structure. FIG. 4 shows an example of a structure in which two exciting coils and a transmitted magnetic flux density detecting coil are formed by one turn. FIG. 4A shows a first example in which two exciting coils having the structure shown in FIG. FIG. 2B is a plan view of a second flexible substrate that forms a transmission magnetic flux density detection coil, and FIG. 3C is a diagram in which the second flexible substrate is overlaid on the first flexible substrate. It is the top view fixedly arranged.
[0009]
First, the structure will be described with reference to FIG. Two excitation coils 12a and 12b are wound around the steel pipe 10 to be measured. A transmission magnetic flux density detection coil 14 is wound around the steel pipe 10 at an intermediate position between the two excitation coils 12a and 12b. These two exciting coils 12a and 12b and the transmitted magnetic flux density detecting coil 14 are configured such that their relative positions can be moved in the axial direction with respect to the steel pipe 10 without changing their relative positions. Further, a rotary encoder 16 for detecting the axial movement distance of these two exciting coils 12a and 12b and the transmitted magnetic flux density detecting coil 14 is provided.
[0010]
The sinusoidal AC voltage output from the oscillator 18 is amplified by the amplifier 20 and applied to the two exciting coils 12a and 12b connected in series. Here, the two exciting coils 12a and 12b have the same number of turns, and are formed so that the directions of the generated magnetic fluxes are opposite to each other. Therefore, the two exciting coils 12a and 12b excite the magnetic flux having the same transmitted magnetic flux density while transmitting in the opposite direction at two positions away from each other in the steel pipe 10. The detected voltage detected by the transmitted magnetic flux density detection coil 14 is amplified by the amplifier 22 and applied to the A / D converter 24 and also applied to the oscillograph 26. The oscillograph 26 enables a change in detection voltage to be confirmed visually. The detection signal of the rotary encoder 16 is given to the counter 28, and a signal corresponding to the moving distance is outputted and given to the A / D converter 24.
[0011]
The A / D converter 24 converts the signal corresponding to the detection voltage by the transmitted magnetic flux density detection coil 14 and the movement distance by the rotary encoder 16 into digital data. These digital data are given to the central processing unit 30 and stored in the storage device 32 as data corresponding to the detected voltage and the moving distance.
[0012]
The data stored in the storage device 32 is read into the arithmetic processing unit 34 and appropriately processed based on the processing instruction by the operation of the key input unit 36 and the determination data from the determination database 38, and the corrosion and cracking. Is displayed on the display unit 40, and the processing data is stored and saved in the storage unit 42.
[0013]
The two excitation coils 12a and 12b, the transmitted magnetic flux density detection coil 14 and the rotary encoder 16 constitute an excitation detection unit 44. Further, the oscillator 18, the amplifiers 20 and 22, the A / D converter 24, the counter 28, the central processing unit 30 and the storage device 32 constitute a measuring unit 46. And the excitation detection part 44 and the measurement part 46 are lifted on a steel tower, and inspection work is made. The arithmetic processing unit 34, the key input unit 36, the determination database 38, the display unit 40, and the storage unit 42 constitute a main body 48, which is installed on the ground. The oscillograph 26 is also installed on the ground, and is monitored by an inspector on the ground, and appropriate instructions are given to workers on the steel tower if necessary where the steel pipe 10 is likely to be corroded or cracked due to fluctuations in the detected voltage. give. It should be noted that the data stored in the storage device 32 in the inspection work on the steel tower may be read into the arithmetic processing unit 34 of the main body 48 after the work to determine whether or not the steel pipe 10 is corroded or cracked. .
[0014]
In such a configuration, the device of the present invention operates as follows. First, since the two exciting coils 12a and 12b excite magnetic fluxes having the same transmitted magnetic flux density and opposite directions, the magnetism of the steel pipe 10 between the two positions where the two exciting coils 12a and 12b are provided and the central position is provided. If the resistance is uniform, the magnetic fluxes cancel each other out at the intermediate position, and the transmitted magnetic flux density becomes zero. Therefore, the detection voltage detected by the transmitted magnetic flux density detection coil 14 is zero. Further, if the steel pipe 10 has corrosion and cracks, and the balance of the magnetic resistance between the two positions and the intermediate position is lost, the transmitted magnetic flux density by one exciting coil is large at the intermediate position, The transmitted magnetic flux density by the other exciting coil is small. Then, the transmitted magnetic flux density that passes through the transmitted magnetic flux density detection coil 14 increases, and the detection voltage increases. Therefore, the presence or absence of corrosion and cracks can be detected from the variation in the detection voltage.
[0015]
Furthermore, with reference to FIG. 2, it will be described more specifically that the presence of corrosion and cracks can be detected by a change in magnetic resistance. In place of corrosion and cracks, the steel pipe 10 is provided with two holes 10a and 10a at a distance P as shown in FIG. 2 (a), and one hole 10a at a distance Q. Has been. In a state where the two exciting coils 12a and 12b are moved from the left side in FIG. 2B with respect to the steel pipe 10 and have not yet reached the position of the distance P, the magnetic resistance of the steel pipe 10 is two exciting coils 12a and 12b. And the transmitted magnetic flux density detection coil 14 between them is substantially uniform, and the detection voltage by the transmitted magnetic flux density detection coil 14 is small. And when one excitation coil exceeds the position of the distance P, the holes 10a and 10a of the steel pipe 10 exist between the two excitation coils 12a and 12b, and one excitation coil and the transmitted magnetic flux density detection coil 14 Between the other and the other exciting coil and the transmitted magnetic flux density detection coil 14, the balance of the magnetic resistance of the steel pipe 10 is lost, and the detected voltage of the transmitted magnetic flux density detection coil 14 becomes large. Further, when the two exciting coils 12a and 12b are moved and the transmitted magnetic flux density detecting coil 14 reaches the position of the distance P of the steel pipe 10, the steel tube 10 between the two exciting coils 12a and 12b and the transmitted magnetic flux density detecting coil 14 is used. Are balanced, and the detection voltage of the transmitted magnetic flux density detection coil 14 becomes small again. When the transmission magnetic flux density detection coil 14 is further moved and exceeds the position of the distance P of the steel pipe 10, it is again between one excitation coil and the transmission magnetic flux density detection coil 14, and the other excitation coil and the transmission magnetic flux density detection coil 14. , The balance of the magnetic resistance of the steel pipe 10 is lost, and the detection voltage of the transmitted magnetic flux density detection coil 14 becomes large. Furthermore, when the other exciting coil exceeds the position of the distance P of the steel pipe 10 by being moved, the detection voltage becomes small.
[0016]
Further, when the two exciting coils 12a and 12b and the transmitted magnetic flux density detecting coil 14 are moved so as to exceed the position of the distance Q of the steel pipe 10, the detected voltage of the transmitted magnetic flux density detecting coil 14 similarly varies. Variations in the detection voltage of these transmitted magnetic flux density detection coils 14 are shown in FIG. In FIG. 2A, the magnitude of the detection voltage at the position of the distance Q is smaller than the magnitude of the detection voltage at the position of the distance P. This is because the change in magnetoresistance due to one hole 10a provided at the position of the distance Q is smaller than the change of magnetoresistance due to the two holes 10a, 10a provided at the position of the distance P.
[0017]
As shown in FIG. 2, in the steel pipe 10 to be inspected, if the magnetic resistance is not uniform and the magnetic resistance changes in part due to some factor, this can be detected. Therefore, in a state where the inner surface of the steel pipe 10 is corroded, detection is possible because the magnetic resistance increases at that point. Further, the magnetic resistance increases due to cracks in the steel pipe 10 and can be detected. Therefore, the inventors conducted an inspection using the apparatus of the present invention for the steel pipe 10 that was a structural material of a steel tower, and found that the voltage detected by the transmitted magnetic flux density detection coil 14 was not corroded or slightly corroded. Was small and its fluctuation was slight. On the other hand, the voltage detected by the transmitted magnetic flux density detection coil 14 is larger and the fluctuation is larger as the corrosion progresses considerably. Therefore, it has been confirmed that the corrosion of the inner surface of the steel pipe 10 can be reliably determined from the magnitude of the detected voltage and the magnitude of the fluctuation by the transmitted magnetic flux density detecting coil 14.
[0018]
In addition, since corrosion usually has a spread as a surface, a state in which the detection voltage of the transmission magnetic flux density detection coil 14 is large and the fluctuation thereof is large is continuously detected with a certain width. On the other hand, when the steel pipe 10 has a crack, the detected voltage of the transmitted magnetic flux density detection coil 14 is increased, but the width of the detected voltage is detected as being narrow. Therefore, it is possible to distinguish corrosion and cracks from the continuous width of the large detection voltage.
[0019]
By the way, the two exciting coils 12a and 12b connected in series shown in FIG. 3 (a) can be turned into two exciting coils 12a even if they are alternately wound on one side and the other every turn as shown in FIG. 3 (b). , 12b can be configured. Here, the connecting lines connecting the two exciting coils 12a and 12b for each turn are alternately reverse in the direction of the current, and the magnetic flux generated by the currents cancels each other, causing any trouble. Not.
[0020]
Therefore, as shown in FIG. 4A, a rectangular spiral pattern 52 is provided on the first flexible substrate 50, and the first flexible substrate 50 is wound around the steel pipe 10 for one turn, thereby providing two excitations. The coils 12a and 12b can be configured.
[0021]
Further, as shown in FIG. 4B, a pair of connectors 56a and 56b having a plurality of terminals that can be connected and separated are provided at both ends of the second flexible substrate 54, and the connection between these connectors 56a and 56b is substantially omitted. A pattern 58 is provided which is connected in parallel with a plurality of corresponding terminals shifted one by one. The pattern 58 is electrically connected as one line when the connectors 56a and 56b are connected. Therefore, if the second flexible substrate 54 is wound around the steel pipe 10 for one turn and the connectors 56a and 56b are connected, the transmitted magnetic flux density detection coil 14 can be configured.
[0022]
Further, as shown in FIG. 4C, the second flexible substrate 54 is stacked and fixed on the first flexible substrate 50. With this configuration, the relative positions of the two excitation coils 12a and 12b and the transmitted magnetic flux density detection coil 14 are not fixed and shifted. Moreover, the two exciting coils 12a and 12b and the transmitted magnetic flux density detecting coil 14 are substantially wound and mounted on the steel pipe 10 by simply winding the steel pipe 10 about one turn and connecting the connectors 56a and 56b. be able to.
[0023]
In addition, although the alternating frequency for excitation transmitted from the oscillator 18 uses, for example, 5 to 20 KHz, according to experiments by the inventors, it seems that the detection sensitivity is most excellent at a high frequency near 20 KHz. The object of detection of corrosion and cracks is not limited to the steel pipe 10 as long as it is a steel material made of a ferromagnetic material. And if the excitation means is appropriately configured, it is possible to detect corrosion or the like occurring on the back surface of the planar steel plate. Furthermore, the measurement of the movement distance relative to the steel pipe 10 is not limited to the rotary encoder 16, and any means can be used as long as the movement distance can be measured and output as data that can be processed by the central processing unit 30. Also good.
[0024]
【The invention's effect】
As described above, since the detection device for corrosion or cracking of the steel material of the present invention is configured, the following special effects can be obtained.
[0025]
In the detection apparatus for corrosion or cracking of the steel material according to claim 1, magnetic fluxes having opposite directions and the same transmitted magnetic flux density can be reliably excited by the exciting coil at two positions away from the steel material, Because the transmitted magnetic flux density detection coil arranged at the central position of the exciting coil detects changes in the transmitted magnetic flux density at the central position, corrosion occurs between the two exciting coils and the transmitted magnetic flux density detecting coil arranged at the central position. In the state where the balance of the magnetic resistance is lost due to a crack or the like, a detection voltage corresponding to the difference in the magnetic resistance is obtained, and in the balanced state, the detection voltage is small, the detection sensitivity is excellent, and corrosion, cracks, etc. Detection can be made reliably. Moreover, by winding the first and second flexible boards around the steel material for one turn and connecting the connector, the two excitation coils and the transmitted magnetic flux density detection coil can be wound around the steel material and the detection work can be performed. Easy. Further, since the transmission magnetic flux density detection coil is fixedly disposed so as to overlap the two excitation coils, the relative position does not change, and the detection accuracy may be lowered due to the relative position shift. There is no.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of a detection apparatus for corrosion or cracking of a steel material according to the present invention.
FIGS. 2A and 2B are diagrams for explaining the operating principle of a detection apparatus for corrosion or cracking of a steel material according to the present invention, wherein FIG. 2A shows a detection voltage, and FIG. 2B shows a steel pipe to be detected;
3 shows an example of the structure of two exciting coils in FIG. 1, (a) shows a general coil structure, and (b) shows a deformed coil structure.
4 shows an example of a structure in which two excitation coils and a transmitted magnetic flux density detection coil are formed by one turn. FIG. 4A shows a first flexible coil for forming an excitation coil having the structure shown in FIG. The top view of a board | substrate is shown, (b) is a top view of the 2nd flexible substrate which forms a permeation | transmission magnetic flux density detection coil, (c) overlaps the 2nd flexible substrate on the 1st flexible substrate, and fixed arrangement | positioning. It is the provided top view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Steel pipe 12a, 12b Excitation coil 14 Transmission magnetic flux density detection coil 16 Rotary encoder 18 Oscillator 30 Central processing unit 34 Arithmetic processing part 50 1st flexible substrate 52, 58 Pattern 54 2nd flexible substrate 56a, 56b Connector

Claims (1)

鋼材に、2つの励磁コイルを離して巻回配設して前記鋼材内に向きが反対で透過磁束密度の同じ磁束が透過するように励磁し、前記2つの励磁コイルの中間位置に巻回配設して前記鋼材内を透過する透過磁束密度を透過磁束密度検出コイルで検出し、前記鋼材に対して前記2つの励磁コイルと前記透過磁束密度検出コイルを相対的に移動させ、前記透過磁束密度検出コイルで検出される透過磁束密度の変化により前記鋼材の腐食または亀裂等の存在を検出する鋼材の腐食または亀裂等の検出装置において、第1のフレキシブル基板上に矩形渦巻き状のパターンを設け、この第1のフレキシブル基板を前記鋼材に1ターン巻回して前記2つの励磁コイルを形成し、第2のフレキシブル基板上の両端部に複数の端子を有し接続分離自在なコネクタをそれぞれに配設するとともに、これらのコネクタを略平行で前記端子が1つづつずれて接続されて前記コネクタが接続された状態で一本のラインに電気的接続されるようにパターンを設け、この第2のフレキシブル基板を前記鋼材に1ターン巻回するとともに前記コネクタを接続して前記透過磁束密度検出コイルを形成し、前記第1と第2のフレキシブル基板を重ねて配設固定して、前記2つの励磁コイルと前記透過磁束密度検出コイルの相対的位置が変化しないようにして構成したことを特徴とする鋼材の腐食または亀裂等の検出装置。Two excitation coils are separated and wound around the steel material so that the magnetic flux having the opposite direction and the same transmitted magnetic flux density is transmitted through the steel material, and the coil is wound around the intermediate position between the two excitation coils. The transmitted magnetic flux density that is transmitted through the steel material is detected by a transmitted magnetic flux density detection coil, the two excitation coils and the transmitted magnetic flux density detection coil are moved relative to the steel material, and the transmitted magnetic flux density In a detection device for corrosion or cracking of a steel material that detects the presence of corrosion or cracking of the steel material by a change in transmitted magnetic flux density detected by a detection coil, a rectangular spiral pattern is provided on the first flexible substrate, The first flexible board is wound around the steel material for one turn to form the two exciting coils, and a connector having a plurality of terminals at both ends on the second flexible board and being separable. A pattern is provided so that the connectors are connected in parallel with the terminals being shifted one by one and electrically connected to one line in a state where the connectors are connected. The second flexible substrate is wound around the steel material for one turn and the connector is connected to form the transmitted magnetic flux density detection coil, and the first and second flexible substrates are stacked and fixed, An apparatus for detecting corrosion or cracking of a steel material, characterized in that the relative positions of two excitation coils and the transmitted magnetic flux density detection coil do not change.
JP21567097A 1997-07-25 1997-07-25 Steel corrosion or crack detection device Expired - Fee Related JP3770512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21567097A JP3770512B2 (en) 1997-07-25 1997-07-25 Steel corrosion or crack detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21567097A JP3770512B2 (en) 1997-07-25 1997-07-25 Steel corrosion or crack detection device

Publications (2)

Publication Number Publication Date
JPH1144674A JPH1144674A (en) 1999-02-16
JP3770512B2 true JP3770512B2 (en) 2006-04-26

Family

ID=16676231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21567097A Expired - Fee Related JP3770512B2 (en) 1997-07-25 1997-07-25 Steel corrosion or crack detection device

Country Status (1)

Country Link
JP (1) JP3770512B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711818A (en) * 1986-05-27 1987-12-08 Xerox Corporation Fusing member for electrostatographic reproducing apparatus
KR20030092970A (en) * 2002-05-31 2003-12-06 박관수 Apparatus detecting a foreign substance by magnetic non-contact sensor and method thereof
JP2006200913A (en) * 2005-01-18 2006-08-03 Tokyo Electric Power Services Co Ltd Detector of thickness loss in hollow metal body
JP5169626B2 (en) * 2008-08-27 2013-03-27 Jfeスチール株式会社 Internal defect measurement method

Also Published As

Publication number Publication date
JPH1144674A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JP4917899B2 (en) Eddy current flaw detection sensor and eddy current flaw detection method
US6400146B1 (en) Sensor head for ACFM based crack detection
US8274276B2 (en) System and method for the non-destructive testing of elongate bodies and their weldbond joints
JP4809039B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
US6294912B1 (en) Method and apparatus for nondestructive inspection of plate type ferromagnetic structures using magnetostrictive techniques
US9128063B2 (en) Non-contact stress measuring device
US6310476B1 (en) Eddy current flaw detector
WO2000008458A1 (en) Eddy-current flaw detector probe
JP2007205826A (en) Wire rope flaw detector
WO2020095354A1 (en) Magnetic-body inspection device and magnetic-body inspection system
JP3770512B2 (en) Steel corrosion or crack detection device
WO2003091655A1 (en) Metal inspecting method and metal inspector
EP1311844A2 (en) Method for detecting cracks in electrically conducting materials
JP7081446B2 (en) Magnetic material inspection device and magnetic material inspection system
US20030034776A1 (en) Method and facility for storing and indexing web browsing data
KR101988887B1 (en) Lissajour curve display apparatus using magnetic sensor array
JP2003232776A (en) Eddy current flaw detecting apparatus and method
JP7351332B2 (en) Eddy current flaw detection probe, flaw detection method, and eddy current flaw detection equipment
JP5290020B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
JPS5818603B2 (en) Fushiyokusonmodokenshiyutsusouchi
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
JP5243828B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
US20130119979A1 (en) Leakage flux probe for non-destructive leakage flux-testing of bodies consisting of magnetizable material
JP4698959B2 (en) Sensor for detecting conductor defects in electric wires
JPH032588A (en) Nondestructive detecting device for buried conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees