JP3766577B2 - How to remove hot metal - Google Patents

How to remove hot metal Download PDF

Info

Publication number
JP3766577B2
JP3766577B2 JP2000038389A JP2000038389A JP3766577B2 JP 3766577 B2 JP3766577 B2 JP 3766577B2 JP 2000038389 A JP2000038389 A JP 2000038389A JP 2000038389 A JP2000038389 A JP 2000038389A JP 3766577 B2 JP3766577 B2 JP 3766577B2
Authority
JP
Japan
Prior art keywords
hot metal
dephosphorization
oxygen
depth
stirring power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000038389A
Other languages
Japanese (ja)
Other versions
JP2001234221A (en
Inventor
意智 國武
航 阪井
進 務川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000038389A priority Critical patent/JP3766577B2/en
Publication of JP2001234221A publication Critical patent/JP2001234221A/en
Application granted granted Critical
Publication of JP3766577B2 publication Critical patent/JP3766577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶銑の脱りん方法に関するものである。
【0002】
【従来の技術】
上底吹き転炉方式での溶銑予備処理ではスラグの塩基度(%CaO)/(%SiO2 )を1.2〜2.0程度とし、脱りん後のスラグ中(%T−Fe)を確保することで脱りん処理を実施している。ここで塩基度調整用に添加するCaOは高融点であり滓化性に欠けるという欠点があるので、スラグ滓化剤としてCaF2 、Al2 3 等の低融点物質が使用されている。しかしCaF2 は高価であり製造コストの増大を招くこと、および最近環境意識の高まりの中で製鋼スラグ中に含まれるフッ素の水および土壌への溶出が問題とされており、フッ素を含む物質を使用しない精錬プロセスの構築が必要である。このため特開平8−157921では、(%CaO/%SiO2 )=1.2〜2.0、かつ(Al2 3 )=2〜16%、(T−Fe)=7〜30%に制御し、Al2 3 源として鋼の連続鋳造滓および/または造塊滓を用いる溶銑の脱りん方法を提案しているが、鋼の連続鋳造滓および/または造塊滓を用いて(Al2 3 )=2〜16%を確保した場合、上吹き酸素と溶銑中[C]の反応で生成したCOガスにより溶融スラグのフォーミングが激しくなり、炉口よりスラグがあふれ安定操業阻害をもたらすばかりか、スラグ中に含まれる鉄分のロスが増大する等の課題がある。また(%T−Fe)の確保には一般的に酸化鉄が用いられるが、次工程の転炉精錬にて熱量が不足すると予測される場合には、溶銑予備処理において酸化鉄の添加量を減少せざるをえず、その結果(%T−Fe)が確保できず脱りん効率が低下するという課題がある。
【0003】
【発明が解決しようとする課題】
本発明はこのような課題を解決するためになされたものであり、効率的な溶銑の脱りん方法を提供することを目的としたものである。
【0004】
【課題を解決するための手段】
本発明は(1)上底吹き転炉方式の予備処理炉に溶銑を装入し、CaOを添加しつつ、酸素を上吹きして脱珪・脱りん処理を連続して実施する方法において、 脱珪処理終了後、脱りん処理後半に、底吹き攪拌動力を低下するとともに、上吹き酸素ジェットによる溶銑の凹み深さ(L)と、静止溶銑深さ(L0)の比(L/L0)の低下を組み合わせることで、CaF2 等の滓化剤を添加することなく脱りん反応を向上させることを特徴とする溶銑の脱りん方法であり、(2)脱珪処理終了後、脱りん処理後半に、下記[1] 式にて定義される底吹き攪拌動力εを3.1〜10.0kW/tから1.2〜3.0kW/tに低下させるとともに、下記[2] 、[3] 式にて定義される上吹き酸素ジェットによる溶銑の凹み深さ(L)と、静止溶銑深さ(L0)の比(L/L0)を0.02以下まで低下させる方法を組み合わせることで、CaF2 等の滓化剤を添加することなく脱りん反応を向上させることを特徴とする溶銑の脱りん方法であり、
【数1】
ε=(0.0062QgT/Wm)×{Ln(1+H0 /1.54)+(1−Tg/T)}・・・・[1]
ここでQg;吹込みガス量(Nl/ min) T ;溶銑温度(K)
Wm;溶銑重量(t) H0 ;吹込み深さ(m)
Tg;吹込み前のガス温度(K) である。
【数2】
L=Lh exp(−β・ h /Lh) ・・・・・[2]
【数3】
Lh=α(FO2/(n ・ d/k)2/3 ・・・・・[3]
ここで h;ランス−湯面間隔 Lh;h=0の時のL(mm)
FO2;酸素流量(Nm3/Hr) n ;ノズル孔数
d;ノズルのスロート径(mm) k;補正係数
α、 β;定数
(3)脱珪外酸素原単位が3.0Nm3/t 以降に、底吹き攪拌動力を3.1〜10.0kW/tから1.2〜3.0kW/tに低下させるとともに、上吹き酸素ジェットによる溶銑の凹み深さ(L)と、静止溶銑深さ(L0)の比(L/L0)を0.02以下まで低下させる方法を組み合わせることで、CaF2 等の滓化剤を添加することなく脱りん反応を向上させることを特徴とする溶銑の脱りん方法である。
【0005】
【発明の実施の形態】
溶銑の脱りん反応についてはCaOと溶銑の界面での反応が主となり、(1)溶銑中のりんの物質移動の促進、(2)CaOの滓化促進、(3)スラグ・溶銑界面におけるりんの酸化反応促進が重要なポイントである。ここで上記(1)については攪拌動力の最適化、(2)については滓化促進物質の添加、(3)については高酸素ポテンシャルを指向すれば良い。しかし上述してきたように、滓化促進物質を添加することなくかつあらゆる操業条件においても酸素ポテンシャルを維持する効率的な脱りんプロセスは未だ構築されていないのが現状である。
【0006】
このため、本発明者は上述課題を克服する操業条件として、請求項に示す攪拌動力および上吹き酸素ジェットによる溶銑の凹み深さ(L)と、静止溶銑深さ(L0)の比を組み合わせることを考案し研究を進めた。その結果、脱りん処理末期に、底吹き攪拌動力εを3.1〜10.0kW/tから1.2〜3.0kW/tに低下させるとともに、上吹き酸素ジェットによる溶銑の凹み深さ(L)と、静止溶銑深さ(L0)の比(L/L0)を0.02以下まで低下させる方法を組み合わせれば、溶銑予備処理において酸化鉄の添加量が減少した場合においても(%T−Fe)が確保可能となり、CaF2 等の滓化剤を添加することなく脱りん反応が向上することを見出したものである。
【0007】
ここで上述のように条件を規定した理由を述べる。脱りん処理前半期に攪拌動力を3.1〜10.0kW/tに規定した理由は、3.1kW/t未満であれば溶銑中のりんの物質移動が不足し脱りん効率の低下および処理時間の大幅な延長を招くためであり、10.0kW/tを越える攪拌動力では、生成したFeOの還元が促進されCaO系フラックスの滓化不良による脱りん効率の低下および溶銑の飛散が激しく歩留が低下するためである。
【0008】
次に脱りん処理後半に底吹き攪拌動力を1.2〜3.0kW/t、(L/L0)を0.02以下に規定した理由は、脱りん末期に酸素ポテンシャルを急激に高めてやると脱りん効率が向上するためである。このため攪拌動力を更に低下させ(FeO)の還元を抑制するとともに、L/L0を低下させることで、酸化鉄の添加量が減少し(%T−Fe)が確保できない場合でも、(FeO)の生成を促進させるものである。ここで脱珪処理終了後より上記処理パターンで操業を行った場合でも、処理後りん濃度はほぼ同等となるが処理時間の大幅な延長および(%T−Fe)の大幅な上昇による歩留りロス等をもたらし好ましくない。
【0009】
なお脱珪脱りんに要する時間は、溶銑成分、上吹き酸素用ランス構造、目標りん濃度により若干異なってくるが10分程度が目安であり、脱りん処理後半とは処理終了3分前程度と考えればよい。
このようにすれば、滓化促進物質を添加することなくかつあらゆる操業条件においても酸素ポテンシャルが維持可能な効率的な溶銑脱りん方法を得ることができる。
【0010】
【実施例】
本発明による操業例を挙げる。表1は攪拌動力およびL/L0を種々変化させた操業例、表2はその時の処理時間・成分結果である。
まず従来法では、Si=0.34%含有の250tの溶銑と45tのスクラップを予備処理炉に装入し、CaOを13kg/t添加しつつ酸素を上吹きして脱珪脱りん処理を行った。この時、熱源が不足することが予想されたため、酸化鉄の添加量を2kg/tとした。攪拌動力およびL/L0は表1に示す操業例とした。従来法では脱りん末期の攪拌動力およびL/L0の変更がなく、またCaF2 の添加もないためCaOの滓化が不充分となり、処理後のりん濃度が0.033%と目標レベルまで下げる事は困難であった。
【0011】
次に本発明法では、Si=0.32%含有の247tの溶銑と48tのスクラップを予備処理炉に装入し、CaOを12kg/t添加しつつ酸素を上吹きして脱珪脱りん処理を行った。この時、熱源が不足することが予想されたため、酸化鉄の添加量を1kg/tとした。本発明ではCaF2 の添加がないにも関わらず、脱りん処理終了3分前に攪拌動力を2.2kW/t、およびL/L0を0.015まで低下させることで、CaOの滓化が十分に進み処理後のりん濃度は0.017%と目標レベルまで下げることが可能となった。
【0012】
比較例1は、従来法とほぼ同様の溶銑条件、原料投入量にて操業を行った例であるが、脱りん初期に攪拌動力およびL/L0を下げ、脱りん処理終了3分前の末期に上げたパターンでは、処理後のりん濃度は0.028%と目標りんレベルまで下がらなかった。これは脱りん末期にFeOが減少することに起因する復りんによるものと考えられる。
比較例2は、本発明法とほぼ同様の溶銑条件、原料投入量にて操業を行った例であるが、脱りん初期から攪拌動力およびL/L0を下げたパターンであり、処理後のりん濃度は0.017%と目標りんレベルまで下げることは可能であったが、攪拌動力低下によるりんの物質移動が不充分であり処理時間の大幅な延長をもたらし、次工程以降の処理工程に影響を及ぼした。
【0013】
【表1】

Figure 0003766577
【0014】
【表2】
Figure 0003766577
【0015】
【発明の効果】
本発明により、高効率な溶銑の脱りんを行うことが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal dephosphorization method.
[0002]
[Prior art]
In hot metal pretreatment with raised bottom blown converter type and basicity of slag (% CaO) / (% SiO 2) approximately 1.2 to 2.0, in the slag after the dephosphorization of (% T-Fe) The dephosphorization process is carried out by ensuring. Here, since CaO added for adjusting the basicity has a disadvantage that it has a high melting point and lacks hatchability, a low melting point material such as CaF 2 or Al 2 O 3 is used as a slag fading agent. However, CaF 2 is expensive and causes an increase in production cost, and in recent years, environmental consciousness has raised the problem of elution of fluorine contained in steelmaking slag into water and soil. It is necessary to construct a refining process that is not used. For this reason JP 8-157921, (% CaO /% SiO 2) = 1.2~2.0, and (Al 2 O 3) = 2~16 %, the (T-Fe) = 7~30% A hot metal dephosphorization method using a continuous cast iron and / or agglomerated steel as a source of Al 2 O 3 is proposed, but using a continuous cast iron and / or agglomerated steel (Al When 2 O 3 ) = 2 to 16% is secured, the formation of molten slag becomes intense due to the CO gas generated by the reaction between the top blown oxygen and the hot metal [C], and the slag overflows from the furnace port, causing a stable operation hindrance. In addition, there are problems such as increased loss of iron contained in the slag. In addition, iron oxide is generally used to secure (% T-Fe). However, if it is predicted that the amount of heat will be insufficient in the converter refining in the next step, the amount of iron oxide added in the hot metal pretreatment is reduced. As a result, there is a problem that the dephosphorization efficiency is lowered because the result (% T-Fe) cannot be secured.
[0003]
[Problems to be solved by the invention]
The present invention has been made to solve such problems, and an object thereof is to provide an efficient hot metal dephosphorization method.
[0004]
[Means for Solving the Problems]
The present invention is (1) a method of continuously carrying out desiliconization / dephosphorization treatment by charging molten iron into a pretreatment furnace of an upper bottom blowing converter system and adding oxygen to CaO while blowing up oxygen. After the desiliconization process, in the latter half of the dephosphorization process, the bottom blowing stirring power is reduced, and the ratio of the hot metal dent depth (L) to the static hot metal depth (L0) (L / L0) This is a hot metal dephosphorization method characterized in that the dephosphorization reaction is improved without adding a sooting agent such as CaF 2 by combining the lowering of (2) after the desiliconization treatment is completed. In the latter half, the bottom blowing stirring power ε defined by the following formula [1] is reduced from 3.1 to 10.0 kW / t to 1.2 to 3.0 kW / t, and the following [2], [3 ] The hot metal dent depth (L) defined by the above formula and the static hot metal depth (L0) By combining the method of reducing the ratio of the (L / L0) to 0.02 or less, in dephosphorization method hot metal, characterized in that to improve the dephosphorization reaction without the addition of a slag agent such as CaF 2 Yes,
[Expression 1]
ε = (0.0062QgT / Wm) × {Ln (1 + H 0 /1.54)+(1-Tg/T)}... [1]
Where Qg; amount of injected gas (Nl / min) T; hot metal temperature (K)
Wm; hot metal weight (t) H 0 ; blowing depth (m)
Tg: Gas temperature (K) before blowing.
[Expression 2]
L = Lh exp (−β · h / Lh) ・ ・ ・ ・ ・ [2]
[Equation 3]
Lh = α (FO 2 / (n · d / k) 2/3 ... [3]
Here, h: Lance-water surface interval Lh; L (mm) when h = 0
FO 2 ; Oxygen flow rate (Nm 3 / Hr) n; Nozzle hole number d; Nozzle throat diameter (mm) k; Correction coefficients α and β; Constant (3) Desiliconized oxygen source unit is 3.0 Nm 3 / t Thereafter, the bottom blowing stirring power is reduced from 3.1 to 10.0 kW / t to 1.2 to 3.0 kW / t, the hot metal dent depth (L) by the top blowing oxygen jet, and the stationary hot metal depth By combining the methods for reducing the ratio (L / L0) to 0.02 or less, the dephosphorization reaction can be improved without adding a sooting agent such as CaF 2 . Dephosphorization method.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The hot metal dephosphorization reaction is mainly performed at the interface between CaO and hot metal, (1) promotion of phosphorus mass transfer in hot metal, (2) promotion of hatching of CaO, and (3) phosphorus at the slag / hot metal interface. The promotion of oxidation reaction is an important point. Here, optimization of the stirring power may be directed to (1) above, addition of a hatching promoting substance may be directed to (2), and high oxygen potential may be directed to (3). However, as described above, the present situation is that an efficient dephosphorization process that maintains the oxygen potential without adding a hatching promoting substance and under any operating conditions has not yet been established.
[0006]
For this reason, the present inventor combines the ratio of the hot metal dent depth (L) and the stationary hot metal depth (L0) with the stirring power and the top blown oxygen jet shown in the claims as the operating conditions to overcome the above-mentioned problems. Devised and researched. As a result, at the end of the dephosphorization treatment, the bottom blowing stirring power ε is reduced from 3.1 to 10.0 kW / t to 1.2 to 3.0 kW / t, and the depth of the hot metal dent by the top blowing oxygen jet ( L) and the method of reducing the ratio (L / L0) of the hot metal depth (L0) to 0.02 or less, even when the amount of iron oxide added is reduced in the hot metal pretreatment (% T -Fe) can be secured, and it has been found that the dephosphorization reaction is improved without adding a sooting agent such as CaF 2 .
[0007]
Here, the reason for defining the conditions as described above will be described. The reason for setting the stirring power to 3.1 to 10.0 kW / t in the first half of the dephosphorization treatment is that if it is less than 3.1 kW / t, the mass transfer of phosphorus in the hot metal is insufficient and the dephosphorization efficiency is reduced and the treatment is performed. This is to cause a significant increase in time. When the stirring power exceeds 10.0 kW / t, the reduction of the generated FeO is promoted, and the dephosphorization efficiency decreases due to poor hatching of the CaO flux and the molten metal is scattered rapidly. This is because the yield decreases.
[0008]
Next, the reason why the bottom blowing stirring power is regulated to 1.2 to 3.0 kW / t and (L / L0) to 0.02 or less in the latter half of the dephosphorization process is that the oxygen potential is rapidly increased at the end of dephosphorization. This is because the dephosphorization efficiency is improved. For this reason, even when the stirring power is further reduced to suppress the reduction of (FeO) and L / L0 is reduced, the amount of iron oxide added decreases (% T-Fe) even when (% T-Fe) cannot be ensured (FeO) It promotes the generation of. Here, even when the operation is performed with the above processing pattern after the desiliconization processing is completed, the post-treatment phosphorus concentration is almost the same, but the processing time is significantly extended and the yield loss due to a significant increase in (% T-Fe), etc. Which is undesirable.
[0009]
The time required for desiliconization and dephosphorization varies slightly depending on the hot metal composition, the top blown oxygen lance structure, and the target phosphorus concentration, but is approximately 10 minutes. The latter half of the dephosphorization treatment is about 3 minutes before the end of the treatment. Think about it.
In this way, it is possible to obtain an efficient hot metal dephosphorization method that can maintain the oxygen potential without adding a hatching promoting substance and under any operating conditions.
[0010]
【Example】
Examples of operations according to the present invention will be given. Table 1 shows an example of operation in which the stirring power and L / L0 were variously changed, and Table 2 shows the processing time and component results at that time.
First, in the conventional method, 250 ton of hot metal containing Si = 0.34% and 45 ton of scrap are charged into a pretreatment furnace, and degassing and dephosphorization treatment is performed by blowing oxygen upward while adding 13 kg / t of CaO. It was. At this time, since the heat source was expected to be insufficient, the amount of iron oxide added was set at 2 kg / t. Stirring power and L / L0 were the operation examples shown in Table 1. In the conventional method, the stirring power and L / L0 at the end of dephosphorization are not changed, and CaF 2 is not added, so that the hatching of CaO is insufficient, and the phosphorus concentration after treatment is lowered to the target level of 0.033%. Things were difficult.
[0011]
Next, according to the method of the present invention, 247 t of hot metal containing Si = 0.32% and 48 t of scrap are charged into a pretreatment furnace, and oxygen is blown up while adding 12 kg / t of CaO to desiliconize and dephosphorize. Went. At this time, since the heat source was expected to be insufficient, the amount of iron oxide added was set to 1 kg / t. In the present invention, despite the absence of CaF 2 addition, the stirring power was reduced to 2.2 kW / t and L / L0 to 0.015 3 minutes before the completion of the dephosphorization treatment, so that the hatching of CaO was achieved. After sufficiently proceeding, the phosphorus concentration after treatment can be lowered to the target level of 0.017%.
[0012]
Comparative Example 1 is an example in which the operation was carried out under substantially the same hot metal conditions and raw material input as in the conventional method, but the stirring power and L / L0 were lowered at the initial stage of dephosphorization, and the final stage 3 minutes before the end of the dephosphorization process. In the pattern raised to 1, the phosphorus concentration after treatment was 0.028%, which was not lowered to the target phosphorus level. This is considered to be due to the recovery of phosphorus due to the decrease in FeO at the end of dephosphorization.
Comparative Example 2 is an example in which the operation was performed under the same hot metal conditions and raw material input amount as in the method of the present invention. In this example, the stirring power and L / L0 were reduced from the initial stage of dephosphorization. Although the concentration was 0.017% and could be lowered to the target phosphorus level, the mass transfer of phosphorus due to a decrease in the stirring power was insufficient, resulting in a significant increase in processing time and affecting the subsequent processing steps. Was exerted.
[0013]
[Table 1]
Figure 0003766577
[0014]
[Table 2]
Figure 0003766577
[0015]
【The invention's effect】
The present invention has made it possible to perform hot phosphorus dephosphorization with high efficiency.

Claims (2)

上底吹き転炉方式の予備処理炉に溶銑を装入し、CaOを添加しつつ、酸素を上吹きして脱珪・脱りん処理を連続して実施する方法において、脱珪処理終了後、脱りん処理後半に底吹き攪拌動力を3.1〜10.0kW/tから1.2〜3.0kW/tに低下させるとともに、上吹き酸素ジェットによる溶銑の凹み深さ(L)と、静止溶銑深さ(L0)の比(L/L0)を0.02以下まで低下させる方法を組み合わせることで、CaF等の滓化剤を添加することなく脱りん反応を向上させることを特徴とする溶銑の脱りん方法。In a method in which hot metal is charged into a top-bottom blowing converter pretreatment furnace and CaO is added, oxygen is blown up and desiliconization / dephosphorization processing is continuously performed. In the latter half of the dephosphorization process, the bottom blowing stirring power is reduced from 3.1 to 10.0 kW / t to 1.2 to 3.0 kW / t, and the hot metal dent depth (L) due to the top blowing oxygen jet and static By combining a method of reducing the hot metal depth (L0) ratio (L / L0) to 0.02 or less, the dephosphorization reaction is improved without adding a sooting agent such as CaF 2. Dephosphorization method of hot metal. 上底吹き転炉方式の予備処理炉に溶銑を装入し、CaOを添加しつつ、酸素を上吹きして脱珪・脱りん処理を連続して実施する方法において、脱珪外酸素原単位が3.0 Nm /t 以降に、底吹き攪拌動力を3.1〜10.0kW/tから1.2〜3.0kW/tに低下させるとともに、上吹き酸素ジェットによる溶銑の凹み深さ(L)と、静止溶銑深さ(L0)の比(L/L0)を0.02以下まで低下させる方法を組み合わせることで、CaF等の滓化剤を添加することなく脱りん反応を向上させることを特徴とする溶銑の脱りん方法。It was charged with the upper bottom blowing hot metal to pretreatment furnace of the converter type, while adding CaO, in a method carried out continuously top-blown to desiliconization, dephosphorization process oxygen, de珪外oxygen consumption rate After 3.0 Nm 3 / t , the bottom blowing stirring power is reduced from 3.1 to 10.0 kW / t to 1.2 to 3.0 kW / t, and the depth of the hot metal dent by the top blowing oxygen jet (L) and a method of reducing the ratio (L / L0) of the hot metal depth (L0) to 0.02 or less, thereby improving the dephosphorization reaction without adding a caustic agent such as CaF 2 A dephosphorization method for hot metal, characterized in that
JP2000038389A 2000-02-16 2000-02-16 How to remove hot metal Expired - Fee Related JP3766577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000038389A JP3766577B2 (en) 2000-02-16 2000-02-16 How to remove hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038389A JP3766577B2 (en) 2000-02-16 2000-02-16 How to remove hot metal

Publications (2)

Publication Number Publication Date
JP2001234221A JP2001234221A (en) 2001-08-28
JP3766577B2 true JP3766577B2 (en) 2006-04-12

Family

ID=18562134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038389A Expired - Fee Related JP3766577B2 (en) 2000-02-16 2000-02-16 How to remove hot metal

Country Status (1)

Country Link
JP (1) JP3766577B2 (en)

Also Published As

Publication number Publication date
JP2001234221A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
RU2238331C2 (en) Method for processing of slag or slag mixture
JPH11158526A (en) Production of high p slag
JP4616790B2 (en) Steelmaking slag treatment method
JP3766577B2 (en) How to remove hot metal
JP4507429B2 (en) Melting method of low phosphorus cake
JP6627601B2 (en) Hot metal dephosphorizer and method
JPS58147506A (en) Preliminary treatment of molten iron
JPH05148525A (en) Treatment of molten iron
JP3671000B2 (en) Dephosphorization method for hot metal
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP2556052B2 (en) Method for producing molten stainless steel by smelting reduction
JP4411934B2 (en) Method for producing low phosphorus hot metal
JPS61235506A (en) Heating up method for molten steel in ladle
JP3776778B2 (en) Method of removing vanadium from molten iron
JP3823595B2 (en) Hot metal refining method
JP7099657B1 (en) Refining method of molten iron and manufacturing method of molten steel using it
CN115537491B (en) Converter converting method of low-temperature low-silicon molten iron
JP4759832B2 (en) Hot phosphorus dephosphorization method
JPH0841516A (en) Pre-refining method
JPH0543924A (en) Secondary combustion blow-refining method
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
JP2615728B2 (en) Decarburization method for Cr-containing pig iron
CN114292981A (en) Method for smelting high-temperature low-manganese steel in later-stage converter campaign
JP2005325389A (en) Method for refining molten iron
JPS63223112A (en) Smelting and reduction method for iron ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R151 Written notification of patent or utility model registration

Ref document number: 3766577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees