JP3767701B2 - Hydrodynamic bearing - Google Patents

Hydrodynamic bearing Download PDF

Info

Publication number
JP3767701B2
JP3767701B2 JP25799494A JP25799494A JP3767701B2 JP 3767701 B2 JP3767701 B2 JP 3767701B2 JP 25799494 A JP25799494 A JP 25799494A JP 25799494 A JP25799494 A JP 25799494A JP 3767701 B2 JP3767701 B2 JP 3767701B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
bearing surface
shaped
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25799494A
Other languages
Japanese (ja)
Other versions
JPH08121466A (en
Inventor
政良 大西
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP25799494A priority Critical patent/JP3767701B2/en
Publication of JPH08121466A publication Critical patent/JPH08121466A/en
Application granted granted Critical
Publication of JP3767701B2 publication Critical patent/JP3767701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、動圧軸受に関する。
【0002】
【従来の技術】
従来、この種の動圧軸受では、図2(B)に示す動圧発生用の溝21が形成された軸20の軸受面22に対向し、かつ、動圧発生用の溝が形成されていない筒25の軸受面23は、図2(A)に示すように鏡面仕上げがなされていた。その理由は、上記溝が形成されていない軸受面23の平坦度を向上させて、上記溝21が形成された軸受面22と上記溝が形成されていない軸受面23との間に動圧を有効に発生させるためである。
【0003】
【発明が解決しようとする課題】
しかし、鏡面仕上げ加工は、加工コストが高価である上に、上記鏡面仕上げをするためには、鏡面仕上げの前に上記軸受面23に焼き入れを施しておく必要があるから、上記軸受面23を構成する材質に制約が生じるという問題がある。
【0004】
また、動圧軸受の構造が複雑な場合には、上記軸受面に鏡面仕上げを施すことが困難であるという問題もある。
【0005】
そこで、この発明の目的は、材質上の制約や構造上の制約を生じさせることなく、溝が形成されていない軸受面の平坦度を比較的低コストで向上させることができる動圧軸受を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、この発明の動圧軸受は、回転部材と、この回転部材を支持する固定部材とを有し、上記回転部材もしくは固定部材の一方の軸受面に、動圧発生用の溝が形成されており、上記回転部材の軸受面と上記固定部材の軸受面との間に動圧発生用の流体が充填されている動圧軸受において、
上記回転部材もしくは固定部材の他方の軸受面を含む表層は、
台形状の山とV字形状の谷とが交互に並んだ形状になっており、上記台形状の山の頂上の面が上記軸受面を構成しており、
上記他方の軸受面には動圧発生用の溝が形成されておらず、
上記他方の軸受面を含む表層の上記V字形状の谷に動圧発生用の液体を溜めるようになっていて、
上記他方の軸受面を含む表層は、
旋削加工後のV字形状の山とV字形状の谷とが交互に連なった形状の表層に対して、上記V字形状の山の先端部を削ることによって、上記V字形状の谷が略一定の間隔で形成されていることを特徴としている。
【0007】
【作用】
上記構成の動圧軸受は、上記回転部材もしくは固定部材の他方の動圧発生用の溝が形成されていない軸受面を含む表層が、台形状の山とV字形状の谷とが交互に並んだ形状になっている。そして、上記台形状の山の頂上の面が上記軸受面を構成している。
【0008】
したがって、この発明の上記軸受面は、旋削加工後のV字形状の山と谷が交互に連なった形状の表層に対して、上記V字形状の山の頂上を削ることによって形成することができる。そして、このV字形状の山を削ることによって平坦になった山の頂上の面が軸受面を構成している。
【0009】
したがって、この発明によれば、鏡面仕上げを行うことなく、上記軸受面の平坦度を上げることができるから、材質上の制約や構造上の制約を生じさせることなく、溝が形成されていない軸受面の平坦度を比較的低コストで向上させることができ、動圧を有効に発生させることができる。
【0010】
また、動圧発生用の流体として液体を用いた場合、上記台形状の山と山との間のV字形状の谷に動圧発生用の液体を溜めることができるから、潤滑性能を向上させることができる。
【0011】
【実施例】
以下、この発明を図示の実施例により詳細に説明する。
【0012】
図1に、この発明の動圧軸受の実施例を示す。図1(B)に示すように、この実施例は、回転部材としての軸1と、この軸1に対向している固定部材としての円筒形の筒2を備えている。上記軸1の周面1aには、動圧発生用の溝3が形成されている一方、上記筒2の内周面2aには、動圧発生用の溝は形成されていない。溝3の深さは、数μm程度である。そして、上記軸1と上記筒2との間には、動圧発生用の流体としての油(図示せず)が充填されている。
【0013】
図1(A)に示すように、上記筒2の内周面2aを含む表層S1は、略台形状の山5と、略V字形状の谷6とが交互に並んだ形状になっており、上記略台形状の山5の頂上の面5aが軸受面を構成している。
【0014】
上記構成の動圧軸受は、筒2に対して軸1が回転すると、軸1に形成されている動圧発生用の溝3が、軸1の周面1aと筒2の内周面2aとの間の油に動圧を発生させて、筒2に対して軸1を支持し、軸1と筒2との間隔を所定の寸法に維持する。
【0015】
上記筒2の表層S1は、略台形状の山5と、略V字形状の谷6とが、軸受面2aに沿って、交互に並んだ形状になっている。そして、上記略台形状の山5の頂上の面5aが上記軸受面2aを構成している。
【0016】
したがって、上記実施例の上記軸受面2aは、旋削加工後のV字形状の山50とV字形状の谷60とが交互に連なった形状の表層に対して、上記V字形状の山50の先端部50aを削ることによって形成することができる。この先端部50aを削る方法としては、ラップ加工やバレル加工を用いればよい。
【0017】
したがって、この実施例によれば、鏡面仕上げを行うことなく、上記軸受面2aの平坦度を上げることができるから、材質上の制約や構造上の制約を生じさせることなく、軸受面2aの平坦度を向上させることができ、動圧を有効に発生させることができる。また、鏡面加工が不必要であるから、コストダウンを図ることができる。
【0018】
また、上記山5と山5との間の谷6に油を溜めることができるから、潤滑性能を向上させることができる。
【0019】
ここで、動圧軸受の直径が2.5mmである場合において、上記実施例の動圧軸受と、図2に示した従来の鏡面仕上げの動圧軸受との性能比較結果を次の表に示す。
【0020】
〔軸の振れ〕 〔回転トルク〕
本実施例 1μm以下 1.8gcm
従来例(鏡面仕上げ) 1μm以下 1.8gcm
【0021】
尚、上記実施例では、軸1の周面1aに動圧発生用の溝3を形成し、筒2の内周面2aを動圧発生溝が形成されていない軸受面としたが、筒2の内周面に動圧発生用の溝を形成する一方、軸1の周面1aを動圧発生溝が形成されていない軸受面としてもよい。
【0022】
さらに、上記実施例では、ラジアル軸受に適用した例を示したが、本発明はアキシアル動圧軸受や、ラジアル、アキシアル両方向に回転体を支持する動圧軸受にも適用できる。
【0023】
また、上記実施例では、軸1を回転部材とし、筒2を固定部材としたが、軸1を固定部材とし、筒2を回転部材としてもよい。
【0024】
【発明の効果】
以上より明らかなように、この発明の動圧軸受は、回転部材もしくは固定部材のうちの動圧発生用の溝が形成されていない方の軸受面を含んでいる表層は、台形状の山とV字形状の谷とが交互に並んだ形状になっており、上記V字形状の谷が略一定の間隔で形成されており、上記台形状の山の頂上の面が上記軸受面を構成しているものである。
【0025】
したがって、この発明の動圧軸受によれば、上記軸受面は、切削加工後のV字形状の山と谷が交互に連なった形状の表層に対して、上記V字形状の山の頂上を削ることによって形成することができる。そして、このV字形状の山を削ることによって平坦になった山の頂上の面が軸受面を構成している。
【0026】
したがって、この発明によれば、鏡面仕上げを行うことなく、切削加工後の軸受面の平坦度を上げることができるから、材質上の制約や構造上の制約を生じさせることなく、溝が形成されていない軸受面の平坦度を比較的低コストで向上させることができ、動圧を有効に発生させることができる。
【0027】
また、動圧発生用の流体として液体を用いた場合、上記略台形状の山と山との間の略V字形状の谷に動圧発生用の液体を溜めることができるから、潤滑性能を向上させることができる。
【図面の簡単な説明】
【図1】 図1(A)はこの発明の動圧軸受の実施例の要部断面図であり、図1(B)は上記実施例の一部切り欠き断面図である。
【図2】 図2(A)は従来の動圧軸受の要部断面図であり、図2(B)は上記従来例の一部切り欠き断面図である。
【符号の説明】
1…軸、1a…周面、2…筒、3…動圧発生用の溝、5…山、
5a…頂上の面、6…谷、S1…表層。
[0001]
[Industrial application fields]
The present invention relates to a dynamic pressure bearing.
[0002]
[Prior art]
Conventionally, in this type of dynamic pressure bearing, a dynamic pressure generating groove is formed opposite to the bearing surface 22 of the shaft 20 in which the dynamic pressure generating groove 21 shown in FIG. 2B is formed. As shown in FIG. 2 (A), the bearing surface 23 of the cylinder 25 having no cylinder was mirror-finished. The reason is that the flatness of the bearing surface 23 in which the groove is not formed is improved, and dynamic pressure is applied between the bearing surface 22 in which the groove 21 is formed and the bearing surface 23 in which the groove is not formed. This is to generate it effectively.
[0003]
[Problems to be solved by the invention]
However, the mirror surface finishing process is expensive, and in order to perform the mirror surface finishing, it is necessary to quench the bearing surface 23 before the mirror surface finishing. There is a problem in that there are restrictions on the material constituting the.
[0004]
Further, when the structure of the hydrodynamic bearing is complicated, there is also a problem that it is difficult to give a mirror finish to the bearing surface.
[0005]
Accordingly, an object of the present invention is to provide a hydrodynamic bearing capable of improving the flatness of a bearing surface in which grooves are not formed at a relatively low cost without causing restrictions on materials and structures. There is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a dynamic pressure bearing according to the present invention has a rotating member and a fixing member that supports the rotating member, and generates dynamic pressure on one bearing surface of the rotating member or the fixing member. In the dynamic pressure bearing in which a groove is formed and a fluid for generating dynamic pressure is filled between the bearing surface of the rotating member and the bearing surface of the fixed member,
The surface layer including the other bearing surface of the rotating member or the fixed member is
Trapezoidal peaks and V-shaped valleys are alternately arranged, and the top surface of the trapezoidal mountain constitutes the bearing surface,
No groove for generating dynamic pressure is formed on the other bearing surface,
A fluid for generating dynamic pressure is stored in the V-shaped valley in the surface layer including the other bearing surface,
The surface layer including the other bearing surface is
By cutting the tip of the V-shaped peak on the surface layer in which the V-shaped peaks and the V-shaped valleys are alternately connected after turning, the V-shaped valleys are substantially It is characterized by being formed at regular intervals .
[0007]
[Action]
Dynamic pressure bearing of the above construction, the surface layer containing the rotary member or bearing surface and the other of the grooves for generating dynamic pressure is not formed in the fixing member, and the valleys of mountains and V-shaped trapezoidal alternating It has a shape. Then, the top surface of the mountain above Symbol trapezoidal constitutes the bearing surface.
[0008]
Therefore, the bearing surface of the present invention can be formed by cutting the top of the V-shaped ridges on the surface layer in which the V-shaped ridges and valleys are alternately connected after turning. . And the surface of the peak of the peak which became flat by cutting this V-shaped peak constitutes the bearing surface.
[0009]
Therefore, according to the present invention, since the flatness of the bearing surface can be increased without performing mirror finish, a bearing in which no groove is formed without causing restrictions on materials and structures. The flatness of the surface can be improved at a relatively low cost, and the dynamic pressure can be generated effectively.
[0010]
In the case of using a liquid as the fluid for generating dynamic pressure, because it is possible to store the liquid for generating dynamic pressure in the valley of the V-shape between the crests of the upper Symbol trapezoidal, improved lubricating performance Can be made.
[0011]
【Example】
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0012]
FIG. 1 shows an embodiment of the hydrodynamic bearing of the present invention. As shown in FIG. 1B, this embodiment includes a shaft 1 as a rotating member, and a cylindrical tube 2 as a fixed member facing the shaft 1. On the peripheral surface 1 a of the shaft 1, a dynamic pressure generating groove 3 is formed. On the inner peripheral surface 2 a of the cylinder 2, no dynamic pressure generating groove is formed. The depth of the groove 3 is about several μm. The space between the shaft 1 and the cylinder 2 is filled with oil (not shown) as a fluid for generating dynamic pressure.
[0013]
As shown in FIG. 1A, the surface layer S1 including the inner peripheral surface 2a of the cylinder 2 has a shape in which substantially trapezoidal peaks 5 and substantially V-shaped valleys 6 are alternately arranged. The top surface 5a of the substantially trapezoidal mountain 5 constitutes a bearing surface.
[0014]
When the shaft 1 rotates with respect to the cylinder 2, the dynamic pressure bearing configured as described above has a dynamic pressure generating groove 3 formed on the shaft 1 with the peripheral surface 1 a of the shaft 1 and the inner peripheral surface 2 a of the tube 2. Dynamic pressure is generated in the oil between the shaft 1 and the shaft 1 is supported with respect to the tube 2, and the distance between the shaft 1 and the tube 2 is maintained at a predetermined size.
[0015]
The surface layer S1 of the cylinder 2 has a shape in which substantially trapezoidal peaks 5 and substantially V-shaped valleys 6 are alternately arranged along the bearing surface 2a. The top surface 5a of the substantially trapezoidal mountain 5 constitutes the bearing surface 2a.
[0016]
Therefore, the bearing surface 2a of the above embodiment has the V-shaped ridge 50 with respect to the surface layer in which the V-shaped ridges 50 and the V-shaped valleys 60 after the turning are alternately connected. It can be formed by scraping the tip 50a. As a method for cutting the tip 50a, lapping or barrel processing may be used.
[0017]
Therefore, according to this embodiment, the flatness of the bearing surface 2a can be increased without performing a mirror finish, so that the flatness of the bearing surface 2a can be achieved without causing restrictions on materials or structures. The degree of pressure can be improved, and dynamic pressure can be generated effectively. Moreover, since mirror surface processing is unnecessary, cost reduction can be achieved.
[0018]
In addition, since oil can be stored in the valley 6 between the peaks 5, the lubricating performance can be improved.
[0019]
Here, when the diameter of the hydrodynamic bearing is 2.5 mm, the performance comparison results between the hydrodynamic bearing of the above example and the conventional mirror-finished hydrodynamic bearing shown in FIG. 2 are shown in the following table. .
[0020]
[Shaft runout] [Rotational torque]
Example 1 1 μm or less 1.8 gcm
Conventional example (mirror finish) 1 μm or less 1.8 gcm
[0021]
In the above embodiment, the dynamic pressure generating groove 3 is formed on the peripheral surface 1a of the shaft 1, and the inner peripheral surface 2a of the cylinder 2 is a bearing surface on which no dynamic pressure generating groove is formed. While the dynamic pressure generating groove is formed on the inner peripheral surface of the shaft 1, the peripheral surface 1a of the shaft 1 may be a bearing surface on which no dynamic pressure generating groove is formed.
[0022]
Furthermore, although the example applied to the radial bearing is shown in the above embodiment, the present invention can also be applied to an axial dynamic pressure bearing and a dynamic pressure bearing that supports a rotating body in both radial and axial directions.
[0023]
In the above embodiment, the shaft 1 is a rotating member and the tube 2 is a fixed member. However, the shaft 1 may be a fixed member and the tube 2 may be a rotating member.
[0024]
【The invention's effect】
As is clear from the above, the hydrodynamic bearing of the present invention has a surface layer including a bearing surface on which the dynamic pressure generating groove of the rotating member or the fixed member is not formed as a trapezoidal peak. V-shaped valleys are alternately arranged, the V-shaped valleys are formed at substantially constant intervals, and the top surface of the trapezoidal mountain forms the bearing surface. It is what.
[0025]
Therefore, according to the hydrodynamic bearing of the present invention, the bearing surface cuts the top of the V-shaped peak with respect to the surface layer in which the V-shaped peaks and valleys are alternately connected after cutting. Can be formed. And the surface of the peak of the peak which became flat by cutting this V-shaped peak constitutes a bearing surface.
[0026]
Therefore, according to the present invention, it is possible to increase the flatness of the bearing surface after cutting without performing mirror finish, so that the groove is formed without causing restrictions on materials or structures. It is possible to improve the flatness of the non-bearing surface at a relatively low cost, and to effectively generate dynamic pressure.
[0027]
In addition, when a liquid is used as the fluid for generating dynamic pressure, the fluid for generating dynamic pressure can be stored in a substantially V-shaped valley between the substantially trapezoidal peaks. Can be improved.
[Brief description of the drawings]
FIG. 1 (A) is a cross-sectional view of an essential part of an embodiment of a hydrodynamic bearing according to the present invention, and FIG. 1 (B) is a partially cutaway cross-sectional view of the embodiment.
FIG. 2 (A) is a cross-sectional view of a main part of a conventional dynamic pressure bearing, and FIG. 2 (B) is a partially cut-away cross-sectional view of the conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Shaft, 1a ... Circumferential surface, 2 ... Tube, 3 ... Groove for generating dynamic pressure, 5 ... Mountain
5a ... top surface, 6 ... valley, S1 ... surface layer.

Claims (1)

回転部材と、この回転部材を支持する固定部材とを有し、上記回転部材もしくは固定部材の一方の軸受面に、動圧発生用の溝が形成されており、上記回転部材の軸受面と上記固定部材の軸受面との間に動圧発生用の流体が充填されている動圧軸受において、
上記回転部材もしくは固定部材の他方の軸受面を含む表層は、
台形状の山とV字形状の谷とが交互に並んだ形状になっており、上記台形状の山の頂上の面が上記軸受面を構成しており、
上記他方の軸受面には動圧発生用の溝が形成されておらず、
上記他方の軸受面を含む表層の上記V字形状の谷に動圧発生用の液体を溜めるようになっていて、
上記他方の軸受面を含む表層は、
旋削加工後のV字形状の山とV字形状の谷とが交互に連なった形状の表層に対して、上記V字形状の山の先端部を削ることによって、上記V字形状の谷が略一定の間隔で形成されていることを特徴とする動圧軸受。
A rotating member and a fixing member that supports the rotating member, and a groove for generating dynamic pressure is formed on one of the bearing surfaces of the rotating member or the fixing member. In the dynamic pressure bearing in which the fluid for generating dynamic pressure is filled between the bearing surface of the fixed member,
The surface layer including the other bearing surface of the rotating member or the fixed member is
Trapezoidal peaks and V-shaped valleys are alternately arranged, and the top surface of the trapezoidal mountain constitutes the bearing surface,
No groove for generating dynamic pressure is formed on the other bearing surface,
A fluid for generating dynamic pressure is stored in the V-shaped valley in the surface layer including the other bearing surface,
The surface layer including the other bearing surface is
By cutting the tip of the V-shaped peak on the surface layer in which the V-shaped peaks and the V-shaped valleys are alternately connected after turning , the V-shaped valleys are substantially A hydrodynamic bearing characterized by being formed at regular intervals .
JP25799494A 1994-10-24 1994-10-24 Hydrodynamic bearing Expired - Fee Related JP3767701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25799494A JP3767701B2 (en) 1994-10-24 1994-10-24 Hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25799494A JP3767701B2 (en) 1994-10-24 1994-10-24 Hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JPH08121466A JPH08121466A (en) 1996-05-14
JP3767701B2 true JP3767701B2 (en) 2006-04-19

Family

ID=17314066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25799494A Expired - Fee Related JP3767701B2 (en) 1994-10-24 1994-10-24 Hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP3767701B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522612A1 (en) * 2019-05-29 2020-12-15 Miba Gleitlager Austria Gmbh Method for manufacturing a multilayer plain bearing

Also Published As

Publication number Publication date
JPH08121466A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
JP2902262B2 (en) Hydrodynamic bearing
KR910010080A (en) Dynamic Pressure Fluid Bearings
JPH05256371A (en) Rotary shaft lip seal
KR860000489A (en) Bearing system with two opposed hydraulic bearings
JP3767701B2 (en) Hydrodynamic bearing
JP2000346056A (en) Thrust dynamic pressure bearing
US5997180A (en) Circumferential flow type dynamic pressure bearing
JPH0525021U (en) Hydrodynamic bearing
US3118711A (en) Bearing retaining sleeve
KR100524431B1 (en) Dynamic pressure bearing apparatus
JPH1068418A (en) Sintered oil implegnated dynamic pressure bearing
JPH0211616Y2 (en)
JPS61201917A (en) Floating bush bearing
KR960034780A (en) Spindle unit and how to assemble it
KR980009986A (en) Fluid Bearings With Spacers
JPS6224059Y2 (en)
JPH0228272Y2 (en)
JP2001200846A (en) Dynamical pressure bearing body
KR100242017B1 (en) Journal bearing device
JP3845972B2 (en) Hydrodynamic bearing device
JPS6150207A (en) Cylinder device for fluid bearing
JP2738746B2 (en) Rolling bearing
JPS5834684B2 (en) Multi-arc sliding bearing device
JPS6318827Y2 (en)
RU2041408C1 (en) Piston

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees