JP3767112B2 - Secondary battery charging control method and charging device therefor - Google Patents

Secondary battery charging control method and charging device therefor Download PDF

Info

Publication number
JP3767112B2
JP3767112B2 JP24809297A JP24809297A JP3767112B2 JP 3767112 B2 JP3767112 B2 JP 3767112B2 JP 24809297 A JP24809297 A JP 24809297A JP 24809297 A JP24809297 A JP 24809297A JP 3767112 B2 JP3767112 B2 JP 3767112B2
Authority
JP
Japan
Prior art keywords
secondary battery
charging
voltage
battery
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24809297A
Other languages
Japanese (ja)
Other versions
JPH1189109A (en
Inventor
恒夫 佐藤
俊治 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP24809297A priority Critical patent/JP3767112B2/en
Publication of JPH1189109A publication Critical patent/JPH1189109A/en
Application granted granted Critical
Publication of JP3767112B2 publication Critical patent/JP3767112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池を充電する二次電池の充電制御方法およびその充電装置に係り、たとえば、リチウムイオン電池、ニッケルカドミウム電池およびニッケル水素電池などの二次電池を充電する二次電池の充電制御方法およびその充電装置に関するものである。
【0002】
【従来の技術】
近年、携帯電話、ノート型パソコンおよびディジタルカメラ等の電子機器の小型・軽量化が進み、それらの普及に伴って、電子機器を駆動する電源として、繰り返し充放電することが可能な二次電池が用いられる機会が多くなってきた。このような二次電池としては、たとえばニッケルカドミウム(Ni-Cd) 電池、ニッケル水素(Ni-MH) 電池およびリチウムイオン電池などが知られている。たとえば、リチウムイオン二次電池は、水溶系の電解液を用いて水が関与した電気化学反応によって電気を作る他の二次電池とは異なって、たとえば電解質にリチウム塩の有機溶媒を使用した非水系二次電池であり、リチウムイオンの移動による酸化還元反応によって電気を起こすように構成されている。このような非水系二次電池では、他の二次電池と比べて、単一のセルでの電池端子間電圧が高く、高容量および高出力であるという利点を有し、その非水系二次電池自体の性能のアップと、非水系二次電池をさらに有効に利用するための充電方法が検討されている。
【0003】
たとえば、従来では、二次電池を充電する充電ラインのプラス側に充電電流を高精度に検出するための充電電流測定抵抗を直列に挿入し、この電流測定抵抗の両端で発生する電圧をアンプで増幅し、増幅された値から現在の充電電流を推定して、推定された充電電流と満充電を判断する電流値との比較によって、リチウムイオン二次電池が満充電かどうかを判断していた。
【0004】
【発明が解決しようとする課題】
しかしながら従来の充電装置では、充電電流の大小を検出して満充電かどうかを判断していたので、この充電電流を検出する高精度な充電電流測定用抵抗が必要であった。充電電流測定用抵抗としては、抵抗値がたとえば0.1 オームでその精度が±0.5 %のものが要求される。また、この電流値を高精度に認識するために、充電電流値を増幅する高精度なアンプ等が必要となって、このため部品実相面積の増大を引き起こし、充電装置をさらに小型化することが困難であった。また、充電電流を検出する回路は高精度なものが要求されるので、この結果、コストアップの要因となって、簡便な構成にて充電装置を構築することが困難であった。
【0005】
本発明はこのような従来技術の欠点を解消し、簡便な構成にて二次電池の満充電を正確に検出し、充電制御を確実に行なうことのできる二次電池の充電制御方法およびその充電装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上述の課題を解決するために、二次電池を充電する二次電池の充電制御方法において、この方法は、二次電池の電池電圧と、二次電池に直列に接続されて回路グランドに接続される電流設定抵抗であって二次電池に対する電流値を設定する電流設定抵抗の電圧とを加算した第1の電圧を検出し、二次電池を充電する充電時の第1の電圧が変化することを検出し、検出された電圧変化に基づいて、二次電池が満充電の状態であるか否かを判断し、判断結果に従って二次電池に対する充電を制御することを特徴とする。
【0007】
この場合、第1の電圧が最大値から下降する電圧変化を、二次電池の満充電を判断する所定の値と比較して検出するとよい。
【0008】
また、第1の電圧と、二次電池を充電する充電経路に直列に接続されて追加された追加抵抗の電圧とを加算した第2の電圧を検出し、充電中の第2の電圧の電圧変化に基づいて二次電池に対する充電を制御するとよい。
【0009】
この場合、第1の電圧が最大値から下降する電圧変化を、二次電池の満充電を判断する所定の値と比較して検出するとよい。
【0010】
また、所定の値は、二次電池の種類に応じて選択されるとよい。
【0011】
また、二次電池に対する充電処理は、定電流−定電圧充電方式にて二次電池を充電し、定電圧充電の際に二次電池が満充電であるか否かを判断するとよい。
【0012】
また、この方法は、二次電池の種類を識別するスイッチの状態に応じて、二次電池の種類を判別し、二次電池がリチウムイオン二次電池であると判別したときには、電圧変化を検出した後、一定の時間充電を継続してから充電を終了するとよい。
【0013】
この場合、スイッチの状態に応じて二次電池がリチウムイオン二次電池以外の他の二次電池であると判別したときには、電圧変化を検出すると直ちに充電を終了するとよい。
【0014】
また、一定の時間は、二次電池の構成に応じた時間が選択されるとよい。
【0015】
この方法は、充電時の電圧が最大から下降に向かう電圧変化を検出するとよい。
【0016】
また、本発明は上述の課題を解決するために、二次電池を充電する二次電池の充電装置において、この装置は、二次電池を充電する直流電源を制御信号に応じて二次電池に接続および遮断する充電スイッチと、充電スイッチをオン/ オフさせる制御信号を生成して、二次電池に対する充電を制御する充電手段と、二次電池に直列に接続されて二次電池に対する電流値を設定する電流設定抵抗と、電流設定抵抗の電圧と二次電池の電池電圧とを加算した第1の電圧を検出して、二次電池の満充電を判断する制御手段とを含み、制御手段は、二次電池を充電する充電時の第1の電圧が変化することを検出し、検出された電圧変化に基づいて、二次電池に対する充電を制御するることを特徴とする。
【0017】
この場合、この装置は、二次電池を充電する充電経路に直列に接続されて追加された追加抵抗を含み、制御手段は、電池電圧と、電流設定抵抗の電圧と、追加抵抗の電圧とを加算した第2の電圧を検出するとよい。
【0018】
また、制御手段は、電圧変化を、二次電池の満充電を判断する所定の値と比較して検出するとよい。
【0019】
この場合、制御手段は、二次電池の種類に応じて所定の値を選択するとよい。
【0020】
また、充電手段は、定電流−定電圧充電方式にて二次電池を充電する充電処理を行ない、制御手段は、定電圧充電の際に二次電池が満充電か否かを判断するとよい。
【0021】
また、この装置は、二次電池の種類を識別するスイッチを含み、制御手段は、スイッチの状態に応じて、二次電池の種類を判別し、二次電池がリチウムイオン二次電池であると判別したときには、電圧変化を検出した後、一定の時間充電を継続してから充電を終了させるとよい。
【0022】
この場合、制御手段は、スイッチの状態に応じて二次電池がリチウムイオン二次電池以外の他の二次電池であると判別したときには、電圧変化を検出すると直ちに充電を終了させるとよい。
【0023】
この場合、他の二次電池はニッケルカドミウム電池であるとよい。
【0024】
また、他の二次電池はニッケル水素電池であるとよい。
【0025】
また、制御手段は、二次電池の構成に応じた一定の時間を選択し、選択された一定の時間の経過後に充電を終了させるとよい。
【0026】
また、制御手段は、充電時の電圧が最大から下降に向かう電圧変化を検出するとよい。
【0027】
【発明の実施の形態】
次に添付図面を参照して本発明による二次電池の充電制御方法およびその充電制御装置の実施例を詳細に説明する。
【0028】
図1を参照すると本発明が適用された充電装置の一実施例が示されている。この充電装置10は、ACアダプタ12から供給される直流電源出力を受けて、出力端子100a,100b に着脱可能に接続されるバッテリ14を充電し、その際、バッテリ14の満充電状態を確実に検出して、充電処理終了などの充電制御を行なうように構成された充電装置である。なお、以下の説明において本発明に直接関係のない部分は、図示およびその説明を省略し、また、信号の参照符号はその現われる接続線の参照番号で表わす。
【0029】
ACアダプタ12は、たとえば、100 ボルトの商用交流電源を102a,102b に入力してこれを整流および平滑し、バッテリ14を充電するための直流電源を出力端子104a,104b 間に出力する直流電源装置である。この直流電源出力は、充電器10内部の各回路に接続され、各回路を駆動させる機能を有するが、その構成については説明を省略する。
【0030】
充電器10のプラス側の端子104aは、電流逆流防止用のダイオード16を直列に接続して制御FET18 のソース106 に接続されている。また、ACアダプタ12のマイナス側が接続される端子104bは、充電器10のグランド(AC-GND)に接続されている。制御FET18 のゲート108 には充電IC20の充電制御出力(EXT) が接続され、制御FET18 は、ゲート電位のハイ(Hi)・ロウ(Low) に応じてソース106 −ドレイン120 間を遮断または接続して、ACアダプタ12の直流出力を端子100aに供給する充電スイッチ機能を有する。また、制御FET18 のドレイン120 は、充電IC20の電池電圧検出入力(CEL) とコントローラ22の電圧検出入力(A/D) とにそれぞれ接続されている。
【0031】
一方、充電器10の端子100bは、充電IC20の電圧検出入力(CS)に接続されるとともに、定電流充電における電流値を設定する電流設定抵抗(R1)24を直列に接続して充電器10のグランド(AC-GND)に接続され、グランド(AC-GND)は、さらに充電IC20およびコントローラ22にそれぞれ接続されている。したがって、充電電流は、ACアダプタ12(端子104a)からダイオード16、制御FET18 、バッテリ24、電流設定抵抗(R1)24、グランド(AC-GND)の経路を通り、バッテリ14のマイナス側が接続される端子100bはグランド(AC-GND)には直接接続されていない。
【0032】
充電IC20は、充電FET18 のソース−ドレイン間をオン・オフさせる制御信号(EXT) をそのゲートに与えて、バッテリ14に印加される電圧および電流を制御する集積回路である。本実施例における充電IC20は、電池電圧検出入力(CEL) −電圧検出入力(CS)間に現われるバッテリ14の端子電圧を検出する機能を有し、たとえば、この電圧値によって、バッテリ14が充電可能な電圧を生成している正常状態かどうかを判断し、不良と判断した場合には充電を開始しないように制御する。この端子電圧は制御FET18 のソース−ドレイン間がオフ状態にされてるときに測定される。また、充電IC20は、満充電状態を表わす充電制御信号122 が入力されると、制御FET18 をオフ状態に制御してバッテリ14に対する充電を停止させる機能を有している。この充電制御信号122 は、コントローラ22から供給され、コントローラ22は、バッテリ14に接続される端子104a−グランド(AC-GND)間の電圧を検出し、この電圧値の変化に応じて、バッテリ14に対する充電を制御する制御回路である。
【0033】
コントローラ22は、図2に示すように、電圧検出入力(A/D) に印加される電圧値が最大から下降に移ることをその変化の度合いに応じて検出すると、バッテリ14に対する充電が進んで定電流充電から定電圧充電に切り替わったと判断し、次にバッテリ14が満充電状態と判断すると、これを表わす充電制御信号を充電IC20の入力(SW1) に供給して充電処理を停止させる充電制御回路である。なお、同図において、曲線200 は電圧入力(A/D) に印加される電圧値の変化を示し、曲線202 は電池電圧の変化を示し、また、破線204 は充電電流の変化を示す。また、一点鎖線206 は、従来技術において満充電を充電電流で判断した場合の充電電流による満充電判定ラインを参考に示している。
【0034】
本実施例におけるコントローラ22は、電圧検出入力(A/D) に印加される電圧値の変化に応じて充電IC20の定電圧充電状態を判断し、バッテリ14の電池の種類、つまりステータススイッチ30の状態に応じた充電制御を行なう機能を有する。さらにコントローラ22は、この電圧検出入力(A/D) の電圧値に応じてバッテリ14の満充電状態を判定し、その結果に従って充電を終了させる満充電処理機能を有する。またコントローラ22は、端子100 に接続されたバッテリ14がすでに満充電状態であるかどうかを判定する機能を有し、バッテリ14が満充電ではない場合に制御FET18 をオンさせて充電を開始させる。
【0035】
バッテリ14は、一つの電池セルまたは複数の電池セルが直列および(または)並列に接続され所定のケースに収納されたリチウムイオン二次電池を含む電池パックである。この電池パックは、過充電および過放電などから電池セルを保護する保護回路を有している。本実施例では一例としてリチウムイオン二次電池をあげたが、これに限らずニッケルカドミウム二次電池やニッケル水素電池などの他の二次電池が電池パックに採用されてもよく、この場合、コントローラ22に接続させる電池種類切り替えのためのステータススイッチ30のオン・オフ状態に応じて、充電処理制御が切り換えられる。なお、このスイッチ30は、手操作もしくはメカニカルなスイッチに限らず、たとえばバッテリ14が収容された二次電池の種類を、バッテリ14が充電器10に装着されて変化する電気・磁気、光等の結合状態に応じて検出してもよい。
【0036】
二次電池の基本構成を図3に示すと、二次電池の内部は、電池電圧[V1]を生成する電池Eを有する。この二次電池Eには充電電流[i] が正極から負極側へと供給されて充電される。そして、充電電流が流れている充電中の充電電圧、つまり、図1における端子100a−グランド(AC-GND)間の電圧[V] は、電池電圧[V1]と、電流設定抵抗電圧[i×R1] とを加えた値となる。なお、この図において電池内部抵抗に関わる電圧は省略されている。
【0037】
【数1】

Figure 0003767112
したがって、コントローラ22の電圧検出入力(A/D) では、電池電圧[V1]と、電流設定用抵抗電圧[i×R1] =[V2] とを加えた値[V] が検出される。
【0038】
【数2】
[V] =[V1]+[V2]
ここで、図2に示した定電流充電が進行して定電圧充電状態となると、充電電流[i] が減少し、電流設定抵抗電圧の電圧[V2]が降下し、充電電圧も降下する。そして電圧検出入力(A/D) にて検出される電圧が最大値から微小な所定の値[k] だけ下がったこと、つまり[-ΔV]が検出されると、コントローラ22は、充電電圧降下[-ΔV]があって定電流充電から定電圧充電に切り替わったと判断し、バッテリ14の電池種類に応じた適切な充電制御を行なう。なお、図示のように、コントローラ22にて検出される電圧値は、本実施例では定電流充電および定電圧充電ともに、電池の端子電圧に抵抗R1の電圧が加算された値となっている。充電制御を行なうコントローラ22は、ステータススイッチ30の状態がリチウムイオン二次電池を示している場合に、電圧降下[-ΔV]が検出されると、バッテリ14の種別や容量などの種類に応じた残りの定電圧充電時間を選択および設定してこれを計時し、この設定時間が経過するとこの電池が満充電であると判断して充電を終了させる充電制御を行なう。また、コントローラ22は、スイッチ30の状態がニッケルカドミウム電池やニッケル水素電池を示している場合に、電圧降下[-ΔV]の検出によって二次電池が満充電であると判断して充電を直ちに終了させる充電制御を行なう。
【0039】
コントローラ22は、このため、電圧入力(A/D) に印加されるアナログの電圧値をディジタル値に変換してこれら電圧の変化を記憶し、電圧[V] の最大値から下降に向かう変化の値が所定の値[k] と等しくなったことを検出すると、バッテリ14の種類に応じて、充電処理を直ちにもしくは所定の時間の経過後に終了させる満充電処理を行なう。この値[k] は満充電を判断する値であり、バッテリ14の二次電池の種類などの構成に応じて適切な値に設定される。
【0040】
このように本実施例では、電流設定用抵抗の電圧[V2]を含めた充電電圧[V] の微小降下[-ΔV]検出方式によって充電を制御するように構成されているが、このほかに、たとえば、充電電圧の最大値近傍における電圧値の変化を検出するものでもよい。
【0041】
以上のような構成で、本実施例における充電装置10の動作を図4を参照して以下に説明する。
【0042】
本実施例における充電装置10は、充電の開始から充電電圧がピークとなるまで定電流充電が行なわれ、その後、定電圧充電に移行してバッテリ14を充電するように、充電IC20の制御に応じて充電処理が行なわれる。この定電圧充電処理では、コントローラ22から充電制御信号が出力され、充電IC20の出力108 により制御FET18 がオン状態に制御される。制御FET18 がオン状態となると、ACアダプタ12からの充電電流がバッテリ14に順次供給されて定電圧充電が継続される。
【0043】
ステップ400 において、この定電圧充電中にコントローラ22の電圧検出端子(A/D) に印加される電圧値が検出されてディジタル値にて認識される。続くステップ402 に進むと、電圧降下[-ΔV]が発生したか否かがコントローラ22にて判定され、まだ[-ΔV]が発生していない場合にはステップ400 に戻り、[-ΔV]の発生が検出された場合には、ステップ404 に進む。
【0044】
電圧降下[-ΔV]が検出されたステップ404 では、端子100 に接続された充電中のバッテリ14の種類がスイッチ30の接続状態によって認識され、バッテリ14がリチウムイオン二次電池を有するものである場合にはステップ406 に進み、それ以外の場合にはステップ410 に進んで充電処理が終了される。リチウムイオン二次電池を充電中である場合のステップ406 に進むと、この定電圧充電中において残りの定電圧充電時間を計時する時間がタイマに設定されて計時が開始される。そしてステップ408 に進み、設定された時間が経過したかどうかが判定されて、設定時間が経過していない場合にはステップ406 に戻ってその計時が継続される。設定時間が経過するとステップ410 に進んでバッテリ14が満充電となったとして充電を停止させる充電制御信号が充電IC20に供給され、制御FET18 がオフ状態に制御されて充電が終了される。このようにして、充電電流を直接検出することなしで二次電池の満充電が判断され、バッテリ14に対する充電処理が確実に行なわれた。
【0045】
次に、本発明が適用された他の実施例を図6を参照して説明する。同図には図1に示した充電装置10の応用例の充電装置60が示されている。
【0046】
この実施例における充電装置60は、制御FET18 のドレインと端子100aの間に追加抵抗R3が直列に接続されている点が図1に示した充電装置10と異なり、その他の部分は充電装置10と同じ構成でよい。
【0047】
本実施例における二次電池の基本原理構成を図7に示す。二次電池の内部は、電池電圧[V1]を生成する電池Eを有し、充電電流[i] が流れている充電中の充電電圧、つまり、図6における端子100a−グランド(AC-GND)間の電圧[V] は、追加抵抗抵抗電圧[V3]=[i×R3] と、電池電圧[V1]と、電流設定抵抗電圧[V2]=[i×R1] とを加えた値となり、これがコントローラ22の電圧検出入力(A/D) に印加されて検出される。したがって、本実施例では、コントローラ22にて検出される電圧値が[V3]の分だけ大きくなって、定電圧充電時の充電電流変化に伴って変化する充電電圧の変化が大きくなって、コントローラ22は、電圧降下[-ΔV]を容易に検出することができ、バッテリ14の満充電を確実に検出し、満充電にて充電を停止することができる。
【0048】
以上説明したように、上記実施例では、従来において用いられているような満充電を判断するための充電電流を検出するアンプなどの高精度な電流検出回路が不要であり、低コストでかつ簡便な構成で満充電を確実に検出して充電を制御することのできる充電装置が提供される。また、同様の回路構成で、リチウムイオン二次電池だけではなく、ニッケルカドミウム電池およびニッケル水素電池などの様々な種類の二次電池を充電することができ、汎用性に優れた充電装置が構成される。
【0049】
【発明の効果】
このように本発明によれば、充電電流を検出する電流検出回路が不要となって、簡便な構成にて、二次電池の満充電を検出することができ、二次電池を確実に満充電させることのできる二次電池の充電制御方法およびその充電装置が提供され、また、他種類の二次電池に対して用いることができ汎用性がすぐれている。
【図面の簡単な説明】
【図1】本発明が適用された充電装置の一実施例を示すブロック図である。
【図2】定電流充電/定電圧充電時の充電電圧と充電電流との関係を示す図である。
【図3】本発明の原理構成を説明するための図である。
【図4】図1に示した実施例の動作を示すフローチャートである。
【図5】リチウムイオン二次電池および他の二次電池の充電電圧の変化と微小電圧降下[-ΔV]を示すグラフである。
【図6】本発明が適用された充電装置の他の実施例を示すブロック図である。
【図7】図6に示した実施例における原理構成を示す図である。
【符号の説明】
10 充電装置
12 ACアダプタ
14 バッテリ
18 制御FET
20 充電IC
22 コントローラ
24 電流設定用抵抗(R1)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery charge control method for charging a secondary battery and a charging device thereof, for example, charging a secondary battery such as a lithium ion battery, a nickel cadmium battery, and a nickel metal hydride battery. The present invention relates to a control method and a charging device thereof.
[0002]
[Prior art]
In recent years, electronic devices such as mobile phones, notebook computers, and digital cameras have become smaller and lighter, and with the spread of such devices, secondary batteries that can be repeatedly charged and discharged have been used as power sources for driving electronic devices. Opportunities have been increased. As such secondary batteries, for example, nickel cadmium (Ni—Cd) batteries, nickel metal hydride (Ni—MH) batteries, and lithium ion batteries are known. For example, a lithium ion secondary battery is different from other secondary batteries that produce electricity by an electrochemical reaction involving water using an aqueous electrolyte solution. For example, a lithium ion secondary battery uses a lithium salt organic solvent as an electrolyte. It is a water-based secondary battery, and is configured to generate electricity by an oxidation-reduction reaction caused by movement of lithium ions. Such a non-aqueous secondary battery has the advantage that the voltage between the battery terminals in a single cell is higher than other secondary batteries, and has a high capacity and high output. A battery charging method for improving the performance of the battery itself and using the non-aqueous secondary battery more effectively has been studied.
[0003]
For example, conventionally, a charging current measurement resistor for detecting the charging current with high accuracy is inserted in series on the positive side of the charging line for charging the secondary battery, and the voltage generated at both ends of this current measuring resistor is connected by an amplifier. Amplifying and estimating the current charging current from the amplified value, and comparing the estimated charging current and the current value to determine full charge, it was determined whether the lithium ion secondary battery is fully charged .
[0004]
[Problems to be solved by the invention]
However, in the conventional charging device, since the magnitude of the charging current is detected to determine whether or not the battery is fully charged, a highly accurate charging current measuring resistor for detecting this charging current is required. The charging current measuring resistor is required to have a resistance value of, for example, 0.1 ohm and an accuracy of ± 0.5%. In addition, in order to recognize this current value with high accuracy, a high-precision amplifier or the like that amplifies the charging current value is required, which causes an increase in the actual phase area of the component and further reduces the size of the charging device. It was difficult. In addition, since a circuit for detecting the charging current is required to have a high accuracy, it is difficult to construct a charging device with a simple configuration as a result of an increase in cost.
[0005]
The present invention eliminates the drawbacks of the prior art, accurately detects the full charge of the secondary battery with a simple configuration, and reliably controls the charge of the secondary battery, and its charging An object is to provide an apparatus.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a secondary battery charge control method for charging a secondary battery, which includes a battery voltage of the secondary battery and a circuit ground connected in series to the secondary battery. And detecting a first voltage obtained by adding a voltage of a current setting resistor that sets a current value for the secondary battery, and charging the secondary battery to obtain a first voltage during charging. It is characterized by detecting a change, determining whether or not the secondary battery is fully charged based on the detected voltage change, and controlling charging of the secondary battery according to the determination result.
[0007]
In this case, the voltage change at which the first voltage drops from the maximum value may be detected by comparison with a predetermined value for determining whether the secondary battery is fully charged.
[0008]
Further, a second voltage obtained by adding the first voltage and the voltage of the additional resistor connected in series to the charging path for charging the secondary battery is detected, and the voltage of the second voltage being charged is detected. The charging of the secondary battery may be controlled based on the change.
[0009]
In this case, the voltage change at which the first voltage drops from the maximum value may be detected by comparison with a predetermined value for determining whether the secondary battery is fully charged.
[0010]
The predetermined value may be selected according to the type of secondary battery.
[0011]
In addition, the charging process for the secondary battery may be performed by charging the secondary battery by a constant current-constant voltage charging method and determining whether the secondary battery is fully charged during the constant voltage charging.
[0012]
This method also determines the type of secondary battery according to the state of the switch that identifies the type of secondary battery, and detects a change in voltage when it is determined that the secondary battery is a lithium ion secondary battery. After that, the charging may be terminated after the charging is continued for a certain time.
[0013]
In this case, when it is determined that the secondary battery is a secondary battery other than the lithium ion secondary battery according to the state of the switch, the charging may be terminated as soon as a voltage change is detected.
[0014]
Further, the certain time may be selected according to the configuration of the secondary battery.
[0015]
In this method, it is preferable to detect a voltage change in which the voltage at the time of charging decreases from the maximum.
[0016]
Moreover, in order to solve the above-mentioned problem, the present invention provides a secondary battery charging device for charging a secondary battery. This device uses a DC power source for charging the secondary battery as a secondary battery according to a control signal. A charging switch for connecting and disconnecting, a charging signal for controlling charging for the secondary battery by generating a control signal for turning on / off the charging switch, and a current value for the secondary battery connected in series to the secondary battery. A current setting resistor to be set; and a control unit that detects a first voltage obtained by adding the voltage of the current setting resistor and the battery voltage of the secondary battery and determines whether the secondary battery is fully charged. The first voltage during charging for charging the secondary battery is detected to change, and the charging to the secondary battery is controlled based on the detected voltage change.
[0017]
In this case, the device includes an additional resistor connected in series to a charging path for charging the secondary battery, and the control means includes the battery voltage, the voltage of the current setting resistor, and the voltage of the additional resistor. It is preferable to detect the added second voltage.
[0018]
Further, the control means may detect the voltage change by comparing with a predetermined value for determining whether the secondary battery is fully charged.
[0019]
In this case, the control means may select a predetermined value according to the type of secondary battery.
[0020]
Further, the charging means may perform a charging process for charging the secondary battery by a constant current-constant voltage charging method, and the control means may determine whether or not the secondary battery is fully charged during the constant voltage charging.
[0021]
Further, this device includes a switch for identifying the type of the secondary battery, the control means determines the type of the secondary battery according to the state of the switch, and the secondary battery is a lithium ion secondary battery. When it is determined, after detecting the voltage change, the charging may be terminated after the charging is continued for a certain time.
[0022]
In this case, when it is determined that the secondary battery is a secondary battery other than the lithium ion secondary battery according to the state of the switch, the control means may terminate charging immediately upon detecting a voltage change.
[0023]
In this case, the other secondary battery may be a nickel cadmium battery.
[0024]
The other secondary battery may be a nickel metal hydride battery.
[0025]
In addition, the control means may select a certain time according to the configuration of the secondary battery, and terminate the charging after the lapse of the selected certain time.
[0026]
The control means may detect a voltage change in which the voltage at the time of charging decreases from the maximum.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a secondary battery charge control method and charge control apparatus according to the present invention will now be described in detail with reference to the accompanying drawings.
[0028]
FIG. 1 shows an embodiment of a charging apparatus to which the present invention is applied. The charging device 10 receives the DC power output supplied from the AC adapter 12 and charges the battery 14 that is detachably connected to the output terminals 100a and 100b. At this time, the battery 14 is surely fully charged. The charging device is configured to detect and perform charging control such as completion of the charging process. In the following description, portions that are not directly related to the present invention are not shown and described, and the reference numerals of the signals are represented by the reference numbers of the connecting lines that appear.
[0029]
The AC adapter 12 is, for example, a DC power supply device that inputs a 100-volt commercial AC power supply to the 102a and 102b, rectifies and smoothes the same, and outputs a DC power supply for charging the battery 14 between the output terminals 104a and 104b. It is. The DC power supply output is connected to each circuit inside the charger 10 and has a function of driving each circuit, but the description of the configuration is omitted.
[0030]
The positive terminal 104a of the charger 10 is connected to the source 106 of the control FET 18 by connecting a diode 16 for preventing current backflow in series. The terminal 104b to which the negative side of the AC adapter 12 is connected is connected to the ground (AC-GND) of the charger 10. The charge control output (EXT) of the charging IC 20 is connected to the gate 108 of the control FET 18, and the control FET 18 cuts off or connects between the source 106 and the drain 120 depending on whether the gate potential is high (Hi) or low (Low). Thus, it has a charge switch function for supplying the DC output of the AC adapter 12 to the terminal 100a. The drain 120 of the control FET 18 is connected to the battery voltage detection input (CEL) of the charging IC 20 and the voltage detection input (A / D) of the controller 22, respectively.
[0031]
On the other hand, the terminal 100b of the charger 10 is connected to the voltage detection input (CS) of the charging IC 20, and a current setting resistor (R1) 24 for setting a current value in constant current charging is connected in series to the charger 10 The ground (AC-GND) is further connected to the charging IC 20 and the controller 22, respectively. Therefore, the charging current passes through the path from the AC adapter 12 (terminal 104a) to the diode 16, the control FET 18, the battery 24, the current setting resistor (R1) 24, and the ground (AC-GND), and the negative side of the battery 14 is connected. The terminal 100b is not directly connected to the ground (AC-GND).
[0032]
The charging IC 20 is an integrated circuit that controls a voltage and a current applied to the battery 14 by applying a control signal (EXT) for turning on and off the source and drain of the charging FET 18 to the gate. The charging IC 20 in this embodiment has a function of detecting the terminal voltage of the battery 14 appearing between the battery voltage detection input (CEL) and the voltage detection input (CS). For example, the battery 14 can be charged by this voltage value. Whether or not a normal voltage is being generated is determined, and control is performed so that charging is not started when it is determined to be defective. This terminal voltage is measured when the source-drain of the control FET 18 is turned off . Also, charging IC20, when the charge control signal 122 representing the fully charged state is input, the control FET18 is controlled to the OFF state and has a function of stopping the charging of the battery 14. The charging control signal 122 is supplied from the controller 22, and the controller 22 detects a voltage between the terminal 104a connected to the battery 14 and the ground (AC-GND), and the battery 14 changes according to the change in the voltage value. It is a control circuit which controls charge with respect to.
[0033]
As shown in FIG. 2, when the controller 22 detects that the voltage value applied to the voltage detection input (A / D) shifts from the maximum to the lowering according to the degree of change, the charging of the battery 14 proceeds. Charge control that determines that switching from constant-current charging to constant-voltage charging is performed, and then determines that the battery 14 is fully charged, a charging control signal indicating this is supplied to the input (SW1) of the charging IC 20 to stop the charging process. Circuit. In the figure, a curve 200 shows a change in voltage value applied to the voltage input (A / D), a curve 202 shows a change in battery voltage, and a broken line 204 shows a change in charging current. A one-dot chain line 206 indicates a full charge determination line based on a charge current when full charge is determined based on the charge current in the prior art.
[0034]
The controller 22 in this embodiment determines the constant voltage charging state of the charging IC 20 according to the change in the voltage value applied to the voltage detection input (A / D), and the battery type of the battery 14, that is, the status switch 30 It has a function of performing charge control according to the state. Further, the controller 22 has a full charge processing function for determining the full charge state of the battery 14 according to the voltage value of the voltage detection input (A / D) and terminating the charge according to the result. The controller 22 has a function of determining whether or not the battery 14 connected to the terminal 100 is already fully charged. When the battery 14 is not fully charged, the controller 22 is turned on to start charging.
[0035]
The battery 14 is a battery pack including a lithium ion secondary battery in which one battery cell or a plurality of battery cells are connected in series and / or in parallel and stored in a predetermined case. This battery pack has a protection circuit that protects the battery cells from overcharge and overdischarge. In this embodiment, a lithium ion secondary battery is used as an example. However, the present invention is not limited to this, and other secondary batteries such as a nickel cadmium secondary battery and a nickel metal hydride battery may be used in the battery pack. The charging process control is switched according to the on / off state of the status switch 30 for switching the type of battery connected to the battery 22. Note that the switch 30 is not limited to a manual operation or a mechanical switch. For example, the type of the secondary battery in which the battery 14 is accommodated is changed to the electric / magnetic, light, etc. You may detect according to a coupling | bonding state.
[0036]
When the basic configuration of the secondary battery is shown in FIG. 3, the secondary battery includes a battery E that generates a battery voltage [V1]. The secondary battery E is charged by supplying a charging current [i] from the positive electrode to the negative electrode. The charging voltage during charging in which the charging current flows, that is, the voltage [V] between the terminal 100a and the ground (AC-GND) in FIG. 1 is the battery voltage [V1] and the current setting resistance voltage [i × R1] is added. In this figure, the voltage related to the battery internal resistance is omitted.
[0037]
[Expression 1]
Figure 0003767112
Therefore, the voltage detection input (A / D) of the controller 22 detects a value [V] obtained by adding the battery voltage [V1] and the current setting resistance voltage [i × R1] = [V2].
[0038]
[Expression 2]
[V] = [V1] + [V2]
Here, when the constant current charging shown in FIG. 2 proceeds and enters a constant voltage charging state, the charging current [i] decreases, the voltage [V2] of the current setting resistance voltage decreases, and the charging voltage also decreases. When the voltage detected at the voltage detection input (A / D) has decreased by a small predetermined value [k] from the maximum value, that is, when [−ΔV] is detected, the controller 22 It is determined that there is [−ΔV] and the constant current charging is switched to the constant voltage charging, and appropriate charge control according to the battery type of the battery 14 is performed. As shown in the figure, the voltage value detected by the controller 22 is a value obtained by adding the voltage of the resistor R1 to the terminal voltage of the battery for both constant current charging and constant voltage charging in this embodiment. When the status switch 30 indicates a lithium ion secondary battery and the voltage drop [−ΔV] is detected, the controller 22 that performs charge control corresponds to the type of the battery 14 and the type of capacity. The remaining constant voltage charging time is selected and set and timed, and when this set time elapses, the battery is determined to be fully charged, and charging control is performed to end charging. In addition, when the state of the switch 30 indicates a nickel cadmium battery or a nickel metal hydride battery, the controller 22 determines that the secondary battery is fully charged by detecting the voltage drop [−ΔV], and immediately ends the charging. Charge control is performed.
[0039]
For this reason, the controller 22 converts the analog voltage value applied to the voltage input (A / D) into a digital value, stores the change in these voltages, and changes the voltage [V] from the maximum value to the downward direction. When it is detected that the value is equal to the predetermined value [k], a full charging process is performed in which the charging process is terminated immediately or after a predetermined time has elapsed, depending on the type of the battery 14. This value [k] is a value for determining full charge, and is set to an appropriate value depending on the configuration of the secondary battery of the battery 14 and the like.
[0040]
As described above, in this embodiment, the charging is controlled by the minute drop [-ΔV] detection method of the charging voltage [V] including the voltage [V2] of the current setting resistor. For example, a change in voltage value in the vicinity of the maximum value of the charging voltage may be detected.
[0041]
With the configuration as described above, the operation of the charging apparatus 10 in the present embodiment will be described below with reference to FIG.
[0042]
Charging apparatus 10 in this embodiment, constant current charging from the start of the charging until the charging voltage reaches a peak is performed, Later, to charge the battery 14 shifts to constant-voltage charging, the control of the charging IC20 The charging process is performed accordingly. In this constant voltage charging process, a charging control signal is output from the controller 22, and the control FET 18 is controlled to be turned on by the output 108 of the charging IC 20. When the control FET 18 is turned on, the charging current from the AC adapter 12 is sequentially supplied to the battery 14, and constant voltage charging is continued.
[0043]
In step 400, the voltage value applied to the voltage detection terminal (A / D) of the controller 22 during this constant voltage charging is detected and recognized as a digital value. Proceeding to step 402 , the controller 22 determines whether or not a voltage drop [−ΔV] has occurred. If [−ΔV] has not yet occurred, the process returns to step 400, where [−ΔV] If occurrence has been detected, go to step 404.
[0044]
In step 404 in which the voltage drop [−ΔV] is detected, the type of the battery 14 being charged connected to the terminal 100 is recognized by the connection state of the switch 30, and the battery 14 has a lithium ion secondary battery. If so, the process proceeds to step 406. Otherwise, the process proceeds to step 410 and the charging process is terminated. When the process proceeds to step 406 in the case where the lithium ion secondary battery is being charged, the time for measuring the remaining constant voltage charging time during the constant voltage charging is set in the timer and the time measurement is started. Then, the process proceeds to step 408 , where it is determined whether or not the set time has elapsed. If the set time has not elapsed, the process returns to step 406 and the time measurement is continued. When the set time elapses, the routine proceeds to step 410 where a charging control signal for stopping charging is supplied to the charging IC 20 assuming that the battery 14 is fully charged, and the control FET 18 is controlled to be in an OFF state, and charging is terminated. In this way, it was determined that the secondary battery was fully charged without directly detecting the charging current, and the battery 14 was reliably charged.
[0045]
Next, another embodiment to which the present invention is applied will be described with reference to FIG. FIG. 2 shows a charging device 60 as an application example of the charging device 10 shown in FIG.
[0046]
The charging device 60 in this embodiment is different from the charging device 10 shown in FIG. 1 in that an additional resistor R3 is connected in series between the drain of the control FET 18 and the terminal 100a. The same configuration may be used.
[0047]
FIG. 7 shows the basic principle configuration of the secondary battery in this example. The inside of the secondary battery has a battery E that generates a battery voltage [V1], and a charging voltage during charging in which a charging current [i] flows, that is, terminal 100a-ground (AC-GND) in FIG. The voltage [V] between them is the value obtained by adding the additional resistance resistance voltage [V3] = [i × R3], the battery voltage [V1], and the current setting resistance voltage [V2] = [i × R1] This is applied to the voltage detection input (A / D) of the controller 22 and detected. Therefore, in this embodiment, the voltage value detected by the controller 22 increases by [V3], and the change in the charging voltage that changes with the change in the charging current during constant voltage charging increases. 22 can easily detect the voltage drop [−ΔV], reliably detect the full charge of the battery 14, and can stop the charge at the full charge.
[0048]
As described above, in the above-described embodiment, a highly accurate current detection circuit such as an amplifier for detecting a charging current for determining full charge as used in the prior art is unnecessary, and it is low-cost and simple. A charging device capable of reliably detecting full charge and controlling charging with a simple configuration is provided. In addition, with a similar circuit configuration, not only lithium ion secondary batteries but also various types of secondary batteries such as nickel cadmium batteries and nickel metal hydride batteries can be charged. The
[0049]
【The invention's effect】
As described above, according to the present invention, the current detection circuit for detecting the charging current is not necessary, the full charge of the secondary battery can be detected with a simple configuration, and the secondary battery is fully charged reliably. A secondary battery charge control method and a charging device for the same that can be used are provided, and can be used for other types of secondary batteries.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a charging device to which the present invention is applied.
FIG. 2 is a diagram showing a relationship between a charging voltage and a charging current at the time of constant current charging / constant voltage charging.
FIG. 3 is a diagram for explaining the principle configuration of the present invention.
4 is a flowchart showing the operation of the embodiment shown in FIG.
FIG. 5 is a graph showing a change in charging voltage and a small voltage drop [−ΔV] of a lithium ion secondary battery and other secondary batteries.
FIG. 6 is a block diagram showing another embodiment of the charging device to which the present invention is applied.
7 is a diagram showing a principle configuration in the embodiment shown in FIG. 6; FIG.
[Explanation of symbols]
10 Charging device
12 AC adapter
14 battery
18 Control FET
20 Charging IC
22 Controller
24 Current setting resistor (R1)

Claims (20)

二次電池を定電流−定電圧充電方式にて充電する二次電池の充電制御方法において、該方法は、
前記二次電池の電池電圧と、該二次電池に直列に接続されて回路グランドに接続される電流設定抵抗であって該二次電池に対する充電電流値を設定するための電流設定抵抗の電圧とを加算した第1の電圧を検出し、前記二次電池を定電にて充電する際に前記第1の電圧の最大値から降下する電圧変化を検出し、
該電圧変化を検出した後に、前記二次電池に対する定電圧充電を一定の時間継続してから充電を停止することを特徴とする二次電池の充電制御方法。
In the secondary battery charging control method for charging the secondary battery by a constant current-constant voltage charging method, the method includes:
A battery voltage of the secondary battery, and a current setting resistor connected in series to the secondary battery and connected to circuit ground, the voltage of the current setting resistor for setting a charging current value for the secondary battery; the detecting a first voltage obtained by adding, to the secondary battery by detecting a change in voltage drop from a maximum value of said first voltage when charging with constant-voltage,
A charge control method for a secondary battery, wherein after the voltage change is detected, constant voltage charging for the secondary battery is continued for a certain time and then the charging is stopped.
請求項1に記載の二次電池の充電制御方法において、該方法は、前記電圧変化を、前記第1の電圧と前記二次電池の満充電を判断する所定の値と比較して検出することを特徴とする二次電池の充電制御方法。In the charging control method for a secondary battery according to claim 1, the method, the pre-Symbol electrostatic pressure changes, is compared with a predetermined value to determine the full charge of the first voltage and the secondary battery A charge control method for a secondary battery, comprising: detecting the secondary battery. 請求項1に記載の二次電池の充電制御方法において、該方法は、前記第1の電圧と、前記二次電池を充電する充電経路に直列に接続されて追加された追加抵抗の電圧とを加算した第2の電圧を検出し、
前記充電中の第2の電圧の前記電圧変化に基づいて前記二次電池に対する充電を制御することを特徴とする二次電池の充電制御方法。
The charge control method for a secondary battery according to claim 1, wherein the method includes: the first voltage; and a voltage of an additional resistor added in series with a charge path for charging the secondary battery. Detect the added second voltage;
A charging control method for a secondary battery, wherein charging to the secondary battery is controlled based on the voltage change of the second voltage during the charging.
請求項3に記載の二次電池の充電制御方法において、該方法は、前記第の電圧が最大値から下降する電圧変化を、前記二次電池の満充電を判断する所定の値と比較して検出することを特徴とする二次電池の充電制御方法。In the charging control method for a secondary battery according to claim 3, the method, the voltage change which the second voltage is lowered from the maximum value, compared with a predetermined value for determining the full charge of the secondary battery And a secondary battery charging control method. 請求項2または4に記載の二次電池の充電制御方法において、前記所定の値は、前記二次電池の種類に応じて選択されることを特徴とする二次電池の充電制御方法。  5. The secondary battery charge control method according to claim 2, wherein the predetermined value is selected according to a type of the secondary battery. 請求項1または3に記載の二次電池の充電制御方法において、前記二次電池の種類を識別するスイッチの状態に応じて、該二次電池の種類を判別し、該二次電池がリチウムイオン二次電池であると判別した場合に、前記電圧変化を検出した後、一定の時間前記定電圧充電を継続してから充電を終了することを特徴とする二次電池の充電制御方法。4. The secondary battery charge control method according to claim 1 or 3, wherein the secondary battery type is determined according to a state of a switch for identifying the secondary battery type, and the secondary battery is a lithium ion battery. A charging control method for a secondary battery, wherein when the battery is determined to be a secondary battery, after the voltage change is detected, the constant voltage charging is continued for a certain time and then the charging is terminated. 請求項に記載の二次電池の充電制御方法において、前記スイッチの状態に応じて前記二次電池が前記リチウムイオン二次電池以外の他の二次電池であると判別した場合には、前記電圧変化を検出すると直ちに充電を終了することを特徴とする二次電池の充電制御方法。In the charging control method for a secondary battery according to claim 6, wherein when the secondary battery according to the state of the switch is determined to be another secondary battery other than the lithium ion secondary batteries, the A charging control method for a secondary battery, wherein charging is immediately terminated when a voltage change is detected. 請求項に記載の二次電池の充電制御方法において、前記他の二次電池はニッケルカドミウム電池であることを特徴とする二次電池の充電制御方法。8. The secondary battery charge control method according to claim 7 , wherein the other secondary battery is a nickel cadmium battery. 請求項に記載の二次電池の充電制御方法において、前記他の二次電池はニッケル水素電池であることを特徴とする二次電池の充電制御方法。8. The secondary battery charge control method according to claim 7 , wherein the other secondary battery is a nickel metal hydride battery. 請求項に記載の二次電池の充電制御方法において、前記一定の時間は、前記二次電池の構成に応じた時間が選択されることを特徴とする二次電池の充電制御方法。7. The secondary battery charge control method according to claim 6 , wherein the predetermined time is selected according to a configuration of the secondary battery. 二次電池を定電流−定電圧充電方式にて充電する二次電池の充電装置において、該装置は、
前記二次電池を充電する直流電源を制御信号に応じて前記二次電池に接続および遮断する充電スイッチと、
該充電スイッチをオン/ オフさせる制御信号を生成して、前記二次電池に対する充電を制御する充電手段と、
前記二次電池に直列に接続されて該二次電池に対する充電電流値を設定するための電流設定抵抗と、
該電流設定抵抗の電圧と前記二次電池の電池電圧とを加算した第1の電圧を検出して、前記二次電池の満充電を判断する制御手段とを含み、
該制御手段は、前記二次電池を定電にて充電する際に充電時の前記第1の電圧の最大値から降下する電圧変化を検出し、該電圧変化を検出した後に、前記二次電池に対する定電圧充電を一定の時間継続してから充電を停止することを特徴とする二次電池の充電装置。
In a secondary battery charging device for charging a secondary battery by a constant current-constant voltage charging method, the device includes:
A charge switch for connecting and disconnecting a DC power supply for charging the secondary battery to the secondary battery according to a control signal;
Charging means for generating a control signal for turning on / off the charge switch to control charging of the secondary battery;
A current setting resistor connected in series to the secondary battery for setting a charging current value for the secondary battery;
Control means for detecting a first voltage obtained by adding the voltage of the current setting resistor and the battery voltage of the secondary battery to determine full charge of the secondary battery;
Control means該制said detecting a change in voltage drop from a maximum value of said first voltage during charging of the secondary battery when charged at constant-voltage, after detecting the voltage variation, the secondary A charging device for a secondary battery, wherein charging is stopped after constant voltage charging of the battery is continued for a certain time.
請求項11に記載の二次電池の充電装置において、該装置は、前記二次電池を充電する充電経路に直列に接続されて追加された追加抵抗を含み、
前記制御手段は、前記電池電圧と、前記電流設定抵抗の電圧と、前記追加抵抗の電圧とを加算した第2の電圧を検出することを特徴とする二次電池の充電装置。
The secondary battery charging device according to claim 11 , wherein the device includes an additional resistor added in series with a charging path for charging the secondary battery,
The secondary battery charging apparatus, wherein the control means detects a second voltage obtained by adding the battery voltage, the voltage of the current setting resistor, and the voltage of the additional resistor.
請求項11に記載の二次電池の充電装置において、前記制御手段は、前記電圧変化を、前記第1の電圧と前記二次電池の満充電を判断する所定の値と比較して検出することを特徴とする二次電池の充電装置。In the charging device for a secondary battery according to claim 11, wherein the control means, the voltage change is detected by comparing the predetermined value for determining the full charge of the first voltage and the secondary battery A rechargeable battery charging device. 請求項12に記載の二次電池の充電装置において、前記制御手段は、前記電圧変化を、前記第2の電圧と前記二次電池の満充電を判断する所定の値とを比較して検出することを特徴とする二次電池の充電装置。13. The secondary battery charging apparatus according to claim 12, wherein the control means detects the voltage change by comparing the second voltage with a predetermined value for determining whether the secondary battery is fully charged. A rechargeable battery charging device. 請求項13または14に記載の二次電池の充電装置において、前記制御手段は、前記二次電池の種類に応じて前記所定の値を選択することを特徴とする二次電池の充電装置。15. The secondary battery charging apparatus according to claim 13 , wherein the control unit selects the predetermined value according to a type of the secondary battery. 請求項11または12に記載の二次電池の充電装置において、該装置は、前記二次電池の種類を識別するスイッチを含み、
前記制御手段は、該スイッチの状態に応じて、前記二次電池の種類を判別し、該二次電池がリチウムイオン二次電池であると判別した場合に、前記電圧変化を検出した後、一定の時間前記定電圧充電を継続してから充電を終了させることを特徴とする二次電池の充電装置。
The secondary battery charging device according to claim 11 or 12 , wherein the device includes a switch for identifying a type of the secondary battery,
The control means, depending on the state of the switch, determines the type of the secondary battery, when the secondary battery is determined to be a lithium ion secondary battery, after detecting the voltage variation, a constant The secondary battery charging device is characterized in that the constant voltage charging is continued for a period of time before the charging is terminated.
請求項16に記載の二次電池の充電装置において、前記制御手段は、前記スイッチの状態に応じて前記二次電池が前記リチウムイオン二次電池以外の他の二次電池であると判別したときには、前記電圧変化を検出すると直ちに充電を終了させることを特徴とする二次電池の充電装置。17. The secondary battery charging device according to claim 16 , wherein the control means determines that the secondary battery is a secondary battery other than the lithium ion secondary battery according to a state of the switch. A charging device for a secondary battery, wherein charging is terminated immediately upon detecting the voltage change. 請求項17に記載の二次電池の充電装置において、前記他の二次電池はニッケルカドミウム電池であることを特徴とする二次電池の充電装置。The secondary battery charging device according to claim 17 , wherein the other secondary battery is a nickel cadmium battery. 請求項17に記載の二次電池の充電装置において、前記他の二次電池はニッケル水素電池であることを特徴とする二次電池の充電装置。The secondary battery charging device according to claim 17 , wherein the other secondary battery is a nickel metal hydride battery. 請求項16に記載の二次電池の充電装置において、前記制御手段は、前記二次電池の構成に応じた前記一定の時間を選択し、該選択された一定の時間の経過後に前記充電を終了させることを特徴とする二次電池の充電装置。The secondary battery charging device according to claim 16 , wherein the control unit selects the predetermined time according to a configuration of the secondary battery, and terminates the charging after the elapse of the selected fixed time. A charging device for a secondary battery.
JP24809297A 1997-09-12 1997-09-12 Secondary battery charging control method and charging device therefor Expired - Fee Related JP3767112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24809297A JP3767112B2 (en) 1997-09-12 1997-09-12 Secondary battery charging control method and charging device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24809297A JP3767112B2 (en) 1997-09-12 1997-09-12 Secondary battery charging control method and charging device therefor

Publications (2)

Publication Number Publication Date
JPH1189109A JPH1189109A (en) 1999-03-30
JP3767112B2 true JP3767112B2 (en) 2006-04-19

Family

ID=17173100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24809297A Expired - Fee Related JP3767112B2 (en) 1997-09-12 1997-09-12 Secondary battery charging control method and charging device therefor

Country Status (1)

Country Link
JP (1) JP3767112B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100622918B1 (en) 2005-02-01 2006-09-14 엘지전자 주식회사 Battery charge-current self-compensation equipment of mobile phone and method of compensating the same

Also Published As

Publication number Publication date
JPH1189109A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP3823503B2 (en) Secondary battery charging control method and charging device therefor
CN107894567B (en) Battery pack and detection system and detection method for interface state of battery pack
EP2381557B1 (en) Battery charging method and device
US7339354B2 (en) Rechargeable battery charging method and apparatus
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
JP4499966B2 (en) Secondary battery charging circuit
US20120161709A1 (en) Secondary-battery control apparatus
TW200532966A (en) Battery apparatus and discharge controlling method of battery apparatus
CN101816112A (en) Non-aqueous electrolyte secondary cell pulse charge method and pulse charge control device
JPH077866A (en) Circuit for charging secondary battery
EP3876384A1 (en) Battery pack and charging management method thereof
CN101252284B (en) Semiconductor device and rechargeable power supply unit
CN1941546B (en) Rechargeable battery charging method
US6459239B1 (en) Method and apparatus for recharging batteries in the presence of a load current
JP2010008133A (en) Portable charger, and deterioration diagnosis method of secondary battery used therefor
JP3767112B2 (en) Secondary battery charging control method and charging device therefor
JPH11187585A (en) Charger and charging method for lithium ion secondary battery
JPH09331636A (en) Charger of secondary battery
JPH1118314A (en) Method and equipment for charging lithium ion secondary battery
JP3457637B2 (en) Battery type detection device
JP3585086B2 (en) Lithium ion secondary battery charger
JPH1051972A (en) Method and apparatus for charging secondary battery
JP4013289B2 (en) Non-aqueous secondary battery charging method and charging device therefor
JP3917046B2 (en) Charging circuit, charging method, and portable terminal equipped with the charging circuit
JP3402757B2 (en) Secondary battery charging method and secondary battery charging device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees