JP3768398B2 - Luminescent material and light source device using the same - Google Patents

Luminescent material and light source device using the same Download PDF

Info

Publication number
JP3768398B2
JP3768398B2 JP2000331796A JP2000331796A JP3768398B2 JP 3768398 B2 JP3768398 B2 JP 3768398B2 JP 2000331796 A JP2000331796 A JP 2000331796A JP 2000331796 A JP2000331796 A JP 2000331796A JP 3768398 B2 JP3768398 B2 JP 3768398B2
Authority
JP
Japan
Prior art keywords
light source
luminescent material
source device
light
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000331796A
Other languages
Japanese (ja)
Other versions
JP2002129154A (en
Inventor
豊 川辺
明生 山中
榮一 花村
大嗣 堀内
信彦 猿倉
秀幸 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000331796A priority Critical patent/JP3768398B2/en
Publication of JP2002129154A publication Critical patent/JP2002129154A/en
Application granted granted Critical
Publication of JP3768398B2 publication Critical patent/JP3768398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光材料及びそれを用いた光源装置に関するものである。
【0002】
【従来の技術】
これまで発光材料として用いられたペロブスカイト構造を有する酸化物は、全て発光中心として外来の希土類元素などを用いていたため、その発光波長や材料の選択性に制限があった。一例としてNdをドープしたYAlO3 は、レーザー材料として知られているが、その発光波長はNdイオンで決まる狭い波長領域に限定される。また、電子遷移が禁制であるため振動子強度が小さく、レーザー材料としてコンパクトな装置を実現することが困難であった。
【0003】
一方、ペロブスカイト以外の結晶性発光材料としては、各種の蛍光体やレーザー結晶が知られているが、いずれも同様の欠点を有している。
【0004】
母結晶自体を発光させる試みとしては発明者らによって還元雰囲気下で作製したLaAlO3 を用いた発光材料が得られている。この材料は広い発光スペクトルを有し、発光材料として有用な特徴を備えているが、発光強度が十分でなく、かつ安定な結晶成長が困難であるなどの問題点があった〔Y.Kawabe,A.Yamanaka,E.Hanamura,T.Kimura,Y.Takiguchi,H.Kan,and Y.Tokura“Photoluminescence of perovskite lanthanum aluminate single crystals”J.Appl.Phys.87,7594(2000)〕。
【0005】
【発明が解決しようとする課題】
上記したように、固体レーザーに代表される固体光源は、使用する光学活性材料によりピーク波長、パワー、CWかパルスかの動作モード、効率などが決まってしまうため、幅広い光学活性材料が求められている。酸化物は耐環境性に優れ、Nd:YAlO3 などの多くの光学活性材料が見出されている。超伝導材料として注目のペロブスカイト型酸化物も発光材料として開発が試みられているが、Ti:LaAlO3 のように発光中心となる元素(Ti)を添加したものであり、母体からの発光は川辺らの報告〔上記技術文献〕があるが、発光強度が弱く、光学活性材料として十分に使えるものではなかった。
【0006】
本発明は、上記状況に鑑みて、近紫外から赤外の範囲で室温で安定なより強い発光強度を有する発光材料及びそれを用いた光源装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕焼成後の発光材料を構成する原材料を融解し、その融液から結晶を作製する際のプロセスを酸素分圧が大気中より低い雰囲気で行うとともに、ABO3 組成のペロブスカイト型化合物を主たる構成要素とする発光材料であって、Aのうちモル比10%以下が他の元素A′に置換されることを特徴とする発光材料。ただし、Aは希土類(ランタノイド)を含む3族、A′は2a族、BはAlである。
【0008】
〕上記〔載の発光材料において、前記Aがイットリウムまたはランタン及びそれらの混合物であることを特徴とする。
【0009】
〕光源装置であって、上記〔載の発光材料を用いた。
【0010】
〕上記〔〕記載の発光材料を用いた光源装置であって、駆動源として放電装置、または電流注入装置、または紫外光励起源を具備する。
【0011】
〕上記〔〕記載の発光材料を用いた光源装置であって、材料の有する光学利得による増幅効果を利用するようにしたものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0013】
まず、本発明の発光材料の製造方法について説明する。
【0014】
本発明のABO3 化合物のA位置の元素としては3b族のLa,Yなどがその代表的なものであるが、これに限定されるものではなく、その他希土類や2a族、さらにはその混合組成であってもよい。また、B位置の化合物はAl等3a族元素または4b−2bの遷移金属が好ましいが、同様にそれに限定されるものではない。A′,B′についてもA,Bと同様の選択が可能である。
【0015】
(1)第1実施例(結晶成長Ca:YAlO3
2 3 5.162gとAl2 3 11.320gとCaO0.057gを混合し、直径6mmのゴム風船につめ、ニチデン機械(株)製SPT119−10Tにて300Mpaの静水圧力を印加し原料棒を作製した。その原料棒を大気中1000℃で4時間焼成し、ニチデン機械(株)製SC−M50XSにて水素濃度4%のアルゴン・水素混合ガス雰囲気中で成長させた。キセノン電球電流は、58Aに設定し、成長速度は20.05mm/時間に設定した。その結果、直径3.7mm、長さ25mmの単結晶体が得られた。
【0016】
(2)第2実施例(結晶成長Ca:LaAlO3
La2 3 8.065gとAl2 3 2.549gとCaO0.029gを混合し、直径6mmのゴム風船につめ、ニチデン機械(株)製SPT119−10Tにて300Mpaの静水圧力を印加し原料棒を作製した。その原料棒を大気中1000℃で256時間焼成し、ニチデン機械(株)製SC−M50XSにて水素濃度4%のアルゴン・水素混合ガス雰囲気中で成長させた。キセノン電球電流は75Aに設定し、成長速度は20.00mm/時間に設定した。その結果、直径3.8mm、長さ13mmの単結晶体が得られた。
【0017】
(3)第3実施例(結晶成長Ba:LaAlO3
La2 3 8.537gとAl2 3 2.671gとBaO0.086gを混合し、直径6mmのゴム風船につめ、ニチデン機械(株)製SPT119−10Tにて300Mpaの静水圧力を印加し原料棒を作製した。その原料棒を大気中1000℃で215時間焼成し、ニチデン機械(株)製SC−M50XSにて水素濃度4%のアルゴン・水素混合ガス雰囲気中で成長させた。キセノン電球電流は73Aに設定し、成長速度は20.06mm/時間に設定した。その結果、直径3.5mm、長さ15mmの単結晶体が得られた。
【0018】
(4)第4実施例(Sr:LaAlO3
SrCO3 を1250℃で12時間熱処理することによって作製したSrO0.036gとLa2 3 5.699gとAl2 3 1.784gとを混合し、直径6mmのゴム風船につめ、ニチデン機械(株)製SPT119−10Tにて300Mpaの静水圧力を印し原料棒を作製した。その原料棒を大気中1000℃で16時間焼成し、ニチデン機械(株)製SC−M50XSにて水素濃度4%のアルゴン・水素混合ガス雰囲気中で成長させた。キセノン電球電流は76Aに設定し、成長速度は20.01mm/時間に設定した。その結果、直径3.6mm、長さ42mmの単結晶体が得られた。
【0019】
(5)第5実施例(Ca:GdAlO3
Gd2 3 8.974gとAl2 3 2.498gとCaO0.028gを混合し、直径6mmのゴム風船につめ、ニチデン機械(株)製SPT119−10Tにて300Mpaの静水圧力を印加し原料棒を作製した。その原料棒を大気中600℃で160時間焼成し、ニチデン機械(株)製SC−M50XSにて水素濃度4%のアルゴン・水素混合ガス雰囲気中で成長させた。キセノン電球電流は63Aに設定し、成長速度は20.05mm/時間に設定した。その結果、直径3.1mm、長さ37mmの単結晶体が得られた。
【0020】
次に、上記した発光材料の測定について説明する。
【0021】
(1)第1及び第2実施例で得られたCa:YAlO3 ,Ca:LaAlO3 結晶の発光スペクトルを、355nmのレーザーで照射したところ、Ca:YAlO3 については緑色、Ca:LaAlO3 については赤色のそれぞれ強い発光が得られた。発光スペクトルをアクトン社製の分光器・320iとプリンストンインスツルメント社製のCCD・IMAX512を用いて、図1に示す実験装置で測定した結果を図2に示す。
【0022】
図1は本発明の発光材料の実験装置(その1)の構成図、図2は実験装置で測定した結果を示す図である。
【0023】
図1において、1はレーザー、2は波長変換結晶、3はダイクロイックミラー、4はフィルター、5,6は反射ミラー、7はレンズ、8は試料、9はステージ、10は試料8からの発光、11は分光器、12は光検出器、13はパーソナルコンピュータ(PC)である。
【0024】
そこで、レーザー1より出射された1.064μmの光を複数の波長変換結晶2に入射し、発生した355nmの紫外光をダイクロイックミラー3及びフィルター4によって取り出し、ミラー5,6を用いることにより所定の伝搬方向に調整し、さらに、レンズ7を用いて試料8に照射する。試料8の位置はステージ9によって微調整される。
【0025】
上記の紫外光を照射することによって試料8より発生した発光10はレンズによって分光器11に導かれ、装着された光検出器12によって検出される。この時、光検出器12とレーザー1が同期するようにPC13によって制御されると同時に発光強度がPC13に転送される。
【0026】
図2において、横軸は波長であり、縦軸はPL強度(相対強度)を示している。上段は第2実施例の試料に基づく結果であり、下段は第1実施例の試料に基づく結果を表している。
【0027】
(2)第1実施例で得られたCa:YAlO3 の緑色発光の発光寿命をプリンストンインスツルメント社製のCCD・IMAX512を用いて測定した結果は16nsであった。結果を図3に示す。
【0028】
図3は本発明の発光材料の実験装置(その2)による結果を示す図であり、横軸に時間(ns)、縦軸に発光強度を示している。
【0029】
(3)Ca:YAlO3 を355nmのパルスレーザー光で励起し、図4に示す実験装置を用いて、同時に透過光強度を波長可変レーザーを用いて測定したところ480nmから550nmの範囲で透過光が増幅されていることが確認された。
【0030】
図4は本発明の発光材料の実験装置(その2)の構成図である。
【0031】
この図において、21はレーザー、22,24,25はミラー、23は波長可変レーザー、26は試料、27は光検出器、28はオシロスコープである。
【0032】
そこで、355nmの波長を有するレーザー21をミラー22を用いて試料26に照射すると同時に波長可変レーザー23からの出射光を24,25のミラーによって方向を調整し、試料26に入射し、その透過光を光検出器27及びオシロスコープ28を用いてモニターすることにより、透過の増減を観測するようにしている。
【0033】
以下に2つの比較例について説明する。
【0034】
(1)第1の比較例(LaAlO3 の発光スペクトル)
第2実施例と同じ方法で作製したCaを含まない結晶の発光スペクトルを266nmのレーザーで照射したところ緑色の発光が得られた。発光強度は、第1実施例に比べて1/20であった。発光スペクトルをアクトン社製の分光器・320iとプリンストンインスツルメント社製のCCD・IMAX512を用いて測定した結果を図5に示す。355nmで励起した場合はさらに弱い発光しか観測されなかった。
【0035】
図5は第1の比較例の測定結果を示す図であり、横軸に波長(nm)、縦軸に発光スペクトル強度(相対単位)を示している。
【0036】
(2)第2の比較例(LaAlO3 の利得の測定)
LaAlO3 を355nmおよび266nmのパルスレーザー光で励起し、上記(3)に例示したものと同じ実験装置を用いて、同時に透過光強度を白色光を測定したところ、光の増幅は観測されず、吸収の増大が観測された。
【0037】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0038】
【発明の効果】
以上、詳細に説明したように、本発明によれば、ABO3 化合物のAまたはBの位置の元素の一部を別種の元素A′,B′で置換することにより、より強い発光強度を有する結晶が安定に作製可能であることを見出した。また、その発光スペクトルや強度、及び発光寿命がA′,B′の種類や濃度によって制御可能であることを明らかにした。また、これらの手法によって作製された化合物の一部をパルス紫外光源で強く励起することにより光学的利得を有することが示された。ここで置換する元素の率は、10%以下、より望ましくは2%〜0.0001%である。
【図面の簡単な説明】
【図1】 本発明の発光材料の実験装置(その1)の構成図である。
【図2】 実験装置で測定した結果を示す図である。
【図3】 本発明の発光材料の実験装置(その2)による結果を示す図である。
【図4】 本発明の発光材料の実験装置(その2)の構成図である。
【図5】 第1の比較例の測定結果を示す図である。
【符号の説明】
1,21 レーザー
2 波長変換結晶
3 ダイクロイックミラー
4 フィルター
5,6 反射ミラー
7 レンズ
8,26 試料
9 ステージ
10 試料からの発光
11 分光器
12,27 光検出器
13 パーソナルコンピュータ
22,24,25 ミラー
23 波長可変レーザー
28 オシロスコープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting material and a light source device using the light emitting material.
[0002]
[Prior art]
All oxides having a perovskite structure used as a light emitting material until now have used a rare earth element or the like as a light emission center, and thus have a limitation in light emission wavelength and material selectivity. As an example, YAlO 3 doped with Nd is known as a laser material, but its emission wavelength is limited to a narrow wavelength region determined by Nd ions. Moreover, since the electronic transition is forbidden, the oscillator strength is small, and it has been difficult to realize a compact device as a laser material.
[0003]
On the other hand, various phosphors and laser crystals are known as crystalline luminescent materials other than perovskite, but all have the same drawbacks.
[0004]
As an attempt to make the mother crystal itself emit light, a light emitting material using LaAlO 3 produced in a reducing atmosphere by the inventors has been obtained. This material has a broad emission spectrum and has useful characteristics as a light-emitting material, but has problems such as insufficient light emission intensity and difficulty in stable crystal growth [Y. Kawabe, A .; Yamanaka, E .; Hanamura, T .; Kimura, Y .; Takiguchi, H .; Kan, and Y.K. Tokyo "Photoluminescence of perovskite lanthanum aluminum single crystals" J. Appl. Phys. 87, 7594 (2000)].
[0005]
[Problems to be solved by the invention]
As described above, a solid light source typified by a solid-state laser is required to have a wide range of optically active materials because the peak wavelength, power, operation mode of CW or pulse, efficiency, etc. are determined by the optically active material used. Yes. Oxides are excellent in environmental resistance, and many optically active materials such as Nd: YAlO 3 have been found. Perovskite oxide, which has been attracting attention as a superconducting material, has been developed as a light-emitting material. However, the element (Ti), which is the emission center, is added like Ti: LaAlO 3 , and the emission from the matrix is Kawabe. Although there is a report [the above-mentioned technical document], the emission intensity is weak and it cannot be used sufficiently as an optically active material.
[0006]
In view of the above situation, an object of the present invention is to provide a light emitting material having a stronger emission intensity that is stable at room temperature in the near ultraviolet to infrared range, and a light source device using the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] The process of melting the raw materials constituting the luminescent material after firing and producing a crystal from the melt is performed in an atmosphere where the oxygen partial pressure is lower than in the atmosphere, and the perovskite type compound having an ABO 3 composition is mainly used. A luminescent material as a constituent element, wherein a molar ratio of 10% or less of A is replaced by another element A ′. However, A is 3 b group containing rare earth (lanthanoid), A 'is group 2a, B is is Al.
[0008]
[2] The luminescent material according to [1] Symbol mounting, wherein said A is yttrium or lanthanum and mixtures thereof.
[0009]
[3] The light source apparatus, using a light-emitting material of [1] Symbol placement.
[0010]
[ 4 ] A light source device using the light-emitting material according to [ 3 ], wherein the drive source includes a discharge device, a current injection device, or an ultraviolet light excitation source.
[0011]
[ 5 ] A light source device using the light emitting material according to [ 3 ], wherein an amplification effect by an optical gain of the material is used.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
First, the manufacturing method of the luminescent material of this invention is demonstrated.
[0014]
Representative examples of the element at the A position of the ABO 3 compound of the present invention include La, Y of 3b group, but are not limited to this, and other rare earth elements, 2a group, and further mixed compositions thereof. It may be. The compound at the B position is preferably a group 3a element such as Al or a transition metal of 4b-2b, but is not limited thereto. A ′ and B ′ can be selected in the same manner as A and B.
[0015]
(1) First Example (Crystal Growth Ca: YAlO 3 )
Y 2 O 3 5.162 g, Al 2 O 3 11.320 g and CaO 0.057 g are mixed, and packed in a rubber balloon with a diameter of 6 mm, and a hydrostatic pressure of 300 Mpa is applied to SPT119-10T manufactured by Nichiden Kikai Co., Ltd. A rod was made. The raw material rod was fired at 1000 ° C. for 4 hours in the atmosphere, and was grown in an atmosphere of argon / hydrogen mixed gas having a hydrogen concentration of 4% using SC-M50XS manufactured by Nichiden Kikai Co., Ltd. The xenon bulb current was set at 58 A and the growth rate was set at 20.05 mm / hour. As a result, a single crystal having a diameter of 3.7 mm and a length of 25 mm was obtained.
[0016]
(2) Second Example (Crystal Growth Ca: LaAlO 3 )
8.065 g of La 2 O 3, 2.549 g of Al 2 O 3 and 0.029 g of CaO are mixed together and packed in a rubber balloon having a diameter of 6 mm, and a hydrostatic pressure of 300 Mpa is applied with SPT119-10T manufactured by Nichiden Kikai Co. A rod was made. The raw material rod was fired at 1000 ° C. for 256 hours in the air, and was grown in an argon / hydrogen mixed gas atmosphere having a hydrogen concentration of 4% using SC-M50XS manufactured by Nichiden Kikai Co., Ltd. The xenon bulb current was set at 75 A and the growth rate was set at 20.00 mm / hour. As a result, a single crystal having a diameter of 3.8 mm and a length of 13 mm was obtained.
[0017]
(3) Third Example (Crystal Growth Ba: LaAlO 3 )
La 2 O 3 were mixed 8.537g and Al 2 O 3 2.671g and BaO0.086G, packed in balloon diameter 6 mm, the raw material by applying a hydrostatic pressure of 300Mpa at NICHIDEN Machinery Co. SPT119-10T A rod was made. The raw material rod was baked at 1000 ° C. for 215 hours in the air, and grown in an atmosphere of argon / hydrogen mixed gas having a hydrogen concentration of 4% using SC-M50XS manufactured by Nichiden Kikai Co., Ltd. The xenon bulb current was set at 73 A and the growth rate was set at 20.06 mm / hour. As a result, a single crystal having a diameter of 3.5 mm and a length of 15 mm was obtained.
[0018]
(4) Fourth Example (Sr: LaAlO 3 )
0.036 g of SrO prepared by heat-treating SrCO 3 at 1250 ° C. for 12 hours, 5.699 g of La 2 O 3 and 1.784 g of Al 2 O 3 were mixed together and packed in a rubber balloon having a diameter of 6 mm. ) the hydrostatic pressure of 300Mpa in made SPT119-10T to prepare a mark pressurized Shi raw material rod. The raw material rod was fired at 1000 ° C. for 16 hours in the air, and grown in an atmosphere of argon / hydrogen mixed gas having a hydrogen concentration of 4% using SC-M50XS manufactured by Nichiden Kikai Co., Ltd. The xenon bulb current was set at 76A and the growth rate was set at 20.01 mm / hour. As a result, a single crystal having a diameter of 3.6 mm and a length of 42 mm was obtained.
[0019]
(5) Fifth Example (Ca: GdAlO 3 )
Gd 2 O 3 8.974 g, Al 2 O 3 2.498 g and CaO 0.028 g were mixed and packed into a rubber balloon with a diameter of 6 mm, and a hydrostatic pressure of 300 Mpa was applied to the material using SPT119-10T manufactured by Nichiden Machinery Co., Ltd. A rod was made. The raw material rod was fired in the atmosphere at 600 ° C. for 160 hours, and grown in an atmosphere of argon / hydrogen mixed gas having a hydrogen concentration of 4% using SC-M50XS manufactured by Nichiden Kikai Co., Ltd. The xenon bulb current was set at 63 A and the growth rate was set at 20.05 mm / hour. As a result, a single crystal having a diameter of 3.1 mm and a length of 37 mm was obtained.
[0020]
Next, measurement of the above-described light emitting material will be described.
[0021]
(1) When the emission spectra of the Ca: YAlO 3 and Ca: LaAlO 3 crystals obtained in the first and second examples were irradiated with a laser of 355 nm, Ca: YAlO 3 was green, and Ca: LaAlO 3 Each gave a strong red light emission. FIG. 2 shows the result of measuring the emission spectrum with the experimental apparatus shown in FIG. 1 using a spectroscope 320i manufactured by Acton and a CCD IMAX 512 manufactured by Princeton Instruments.
[0022]
FIG. 1 is a configuration diagram of an experimental apparatus (part 1) for a luminescent material according to the present invention, and FIG. 2 is a diagram showing the results measured by the experimental apparatus.
[0023]
In FIG. 1, 1 is a laser, 2 is a wavelength conversion crystal, 3 is a dichroic mirror, 4 is a filter, 5 and 6 are reflection mirrors, 7 is a lens, 8 is a sample, 9 is a stage, 10 is light emission from the sample 8, 11 is a spectroscope, 12 is a photodetector, and 13 is a personal computer (PC).
[0024]
Therefore, 1.064 μm light emitted from the laser 1 is incident on a plurality of wavelength conversion crystals 2, and the generated 355 nm ultraviolet light is extracted by the dichroic mirror 3 and the filter 4, and predetermined mirrors 5 and 6 are used. Adjustment is made in the propagation direction, and the sample 8 is irradiated with the lens 7. The position of the sample 8 is finely adjusted by the stage 9.
[0025]
The light emission 10 generated from the sample 8 by irradiating the ultraviolet light is guided to the spectroscope 11 by the lens and detected by the mounted photodetector 12. At this time, the light intensity is transferred to the PC 13 at the same time as being controlled by the PC 13 so that the photodetector 12 and the laser 1 are synchronized.
[0026]
In FIG. 2, the horizontal axis represents wavelength, and the vertical axis represents PL intensity (relative intensity). The upper row shows the results based on the sample of the second embodiment, and the lower row shows the results based on the sample of the first embodiment.
[0027]
(2) The result of measuring the luminescence lifetime of Ca: YAlO 3 obtained in the first example using a CCD IMAX512 manufactured by Princeton Instruments was 16 ns. The results are shown in FIG.
[0028]
FIG. 3 is a diagram showing the results of the experimental device (part 2) of the luminescent material of the present invention, wherein the horizontal axis represents time (ns) and the vertical axis represents the emission intensity.
[0029]
(3) Ca: YAlO 3 was excited with a 355 nm pulse laser beam, and the transmitted light intensity was measured using a wavelength variable laser at the same time using the experimental apparatus shown in FIG. 4, and the transmitted light was in the range of 480 nm to 550 nm. Amplification was confirmed.
[0030]
FIG. 4 is a configuration diagram of a light emitting material experimental apparatus (part 2) according to the present invention.
[0031]
In this figure, 21 is a laser, 22, 24 and 25 are mirrors, 23 is a wavelength tunable laser, 26 is a sample, 27 is a photodetector, and 28 is an oscilloscope.
[0032]
Therefore, the laser 21 having a wavelength of 355 nm is irradiated onto the sample 26 using the mirror 22 and simultaneously the direction of the emitted light from the wavelength tunable laser 23 is adjusted by the 24 and 25 mirrors, and is incident on the sample 26 and the transmitted light. Is monitored using a photodetector 27 and an oscilloscope 28 to observe the increase and decrease in transmission.
[0033]
Two comparative examples will be described below.
[0034]
(1) First comparative example (emission spectrum of LaAlO 3 )
When an emission spectrum of a crystal containing no Ca produced by the same method as in the second example was irradiated with a 266 nm laser, green light emission was obtained. The emission intensity was 1/20 compared to the first example. FIG. 5 shows the result of measuring the emission spectrum using a spectroscope 320i manufactured by Acton and a CCD IMAX512 manufactured by Princeton Instruments. When excited at 355 nm, only weaker emission was observed.
[0035]
FIG. 5 is a diagram showing the measurement results of the first comparative example, where the horizontal axis represents wavelength (nm) and the vertical axis represents emission spectrum intensity (relative unit).
[0036]
(2) Second comparative example (measurement of LaAlO 3 gain)
When LaAlO 3 was excited with pulsed laser light of 355 nm and 266 nm and the same experimental apparatus as that exemplified in the above (3) was used to measure the transmitted light intensity simultaneously, no light amplification was observed. Increased absorption was observed.
[0037]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a part of the element at the position A or B of the ABO 3 compound is replaced with another kind of element A ′ or B ′, so that the emission intensity is increased. It has been found that crystals can be produced stably. It has also been clarified that the emission spectrum, intensity, and emission lifetime can be controlled by the types and concentrations of A ′ and B ′. In addition, it was shown that some of the compounds prepared by these methods have optical gain by strongly exciting with a pulsed ultraviolet light source. Here, the ratio of the element to be substituted is 10% or less, and more desirably 2% to 0.0001%.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an experimental apparatus (part 1) for a luminescent material according to the present invention.
FIG. 2 is a diagram showing the results of measurement with an experimental apparatus.
FIG. 3 is a diagram showing a result of an experimental apparatus (part 2) for a luminescent material according to the present invention.
FIG. 4 is a configuration diagram of a light emitting material experimental apparatus (part 2) according to the present invention.
FIG. 5 is a diagram showing measurement results of a first comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,21 Laser 2 Wavelength conversion crystal 3 Dichroic mirror 4 Filter 5, 6 Reflection mirror 7 Lens 8, 26 Sample 9 Stage 10 Light emission from sample 11 Spectrometer 12, 27 Photo detector 13 Personal computer 22, 24, 25 Mirror 23 Tunable laser 28 oscilloscope

Claims (5)

焼成後の発光材料を構成する原材料を融解し、その融液から結晶を作製する際のプロセスを酸素分圧が大気中より低い雰囲気で行うとともに、ABO3 組成のペロブスカイト型化合物を主たる構成要素とする発光材料であって、Aのうちモル比10%以下が他の元素A′に置換されることを特徴とする発光材料。ただし、Aは希土類(ランタノイド)を含む3族、A′は2a族、BはAlである。 The raw material constituting the luminescent material after firing is melted, and a process for producing a crystal from the melt is performed in an atmosphere where the oxygen partial pressure is lower than in the atmosphere, and a perovskite type compound having an ABO 3 composition is the main constituent element. A luminescent material, wherein a molar ratio of 10% or less of A is substituted with another element A ′. However, A is 3 b group containing rare earth (lanthanoid), A 'is group 2a, B is is Al. 請求項1記載の発光材料において、前記Aがイットリウムまたはランタン及びそれらの混合物であることを特徴とする発光材料。In claim 1 Symbol placement of luminescent material, light emitting material, wherein said A is yttrium or lanthanum and mixtures thereof. 請求項1記載の発光材料を用いた光源装置。A light source device using the claim 1 Symbol placement of luminescent material. 請求項記載の発光材料を用いた光源装置であって、駆動源として放電装置、または電流注入装置、または紫外光励起源を具備する光源装置。A light source device using the luminescent material according to claim 3 , wherein the light source device includes a discharge device, a current injection device, or an ultraviolet light excitation source as a drive source. 請求項記載の発光材料を用いた光源装置であって、材料の有する光学利得による増幅効果を利用した光源装置。A light source device using the light emitting material according to claim 3 , wherein the light source device uses an amplification effect due to an optical gain of the material.
JP2000331796A 2000-10-31 2000-10-31 Luminescent material and light source device using the same Expired - Fee Related JP3768398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331796A JP3768398B2 (en) 2000-10-31 2000-10-31 Luminescent material and light source device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331796A JP3768398B2 (en) 2000-10-31 2000-10-31 Luminescent material and light source device using the same

Publications (2)

Publication Number Publication Date
JP2002129154A JP2002129154A (en) 2002-05-09
JP3768398B2 true JP3768398B2 (en) 2006-04-19

Family

ID=18808091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331796A Expired - Fee Related JP3768398B2 (en) 2000-10-31 2000-10-31 Luminescent material and light source device using the same

Country Status (1)

Country Link
JP (1) JP3768398B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246410B1 (en) * 2003-10-30 2013-01-09 Japan Science and Technology Agency Method for obtaining luminescence in a visible wavelength range by using an electroluminescent material
JP4751972B2 (en) * 2005-03-29 2011-08-17 独立行政法人科学技術振興機構 Driving method of electroluminescent element
JP4910192B2 (en) * 2006-12-12 2012-04-04 独立行政法人科学技術振興機構 Oxide electroluminescent device
JP2016050249A (en) * 2014-08-29 2016-04-11 株式会社トクヤマ Deep ultraviolet emission material

Also Published As

Publication number Publication date
JP2002129154A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
Auzel et al. Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up‐conversion
KR101035029B1 (en) Ceramic composite light converting member and light emitting device using the same
US20080191607A1 (en) Phosphor, Method For Producing Same, And Light-Emitting Device Using Same
JPH04219316A (en) Single-phase strontium and lanthanide mixture oxide and laser using this monocrystal mixture oxide
Vink et al. Photon cascade emission in SrAlF5: Pr3+
JP2004189996A5 (en)
JP3768398B2 (en) Luminescent material and light source device using the same
US5746942A (en) Erbium-doped low phonon hosts as sources of fluorescent emission
Fu Orange‐and Violet‐Emitting Long‐Lasting Phosphors
Reddy et al. White light emission characteristics of europium doped fluoride crystals
JPWO2004101711A1 (en) Transition metal doped spinel type MgAl2O4 phosphor, laser device using the same, and method for producing the phosphor
JP2006036618A (en) Calcium fluoride crystal and its producing method as well as its using method
JP2007031668A (en) TRANSITION METAL DOPED SPINEL TYPE MgGa2O4 PHOSPHOR AND MANUFACTURING METHOD THEREOF
JP3608196B2 (en) Epitaxial phosphor thin film and manufacturing method thereof
US12046867B2 (en) Laser crystal with at least two co-dopants
JP3945710B2 (en) Solid fluorescent material
US20210408756A1 (en) Laser crystal with at least two co-dopants
JP3286680B2 (en) Laser crystal and manufacturing method thereof
JP3529195B2 (en) Infrared visible wavelength up-conversion material
JP3366365B2 (en) Infrared-visible wavelength up-conversion material
JPH0692721A (en) Laser crystal and its production
Chandana et al. Photoluminescence studies on Dy 3 activated Na4Mg (PO4) 2 phosphors
JP2005132640A (en) Luminous body and its manufacturing method
JPH10273337A (en) Glass material for wavelength transformation
RU2394321C2 (en) Optical medium for converting monochromatic laser radiation and method of making said medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees