JP3766627B2 - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
JP3766627B2
JP3766627B2 JP2001361863A JP2001361863A JP3766627B2 JP 3766627 B2 JP3766627 B2 JP 3766627B2 JP 2001361863 A JP2001361863 A JP 2001361863A JP 2001361863 A JP2001361863 A JP 2001361863A JP 3766627 B2 JP3766627 B2 JP 3766627B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
resistor
switching power
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001361863A
Other languages
Japanese (ja)
Other versions
JP2003164150A (en
Inventor
直久 岡本
直哉 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2001361863A priority Critical patent/JP3766627B2/en
Publication of JP2003164150A publication Critical patent/JP2003164150A/en
Application granted granted Critical
Publication of JP3766627B2 publication Critical patent/JP3766627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング電源に関し、待機状態における省エネ対策として、スイッチング電源の待機電力を低減させる手段を備えたスイッチング電源に関するものである。
【0002】
【従来の技術】
本発明者は、待機電力を低減させる手段を備えたスイッチング電源として、図2のようなスイッチング電源の特許出願を行っている。図2において、電源に所定の入力電圧が印加されると、抵抗R11を通じて起動電流が流れ、コンデンサC2をスイッチング電源制御用IC1が必要とする起動開始電圧まで充電する。起動開始電圧まで充電されると、コンデンサC2に貯えられた充電エネルギーを利用してスイッチング電源制御用IC1が動作を開始し、コンデンサC2の両端電圧がスイッチング電源制御用IC1の動作停止電圧まで放電される前に、トランスTの補助巻線P3の電圧をダイオードD3で整流し、コンデンサC2で平滑して、スイッチング電源制御用IC1の動作電圧供給用VCC端子に電圧を供給しスイッチング電源は正常に動作を始める。
【0003】
IC2は、出力電圧検出用ICである。出力電圧が定格電圧より上昇すると、出力電圧検出用IC2に接続されたフォトカプラPC2のダイオードに流れる電流が増加して、フォトカプラPC2のトランジスタが接続されている電源制御用IC1のフィードバック(FB)端子の電圧が下がり、下がる量に応じて一定周波数で動作しているスイッチング素子Q3のオフ時間デューティが大きくなり、出力電圧を下げて定格電圧を安定供給することができる。
【0004】
負荷側が待機状態となり、電源の出力電流が微小になると、スイッチング素子Q3のオフ時間デューティが大きくなるため、ダイオードD4で整流後、抵抗R9とコンデンサC4で積分して得られるC4の両端電圧が下がり、その電圧と基準電圧となるツェナーダイオードZD3の電圧を比較し、C4の両端電圧が低くなるとオペアンプIC4の出力はLレベルとなる。
【0005】
二次側出力平滑用コンデンサC3の両端電圧は安定化出力電圧になっており、抵抗R5、R6、およびR8で分圧し得られたR6の両端電圧と、基準電圧となるツェナーダイオードZD3の電圧を比較し、R6の両端電圧が高くなっている間、オペアンプIC3の出力はHレベルとなり、オペアンプIC3の出力端子から電流がフォトカプラPC1のダイオード、抵抗R7、LレベルとなっているIC4の出力端子に流れ込み、フォトカプラPC1のトランジスタ側がオンとなり、電源制御用IC1のON/OFF端子がLレベルとなるが、電源制御用IC1はON/OFF端子がLレベルになると発振停止となる機能を有しているため、スイッチング素子Q3は動作停止する。
【0006】
二次側出力平滑コンデンサC3の両端電圧は、微小待機負荷電流とC3に接続されている電源内部回路で消費される微小電流によって徐々に放電され、負荷側が許容できる最低出力に達すると、抵抗R6の両端電圧が基準電圧であるZD3の電圧より低くなるため、IC3の出力端子はLレベルとなり、フォトカプラPC1のダイオードに電流が流れなくなるため、フォトカプラPC1のトランジスタ側がオフし、電源制御用IC1のON/OFF端子がHレベルになるので、スイッチング素子Q3は動作を開始する。
【0007】
【発明が解決しようとする課題】
ところが、図2の回路においては、図4に示した電源の動作状態と時間の関係のとおり、電源の負荷側が待機状態にあるときでも起動電流が流れ続け、電源の待機電力を悪化させており、また電源の入力電圧が上昇すると起動電流が増加し、さらに待機電力を悪化させるため、さらなる改善が求められていた。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するため、スイッチング電源の起動電流を入力電圧に関わらず定電流化し、また、負荷側が待機状態にある時、補助電源の電圧が最低動作電圧以上の時は、起動電流をオフにし、かつ、最低動作電圧になる直前に起動電流をオンして、起動電流で消費していた電力を大幅に低減し、待機電力を低減しようとするものである。
すなわち、図1に示すように、コンバータトランスTの一次側の一次巻線P1にスイッチング素子Q3を接続し、補助巻線P3にダイオードD3と平滑コンデンサC2とを接続した補助電源を備え、整流して得られる直流電圧を上記スイッチング素子Q3でオン/オフし、整流ダイオードD5と平滑コンデンサC3とを有する二次側の整流・平滑回路を介して電圧を安定供給し、負荷が待機状態の時、スイッチング電源を間欠動作させて待機電力を低減するスイッチング電源において、
スイッチング電源の一次側(+)ラインに第1のNPNトランジスタQ1のコレクタを接続し、ベースとスイッチング電源の一次側(+)ラインとの間に第1の抵抗R1を接続し、エミッタと一次側(−)ラインとの間に第2の抵抗R2と第1のダイオードD1と平滑コンデンサC1とを直列に接続し、第1のNPNトランジスタQ1のベースと第2の抵抗Rとの間に第1のツェナーダイオードZD1を逆接続し、第1のダイオードD1のカソードと上記平滑コンデンサC1との接続点をスイッチング電源制御用IC1の動作電圧供給用VCC端子と第2のダイオードD2のカソードに接続し、第2のダイオードD2のアノードと一次側の(−)ラインとの間に第2のツェナーダイオードZD2と第3の抵抗R3と第4の抵抗R4とを直列接続し、第3の抵抗R3と第4の抵抗R4との接続点を第2のNPNトランジスタQ2のベースに接続し、第2のNPNトランジスタQ2のコレクタを第1のNPNトランジスタQ1のベースに、第2のNPNトランジスタQ2のエミッタを一次側の(−)ラインに接続して、スイッチング電源の起動電流の定電流化回路を構成し、負荷側が待機状態の時、スイッチング電源の間欠動作に合わせて起動用定電流も間欠動作させたことを特徴とするスイッチング電源である。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。図1は本発明の実施形態が適用されるスイッチング電源の一例である。
この回路は、フライバックコンバータと呼ばれるものであり、図1はその回路構成を示したものである。Tは一次側に蓄積されたエネルギーを二次側へ伝達するためのコンバータトランス、Q3はスイッチング素子であるFET、C5は、電源入力平滑用コンデンサ、Q1は起動用定電流を制御する第1のNPNトランジスタ、Q2はQ1をオン/オフ制御するための第2のNPNトランジスタ、R1はQ1のベースを制限する第1の抵抗、ZD1とR2は各々、起動用定電流値を設定する第1のツェナーダイオードと第2の抵抗、D1は逆電圧防止用の第1のダイオード、ZD2は補助電源電圧を検出する第2のツェナーダイオード、R3はZD2およびQ2の電流制限用の第3の抵抗、R4はZD2がオフしている時にリークする電流でQ2が誤動作するのを防止する第4の抵抗、D3は補助電源整流用ダイオード、C2は補助電源平滑用コンデンサ、C1は起動電流により充電され、その充電エネルギーで電源制御用IC1を動作させるためのコンデンサ、D2は起動電流がZD2およびC2に流れるのを防止する第2のダイオードであり、C3は二次側の出力平滑用コンデンサ、IC1はスイッチング電源制御用IC、IC2は出力電圧検出用IC、PC2は二次側回路に電圧を安定供給するための信号を一次側にフィードバックするフォトカプラ、D4、D5はダイオード、R9とC4は各々、ダイオードD4からの電圧を積分するための抵抗とコンデンサ、R10はC4に充電された電荷を放電する抵抗、IC4は出力電流が増加しC4の両端電圧が上昇したことを検出するオペアンプ、IC3およびR5・R6・R8は各々、負荷側が許容できる最低出力電圧を検出するオペアンプと抵抗、ZD3はIC3とIC4の基準電圧を設定するツェナーダイオード、PC1は負荷側が許容できる最低出力電圧になるまでスイッチング素子Q3を停止させる信号を一次側にフィードバックするフォトカプラ、R7はフォトカプラPC1の電流を制限する抵抗である。
【0010】
電源に所定の入力電圧が印加されると、第1の抵抗R1から第1のNPNトランジスタQ1のベースに電流が流れ、Q1は動作を開始する。
第1のNPNトランジスタQ1のベースに第1のツェナーダイオードZD1が接続してあるため、第2の抵抗R2の両端電圧は電源の入力電圧に関わらず一定の電圧となり、第2の抵抗R2に流れる電流は定電流化される。
上記定電流でスイッチング電源制御用IC1の動作電圧供給用VCC端子に接続されたコンデンサC1を、スイッチング電源制御用IC1が必要とする起動開始電圧まで充電し、起動開始電圧まで充電されるとC1に貯えられた充電エネルギーを利用してスイッチング電源制御用IC1が動作を開始し、コンデンサC1の両端電圧がスイッチング電源制御用IC1の動作停止電圧まで放電される前に、コンバータトランスTの補助巻線P3の電圧をダイオードD3で整流しコンデンサC2で平滑して、第2のダイオードD2を通じてスイッチング電源制御用IC1のVCC端子に電圧を供給しスイッチング電源は正常に動作を始める。
出力電圧が定格電圧より上昇すると、出力電圧検出用IC2に接続されたフォトカプラPC2のダイオードに流れる電流が増加して、フォトカプラPC2のトランジスタが接続されている電源制御用IC1のフィードバック(FB)端子電圧が下がり、下がる量に応じて一定周波数動作しているスイッチング素子Q3のオフ時間デューティが大きくなり、出力電圧を下げて定格電圧を安定供給することができる。
【0011】
負荷側が待機負荷より大きい場合、スイッチング素子Q3は一定周波数で発振しており、補助電源平滑用コンデンサC2の両端電圧はツェナーダイオードZD2より高い電圧を維持しているため、ZD2に電流が流れ、第2のNPNトランジスタQ2がオンし、第1の抵抗R1から第1のNPNトランジスタQ1のベースに流れていた電流が、第2のNPNトランジスタQ2側に流れるため第1のNPNトランジスタQ1はオフし、第2の抵抗R2に流れていた定電流はオフする。
【0012】
負荷側が待機状態となり、電源の出力電流が微小になると、スイッチング素子Q3のオフ時間デューティが大きくなるため、ダイオードD4で整流後、抵抗R9とコンデンサC4で積分して得られるC4の両端電圧が下がり、その電圧と基準電圧となるツェナーダイオードZD3の電圧を比較し、C4の両端電圧が低くなると出力電流検出用オペアンプIC4の出力はLレベルとなる。
【0013】
二次側出力平滑用コンデンサC3の両端電圧は安定化出力電圧になっており、抵抗R5、R6およびR8で分圧し得られたR6の両端電圧と、基準電圧となるツェナーダイオードZD3の電圧を比較し、R6の両端電圧が高くなっている間、オペアンプIC3の出力はHレベルとなり、最低出力電圧検出用オペアンプIC3の出力端子から電流がフォトカプラPC1のダイオード、抵抗R7、Lレベルとなっている出力電圧検出用オペアンプIC4の出力端子に流れ込み、フォトカプラPC1のトランジスタ側がオンとなり、電源制御用IC1のON/OFF端子がLレベルとなるが、電源制御用IC1はON/OFF端子がLレベルになると発振停止となる機能を有しているため、スイッチング素子Q3は停止する。
【0014】
二次側出力平滑用コンデンサC3の両端電圧は、微小待機負荷電流とC3に接続されている電源内部回路で消費される微小電流によって徐々に放電され、負荷側が許容できる最低出力電圧に達すると、抵抗R6の両端電圧が基準電圧であるツェナーダイオードZD3の電圧より低くなるため、オペアンプIC3の出力端子はLレベルとなり、フォトカプラPC1のトランジスタ側がオフし、電源制御用IC1のON/OFF端子がHレベルになるので、スイッチング素子Q3は動作を開始する。
【0015】
また、上記スイッチング素子Q3が停止している間、コンバータトランスTの補助巻線P3に電圧が発生しないため、コンデンサC2の両端電圧は下がり続け、スイッチング電源制御用IC1のVCC電圧も下がり続ける。スイッチング電源制御用IC1のVCC電圧が動作停止電圧に達する前に、ツェナーダイオードZD2に電流が流れなくなり、第2のNPNトランジスタQ2がオフするため第1のNPNトランジスタQ1がオンし、定電流がコンデンサC1に供給され、スイッチング電源制御用IC1が必要とする最低動作電圧以上の電圧が維持できる。
【0016】
図3は電源の動作状態と時間との関係を示した図である。
負荷側が待機状態の間は、図3のA部分に示すように、定格電圧と負荷側が許容できる最低出力電圧の間になるように、スイッチング素子Q3がオン/オフを繰り返す。図3のA部分のタイムチャートから分かるように、スイッチング素子Q3がオフしている間、スイッチング電源制御用IC1の最低動作電圧になる直前まで起動用定電流をオフすると、起動用定電流が流れている時間が流れていない時間に対して小さいため、起動用定電流で消費される電力を低減することができる。
待機状態から電源の出力電流を若干増加させると、図3のB部分に示すように、増加させた電流に応じて出力平滑用コンデンサC3の放電される時間が短くなり、上記スイッチング素子Q3の停止時間が短くなるため、起動用定電流をオフしている期間も短くなる。
さらに電源の出力電流を増加させ、スイッチング素子Q3のオフ時間デューティが出力電流の増加量に応じて小さくなり、ダイオードD4で整流後、抵抗R9とコンデンサC4で積分して得られるC4の両端電圧が上昇し、ツェナーダイオードZD3の基準電圧より高くなると、出力電流検出用オペアンプIC4の出力はHレベルとなり、今まで最低出力電圧検出用オペアンプIC3の出力端子からフォトカプラPC1のダイオード、抵抗R7、オペアンプIC4の出力端子に流れていた電流が流れなくなり、スイッチング素子Q3のオフ信号が一次側にフィードバックできなくなるため、電源の動作状態は本来の一定周波数動作に移行し、コンデンサC2の両端電圧は高いレベルを維持し、第2のNPNトランジスタQ2がオンし、第1のNPNトランジスタQ1がオフするため、起動用定電流はオフする。(図3のC部分)
【0017】
上記したように、負荷側が待機状態の時、定格出力電圧と負荷側が許容できる最低出力電圧の間になるように、スイッチング素子Q3はオン/オフ動作を繰り返し、図3下部の起動用定電流およびC1両端電圧(IC1の動作電圧VCC)の波形が示すとおり、スイッチング素子Q3が動作停止している間、スイッチング制御用IC1のVCC端子電圧が、スイッチング制御用IC1の、最低動作電圧まで下がる直前まで起動用定電流がオフし、オフしている時間がオンしている時間よりも長いことと、起動用電流が定電流であるため、電源の入力電圧上昇による起動用電流増加もないことから、起動用電流による消費電力が大きく低減できる。
ところが、従来例では図4に示すように、スイッチング電源の動作状態にかかわらず、起動用電流が流れ続け、また電源の入力電圧が上昇すると起動用電流が増加するため、起動用電流による消費電力が大きく、電源の待機電力を悪化させる。
【0018】
今、実施例(図1)と従来例(図2)の回路について、下記条件にて待機電力を測定した。

Figure 0003766627
上記条件にて、実施例と従来例とで待機電力を比較した結果を表1に示す。
【0019】
【表1】
Figure 0003766627
【0020】
【発明の効果】
以上説明したように、本発明によれば、負荷側が待機状態の時、スイッチング電源が間欠動作することに合わせて起動用定電流も間欠動作させ、起動用定電流がオンしている時間に対して、オフしている時間を長くすることができ、また起動用電流が定電流であることによって、電源の入力電圧を上昇させても起動用電流が増加することもなく、起動用電流による電力消費が低減でき、待機時の省エネに貢献することができる。
【図面の簡単な説明】
【図1】本発明の実施例によるスイッチング電源の回路図である。
【図2】従来例によるスイッチング電源の回路図である。
【図3】図1の実施例による電源の動作状態を示すタイムチャートである。
【図4】図2の従来例による電源の動作状態を示すタイムチャートである。
【符号の説明】
Q1 第1のNPNトランジスタ(起動用定電流制御用)
Q2 第2のNPNトランジスタ(Q1オン/オフ制御用)
Q3 スイッチング素子(FET)
IC1 スイッチング電源制御用IC
IC2 出力電圧検出用IC
IC3 最低出力電圧検出用オペアンプ
IC4 出力電流検出用オペアンプ
PC1 フォトカプラ(電源停止信号フィードバック用)
PC2 フォトカプラ(出力電圧検出信号フィードバック用)
C1 コンデンサ(スイッチング電源制御用IC起動用)
C2 コンデンサ(補助電源平滑用)
C3 コンデンサ(出力平滑用)
C4 コンデンサ(積分用)
C5 平滑用コンデンサ(電源入力平滑用)
R1 第1の抵抗(電流制限用)
R2 第2の抵抗(定電流設定用)
R3 第3の抵抗(電流制限用)
R4 第4の抵抗(誤動作防止用)
R5 抵抗(最低出力電圧検出用)
R6 抵抗(最低出力電圧検出用)
R7 抵抗(電流制限用)
R8 抵抗(最低出力電圧検出用)
R9 抵抗(積分用)
R10 抵抗(C4放電用)
R11 抵抗(電源起動用)
T コンバータトランス
ZD1 第1のツェナーダイオード(定電流設定用)
ZD2 第2のツェナーダイオード(制御用IC最低動作電圧検出用)
ZD3 ツェナーダイオード(基準電圧設定用)
D1 第1のダイオード(逆電圧防止用)
D2 第2のダイオード(起動電流印加防止用)
D3 ダイオード(補助電源整流用)
D4 ダイオード
D5 ダイオード
A 補助電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switching power supply, and relates to a switching power supply provided with means for reducing standby power of the switching power supply as an energy saving measure in a standby state.
[0002]
[Prior art]
The present inventor has filed a patent application for a switching power supply as shown in FIG. 2 as a switching power supply having means for reducing standby power. In FIG. 2, when a predetermined input voltage is applied to the power supply, a starting current flows through the resistor R11, and the capacitor C2 is charged to the starting start voltage required by the switching power supply control IC1. When charged to the start voltage, the switching power supply control IC 1 starts to operate using the charging energy stored in the capacitor C2, and the voltage across the capacitor C2 is discharged to the operation stop voltage of the switching power supply control IC1. The voltage of the auxiliary winding P3 of the transformer T is rectified by the diode D3 and smoothed by the capacitor C2, and the voltage is supplied to the operating voltage supply VCC terminal of the switching power supply control IC 1 so that the switching power supply operates normally. Begin.
[0003]
IC2 is an output voltage detection IC. When the output voltage rises above the rated voltage, the current flowing through the diode of the photocoupler PC2 connected to the output voltage detection IC2 increases, and the feedback (FB) of the power supply control IC1 to which the transistor of the photocoupler PC2 is connected. The off-time duty of the switching element Q3 operating at a constant frequency is increased in accordance with the amount of voltage decreasing and decreasing at the terminal, and the rated voltage can be stably supplied by decreasing the output voltage.
[0004]
When the load side is in a standby state and the output current of the power supply becomes small, the off-time duty of the switching element Q3 increases. Therefore, after rectifying with the diode D4, the voltage across C4 obtained by integrating with the resistor R9 and the capacitor C4 decreases. Then, the voltage of the Zener diode ZD3 as a reference voltage is compared, and when the voltage across the C4 becomes low, the output of the operational amplifier IC4 becomes L level.
[0005]
The voltage across the secondary output smoothing capacitor C3 is a stabilized output voltage, and the voltage across R6 obtained by dividing by the resistors R5, R6, and R8 and the voltage across the Zener diode ZD3 serving as the reference voltage are In comparison, while the voltage at both ends of R6 is high, the output of the operational amplifier IC3 is at the H level, and the output terminal of the IC 4 from which the current from the output terminal of the operational amplifier IC3 is the diode of the photocoupler PC1, the resistor R7, and the L level. The transistor side of the photocoupler PC1 is turned on, and the ON / OFF terminal of the power supply control IC1 becomes L level. However, the power supply control IC1 has a function of stopping oscillation when the ON / OFF terminal becomes L level. Therefore, the switching element Q3 stops operating.
[0006]
When the voltage across the secondary output smoothing capacitor C3 is gradually discharged by the minute standby load current and the minute current consumed by the power supply internal circuit connected to the capacitor C3, when the load side reaches the lowest allowable output, the resistor R6 Is lower than the reference voltage ZD3, so that the output terminal of IC3 becomes L level and no current flows through the diode of the photocoupler PC1, so that the transistor side of the photocoupler PC1 is turned off, and the power supply control IC1 Since the ON / OFF terminal becomes H level, the switching element Q3 starts to operate.
[0007]
[Problems to be solved by the invention]
However, in the circuit of FIG. 2, the startup current continues to flow even when the load side of the power supply is in the standby state as shown in the relationship between the operation state of the power supply and the time shown in FIG. Further, when the input voltage of the power source increases, the starting current increases and the standby power is further deteriorated. Therefore, further improvement has been demanded.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention makes the starting current of the switching power supply constant regardless of the input voltage, and when the load side is in the standby state and the auxiliary power supply voltage is higher than the minimum operating voltage, By turning off the current and turning on the start-up current immediately before reaching the minimum operating voltage, the power consumed by the start-up current is greatly reduced to reduce standby power.
That is, as shown in FIG. 1, a switching element Q3 is connected to the primary winding P1 on the primary side of the converter transformer T, and an auxiliary power source is connected to the auxiliary winding P3 with a diode D3 and a smoothing capacitor C2. The DC voltage obtained in this way is turned on / off by the switching element Q3, and the voltage is stably supplied via the secondary side rectifying / smoothing circuit having the rectifying diode D5 and the smoothing capacitor C3. In a switching power supply that operates the switching power supply intermittently to reduce standby power,
The collector of the first NPN transistor Q1 is connected to the primary side (+) line of the switching power source, the first resistor R1 is connected between the base and the primary side (+) line of the switching power source, the emitter and the primary side The second resistor R2, the first diode D1, and the smoothing capacitor C1 are connected in series between the (−) line, and the first resistor is connected between the base of the first NPN transistor Q1 and the second resistor R. The Zener diode ZD1 is reversely connected, and the connection point between the cathode of the first diode D1 and the smoothing capacitor C1 is connected to the operating voltage supply VCC terminal of the switching power supply control IC1 and the cathode of the second diode D2. A second Zener diode ZD2, a third resistor R3, and a fourth resistor R4 are connected in series between the anode of the second diode D2 and the (−) line on the primary side. Then, the connection point between the third resistor R3 and the fourth resistor R4 is connected to the base of the second NPN transistor Q2, and the collector of the second NPN transistor Q2 is connected to the base of the first NPN transistor Q1. The NPN transistor Q2 emitter is connected to the primary (-) line to form a constant current circuit for the switching power supply startup current. When the load side is in the standby state, the switching power supply is started according to the intermittent operation. The switching power supply is characterized in that the constant current for use is also intermittently operated .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an example of a switching power supply to which an embodiment of the present invention is applied.
This circuit is called a flyback converter, and FIG. 1 shows its circuit configuration. T is a converter transformer for transmitting the energy accumulated on the primary side to the secondary side, Q3 is an FET as a switching element, C5 is a power input smoothing capacitor, and Q1 is a first constant for controlling a starting constant current NPN transistor, Q2 is a second NPN transistor for controlling on / off of Q1, R1 is a first resistor for limiting the base of Q1, and ZD1 and R2 are each a first constant for setting a starting constant current value Zener diode and second resistor, D1 is a first diode for preventing reverse voltage, ZD2 is a second Zener diode for detecting an auxiliary power supply voltage, R3 is a third resistor for current limiting of ZD2 and Q2, and R4 Is a fourth resistor that prevents Q2 from malfunctioning due to a current that leaks when ZD2 is off, D3 is an auxiliary power supply rectifier diode, and C2 is an auxiliary power supply smoothing capacitor. The capacitor C1 is charged by the starting current, and the capacitor for operating the power supply control IC 1 with the charging energy, D2 is a second diode for preventing the starting current from flowing through ZD2 and C2, and C3 is the secondary diode Side output smoothing capacitor, IC1 is a switching power supply control IC, IC2 is an output voltage detection IC, PC2 is a photocoupler that feeds back a signal for stably supplying a voltage to the secondary side circuit, D4, D5 Is a diode, R9 and C4 are resistors and capacitors for integrating the voltage from the diode D4, R10 is a resistor for discharging the charge charged to C4, IC4 has an increased output current, and the voltage across C4 has increased. The operational amplifiers IC3 and R5, R6, and R8 detect the minimum output voltage that the load side can tolerate. Peamplifier and resistor, ZD3 is a Zener diode that sets the reference voltage of IC3 and IC4, PC1 is a photocoupler that feeds back a signal for stopping the switching element Q3 until the load side reaches an allowable minimum output voltage, and R7 is a photocoupler. This resistor limits the current of PC1.
[0010]
When a predetermined input voltage is applied to the power supply, a current flows from the first resistor R1 to the base of the first NPN transistor Q1, and Q1 starts operating.
Since the first Zener diode ZD1 is connected to the base of the first NPN transistor Q1, the voltage across the second resistor R2 becomes a constant voltage regardless of the input voltage of the power supply and flows through the second resistor R2. The current is made constant.
The capacitor C1 connected to the operating voltage supply VCC terminal of the switching power supply control IC1 with the constant current is charged to the start-up voltage required by the switching power supply control IC1. The switching power supply control IC 1 starts to operate using the stored charging energy, and before the voltage across the capacitor C1 is discharged to the operation stop voltage of the switching power supply control IC1, the auxiliary winding P3 of the converter transformer T Is rectified by the diode D3, smoothed by the capacitor C2, and supplied to the VCC terminal of the switching power supply control IC1 through the second diode D2, so that the switching power supply starts operating normally.
When the output voltage rises above the rated voltage, the current flowing through the diode of the photocoupler PC2 connected to the output voltage detection IC2 increases, and the feedback (FB) of the power supply control IC1 to which the transistor of the photocoupler PC2 is connected. The off-time duty of the switching element Q3 operating at a constant frequency increases according to the amount that the terminal voltage decreases and decreases, and the rated voltage can be stably supplied by decreasing the output voltage.
[0011]
When the load side is larger than the standby load, the switching element Q3 oscillates at a constant frequency, and the voltage across the auxiliary power supply smoothing capacitor C2 maintains a voltage higher than the Zener diode ZD2. 2 NPN transistor Q2 is turned on, and the current flowing from the first resistor R1 to the base of the first NPN transistor Q1 flows to the second NPN transistor Q2 side, so the first NPN transistor Q1 is turned off, The constant current flowing through the second resistor R2 is turned off.
[0012]
When the load side is in a standby state and the output current of the power supply becomes small, the off-time duty of the switching element Q3 increases. Therefore, after rectifying with the diode D4, the voltage across C4 obtained by integrating with the resistor R9 and the capacitor C4 decreases. Then, the voltage of the Zener diode ZD3 as a reference voltage is compared, and when the voltage across the C4 becomes low, the output of the operational amplifier IC4 for detecting the output current becomes L level.
[0013]
The voltage across the secondary output smoothing capacitor C3 is a stabilized output voltage, and the voltage across R6 obtained by dividing by the resistors R5, R6 and R8 is compared with the voltage of the Zener diode ZD3 serving as the reference voltage. While the voltage across R6 is high, the output of the operational amplifier IC3 is at the H level, and the current from the output terminal of the operational amplifier IC3 for detecting the lowest output voltage is at the diode of the photocoupler PC1, the resistor R7, and the L level. It flows into the output terminal of the output voltage detection operational amplifier IC4, the transistor side of the photocoupler PC1 is turned on, and the ON / OFF terminal of the power supply control IC1 becomes L level, but the ON / OFF terminal of the power supply control IC1 becomes L level. Then, since it has a function to stop oscillation, the switching element Q3 stops.
[0014]
When the voltage across the secondary side output smoothing capacitor C3 is gradually discharged by the minute standby load current and the minute current consumed by the power supply internal circuit connected to C3, and reaches the minimum output voltage that the load side can tolerate. Since the voltage across the resistor R6 is lower than the voltage of the Zener diode ZD3 which is the reference voltage, the output terminal of the operational amplifier IC3 becomes L level, the transistor side of the photocoupler PC1 is turned off, and the ON / OFF terminal of the power supply control IC1 is H. Since the level is reached, the switching element Q3 starts to operate.
[0015]
Further, since no voltage is generated in the auxiliary winding P3 of the converter transformer T while the switching element Q3 is stopped, the voltage across the capacitor C2 continues to decrease, and the VCC voltage of the switching power supply control IC 1 continues to decrease. Before the VCC voltage of the switching power supply control IC1 reaches the operation stop voltage, the current stops flowing through the Zener diode ZD2, the second NPN transistor Q2 is turned off, the first NPN transistor Q1 is turned on, and the constant current is A voltage that is supplied to C1 and is equal to or higher than the minimum operating voltage required by the switching power supply control IC1 can be maintained.
[0016]
FIG. 3 is a diagram showing the relationship between the operating state of the power supply and time.
While the load side is in the standby state, as shown in part A of FIG. 3, the switching element Q3 is repeatedly turned on / off so as to be between the rated voltage and the minimum output voltage allowable on the load side. As can be seen from the time chart of part A of FIG. 3, when the constant current for start-up flows until the minimum operating voltage of the switching power supply control IC 1 is reached while the switching element Q3 is off, the constant current for start flows. Since the running time is small with respect to the non-flowing time, the power consumed by the starting constant current can be reduced.
When the output current of the power supply is slightly increased from the standby state, as shown in part B of FIG. 3, the discharge time of the output smoothing capacitor C3 is shortened according to the increased current, and the switching element Q3 is stopped. Since the time is shortened, the period during which the starting constant current is off is also shortened.
Further, the output current of the power source is increased, and the off-time duty of the switching element Q3 becomes smaller according to the increase amount of the output current. After rectification by the diode D4, the voltage across C4 obtained by integrating with the resistor R9 and the capacitor C4 is When the voltage rises and becomes higher than the reference voltage of the Zener diode ZD3, the output of the operational amplifier IC4 for detecting the output current becomes the H level. The current flowing through the output terminal of the switching element Q3 stops flowing, and the OFF signal of the switching element Q3 cannot be fed back to the primary side, so that the operating state of the power supply shifts to the original constant frequency operation and the voltage across the capacitor C2 is at a high level. The second NPN transistor Q2 is turned on and the first NPN transistor Q2 is turned on. Since the PN transistor Q1 is turned off, starting a constant current is turned off. (C portion in FIG. 3)
[0017]
As described above, when the load side is in the standby state, the switching element Q3 repeats the on / off operation so that it is between the rated output voltage and the minimum allowable output voltage on the load side. As shown by the waveform of the voltage across C1 (the operating voltage VCC of IC1), while the switching element Q3 is not operating, until the VCC terminal voltage of the switching control IC1 drops to the minimum operating voltage of the switching control IC1. Since the startup constant current is off and the off time is longer than the on time, and the startup current is a constant current, there is no increase in startup current due to a rise in the input voltage of the power supply. Power consumption due to the starting current can be greatly reduced.
However, in the conventional example, as shown in FIG. 4, the startup current continues to flow regardless of the operating state of the switching power supply, and the startup current increases as the input voltage of the power supply rises. This greatly increases the standby power of the power supply.
[0018]
Now, for the circuits of the example (FIG. 1) and the conventional example (FIG. 2), standby power was measured under the following conditions.
Figure 0003766627
Table 1 shows the results of comparison of standby power between the example and the conventional example under the above conditions.
[0019]
[Table 1]
Figure 0003766627
[0020]
【The invention's effect】
As described above, according to the present invention, when the load side is in a standby state, the starting constant current is intermittently operated in accordance with the intermittent operation of the switching power supply, and the starting constant current is on. Since the startup time is constant and the startup current is constant, the startup current does not increase even if the input voltage of the power supply is increased. Consumption can be reduced and energy can be saved during standby.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a switching power supply according to an embodiment of the present invention.
FIG. 2 is a circuit diagram of a switching power supply according to a conventional example.
FIG. 3 is a time chart showing an operation state of a power supply according to the embodiment of FIG. 1;
4 is a time chart showing an operation state of a power supply according to the conventional example of FIG. 2;
[Explanation of symbols]
Q1 First NPN transistor (for starting constant current control)
Q2 Second NPN transistor (for Q1 on / off control)
Q3 Switching element (FET)
IC1 IC for switching power supply control
IC2 Output voltage detection IC
IC3 Operational amplifier for minimum output voltage detection IC4 Operational amplifier for output current detection PC1 Photocoupler (for power supply stop signal feedback)
PC2 Photocoupler (For output voltage detection signal feedback)
C1 capacitor (for starting IC for switching power supply control)
C2 capacitor (for smoothing auxiliary power)
C3 capacitor (for output smoothing)
C4 capacitor (for integration)
C5 Smoothing capacitor (for power input smoothing)
R1 first resistor (for current limiting)
R2 Second resistor (for constant current setting)
R3 3rd resistor (for current limiting)
R4 Fourth resistor (for malfunction prevention)
R5 resistance (for minimum output voltage detection)
R6 resistor (for minimum output voltage detection)
R7 resistance (for current limiting)
R8 resistance (for minimum output voltage detection)
R9 resistance (for integration)
R10 resistance (for C4 discharge)
R11 resistor (for power start)
T converter transformer ZD1 first Zener diode (for constant current setting)
ZD2 Second Zener diode (for detection of minimum operating voltage for control IC)
ZD3 Zener diode (for reference voltage setting)
D1 First diode (for reverse voltage prevention)
D2 Second diode (for preventing starting current application)
D3 diode (for auxiliary power rectification)
D4 Diode D5 Diode A Auxiliary power supply

Claims (1)

コンバータトランスの一次側の一次巻線にスイッチング素子を接続し、補助巻線にダイオードと平滑コンデンサとを接続した補助電源を備え、整流して得られる直流電圧を上記スイッチング素子でオン/オフし、整流ダイオードと平滑コンデンサとを有する二次側の整流・平滑回路を介して電圧を安定供給し、負荷が待機状態の時、スイッチング電源を間欠動作させて待機電力を低減するスイッチング電源において、
スイッチング電源の一次側(+)ラインに第1のNPNトランジスタのコレクタを接続し、ベースとスイッチング電源の一次側(+)ラインとの間に第1の抵抗を接続し、エミッタと一次側(−)ラインとの間に第2の抵抗と第1のダイオードと平滑コンデンサとを直列に接続し、第1のNPNトランジスタのベースと第2の抵抗との間に第1のツェナーダイオードを逆接続し、第1のダイオードのカソードと上記平滑コンデンサとの接続点をスイッチング電源制御用ICの動作電圧供給用VCC端子と第2のダイオードのカソードに接続し、第2のダイオードのアノードと一次側の(−)ラインとの間に第2のツェナーダイオードと第3の抵抗と第4の抵抗とを直列接続し、第3の抵抗と第4の抵抗との接続点を第2のNPNトランジスタのベースに接続し、第2のNPNトランジスタのコレクタを第1のNPNトランジスタのベースに、第2のNPNトランジスタのエミッタを一次側の(−)ラインに接続して、スイッチング電源の起動電流の定電流化回路を構成し、負荷側が待機状態の時、スイッチング電源の間欠動作に合わせて起動用定電流も間欠動作させたことを特徴とするスイッチング電源。
A switching element is connected to the primary winding on the primary side of the converter transformer, and an auxiliary power source in which a diode and a smoothing capacitor are connected to the auxiliary winding is provided. The DC voltage obtained by rectification is turned on / off by the switching element, In a switching power supply that stably supplies a voltage via a rectifying / smoothing circuit on the secondary side having a rectifier diode and a smoothing capacitor, and reduces the standby power by intermittently operating the switching power supply when the load is in a standby state.
The collector of the first NPN transistor is connected to the primary side (+) line of the switching power source, the first resistor is connected between the base and the primary side (+) line of the switching power source, the emitter and the primary side (− ) A second resistor, a first diode, and a smoothing capacitor are connected in series between the first resistor and the first resistor, and a first Zener diode is reversely connected between the base of the first NPN transistor and the second resistor. The connection point between the cathode of the first diode and the smoothing capacitor is connected to the operating voltage supply VCC terminal of the switching power supply control IC and the cathode of the second diode, and the anode and primary side ( -) A second Zener diode, a third resistor, and a fourth resistor are connected in series with the line, and a connection point between the third resistor and the fourth resistor is a second NPN transistor. Connected to the base, the collector of the second NPN transistor is connected to the base of the first NPN transistor, the emitter of the second NPN transistor is connected to the (−) line on the primary side, and the constant current of the starting current of the switching power supply A switching power supply characterized in that when the load side is in a standby state, the constant current for starting is intermittently operated in accordance with the intermittent operation of the switching power supply.
JP2001361863A 2001-11-28 2001-11-28 Switching power supply Expired - Lifetime JP3766627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361863A JP3766627B2 (en) 2001-11-28 2001-11-28 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361863A JP3766627B2 (en) 2001-11-28 2001-11-28 Switching power supply

Publications (2)

Publication Number Publication Date
JP2003164150A JP2003164150A (en) 2003-06-06
JP3766627B2 true JP3766627B2 (en) 2006-04-12

Family

ID=19172457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361863A Expired - Lifetime JP3766627B2 (en) 2001-11-28 2001-11-28 Switching power supply

Country Status (1)

Country Link
JP (1) JP3766627B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005006527A1 (en) * 2003-07-15 2006-08-24 サンケン電気株式会社 Power supply device and control method of power supply device
JP4734905B2 (en) * 2004-12-03 2011-07-27 パナソニック株式会社 Switching DC power supply
JP5168010B2 (en) 2008-07-28 2013-03-21 サンケン電気株式会社 Switching power supply
JP2011139564A (en) * 2009-12-28 2011-07-14 Nichicon Corp Ac adapter
JP5552847B2 (en) * 2010-03-11 2014-07-16 株式会社リコー Power supply device, image forming apparatus
JP5575610B2 (en) * 2010-11-09 2014-08-20 本田技研工業株式会社 Power supply
JP2012161117A (en) * 2011-01-28 2012-08-23 Rohm Co Ltd Dc/dc converter, and power supply device and electronic apparatus using the same
MY165232A (en) * 2012-02-10 2018-03-14 Thomson Licensing Switch mode power supply module and associated hiccup control method
TWI481170B (en) * 2013-02-06 2015-04-11 Holtek Semiconductor Inc High voltage start up circuit and system using the same
JP6482182B2 (en) * 2014-04-25 2019-03-13 新電元工業株式会社 Control circuit and switching power supply
JP6072881B2 (en) * 2015-11-04 2017-02-01 ローム株式会社 DC / DC converter, power supply device using the same, and electronic device

Also Published As

Publication number Publication date
JP2003164150A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
KR101030920B1 (en) Switching power supply
US7075802B2 (en) Semiconductor device for controlling switching power supply
KR101168588B1 (en) Power supply apparatus and image forming apparatus
US6690586B2 (en) Switching power source device
JP3652351B2 (en) Switching power supply
US7285991B2 (en) Semiconductor device for controlling switching power supply and switching power supply unit using the same
JP4127399B2 (en) Switching power supply control semiconductor device
JP6597239B2 (en) Switching power supply
US7259973B2 (en) Semiconductor apparatus for controlling a switching power supply
JP3465673B2 (en) Switching power supply
US6246596B1 (en) Switching power supply
US20100020575A1 (en) Switching power supply device
JP3766627B2 (en) Switching power supply
JP3206488B2 (en) Switching power supply
JP4653350B2 (en) Switching power supply
JP3740325B2 (en) Self-excited switching power supply
JP4668473B2 (en) Switching power supply
JPH1028374A (en) Power supply
JP3613731B2 (en) No-load power-saving power supply
JP4386384B2 (en) Switching power supply
JP2004266928A (en) Power supply device and discharge lamp lighting device using the same
JP2002199613A (en) Charging circuit for secondary battery
JP4423455B2 (en) Self-oscillation type power converter intermittent drive device
JP2003143843A (en) Switching regulator
JP2011139564A (en) Ac adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3766627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term