JP3765983B2 - Lactobacillus strains that can prevent diarrhea caused by pathogenic bacteria and rotavirus - Google Patents

Lactobacillus strains that can prevent diarrhea caused by pathogenic bacteria and rotavirus Download PDF

Info

Publication number
JP3765983B2
JP3765983B2 JP2000603691A JP2000603691A JP3765983B2 JP 3765983 B2 JP3765983 B2 JP 3765983B2 JP 2000603691 A JP2000603691 A JP 2000603691A JP 2000603691 A JP2000603691 A JP 2000603691A JP 3765983 B2 JP3765983 B2 JP 3765983B2
Authority
JP
Japan
Prior art keywords
cells
rotavirus
support material
culture
milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000603691A
Other languages
Japanese (ja)
Other versions
JP2002537867A5 (en
JP2002537867A (en
Inventor
ルニエロ、ロベルト
ブルーソウ、ハラルド
ロシャ、フローレンス
デル ヴァイト、ティエリイ フォン
− スペリセン、ステファニイ ブルム
− リシャール ネーゼ、ジャン
セルバン、アラン
Original Assignee
ソシエテ デ プロデユイ ネツスル ソシエテ アノニム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP99104922A external-priority patent/EP1034787A1/en
Priority claimed from EP99104924A external-priority patent/EP1034788A1/en
Application filed by ソシエテ デ プロデユイ ネツスル ソシエテ アノニム filed Critical ソシエテ デ プロデユイ ネツスル ソシエテ アノニム
Publication of JP2002537867A publication Critical patent/JP2002537867A/en
Publication of JP2002537867A5 publication Critical patent/JP2002537867A5/ja
Application granted granted Critical
Publication of JP3765983B2 publication Critical patent/JP3765983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/36Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • A23G9/363Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing microorganisms, enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/06Treating cheese curd after whey separation; Products obtained thereby
    • A23C19/061Addition of, or treatment with, microorganisms
    • A23C19/062Addition of, or treatment with, microorganisms using only lactic acid bacteria, e.g. pediococcus, leconostoc or bifidus sp., or propionic acid bacteria; Treatment with non-specified acidifying bacterial cultures
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/065Microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/104Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2270/00Aspects relating to packaging
    • A23C2270/05Gelled or liquid milk product, e.g. yoghurt, cottage cheese or pudding being one of the separate layers of a multilayered soft or liquid food product
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/175Rhamnosus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S426/00Food or edible material: processes, compositions, and products
    • Y10S426/807Poultry or ruminant feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/853Lactobacillus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Dairy Products (AREA)
  • Confectionery (AREA)
  • Cereal-Derived Products (AREA)

Description

【0001】
本発明はラクトバチルス属の新規微生物に関し、これらの微生物は病原菌およびロタウイルスによりひき起こされる下痢の予防に有用である。特に本発明は摂取できる支持物質の製造のためにこの微生物の使用およびこの微生物を含む組成物に関する。
【0002】
主要代謝成分として乳酸を産生する微生物は古くから知られている。これらの細菌はそれぞれ乳または乳加工工場に、生きている植物や腐朽植物に、またヒトおよび動物の腸に見出すことができる。「乳酸菌」と要約されるこれらの微生物はむしろ不均質性群を表わし、例えばラクトコッカス、ラクトバチルス、ストレプトコッカス、ビフィドバクテリウム、ペディオコッカス属などを含む。
【0003】
乳酸菌は低pHの利益を受ける食品の保存に、および腐敗菌の生育を阻害するその発酵活性中産生する発酵産物の作用に対し発酵剤として利用されてきた。このため、乳酸菌はチーズ、ヨーグルトおよび乳からの他の発酵乳製品のような各種の異る食品の製造に使用されている。
【0004】
ごく最近乳酸菌は、ある種の菌株が摂取によりヒトおよび動物に有用な性質を示すことが分かったことで多大の注意を引いた。特にラクトバチルスまたはビフィドバクテリウム属の特定菌株は腸粘膜にコロニーを作り、かつヒトおよび動物の生活状態の維持に役立ちうることが分かった。
【0005】
この点で、ヨーロッパ特許0768375号明細書は腸フローラに移植できかつ腸細胞に付着できるビフィドバクテリウム属の特定菌株を開示する。これらのビフィズス菌は免疫調節を助け、かつ病原菌が腸細胞に付着することを競合的に排除することができ、したがって個人の健康の維持に役立つことが報告されている。
【0006】
最近の数年間、プロビオチック剤として乳酸菌の潜在的使用に対し研究が集中した。プロビオチックは、腸内の天然ミクロフローラを保持することにより個人の健康を増進する生育可能な微生物製剤であると考えられる。微生物製剤はその有効な微生物およびその作用様式が既知である場合、プロビオチックとして通常許容できる。プロビオチックは腸粘膜に付着し、腸管にコロニーを形成し、同様にその上に有害な微生物の付着を防止すると考えられる。これらの作用に対する決定的必要条件は、乳酸菌が適当かつ生育しうる形で腸粘膜に到達しなければならず、かつ胃腸管の上部で、特に胃で普通の低pHの影響により破壊されないことにある。
【0007】
この点で、WO97/00078号明細書はこのようなプロビオチックとしてラクトバチルスGG(ATCC 53103)と呼ばれる特定の菌株を開示する。本微生物は食品に由来する過敏症反応を予防または治療する方法において特に使用され、この方法ではペプシンおよび/またはトリプシンにより加水分解処理された食品物質を受容者に投与するものである。選択されたラクトバチルス菌株は付着性およびコロニー形成性を示し、かつプロテアーゼ酵素系を示すとして記載され、投与される食品に含有されるタン白物質は特定のラクトバチルス菌株が分泌するプロテアーゼによりさらに加水分解される。この文献に記載の方法は、結局腸によりもはやアレルギー物質の実質量を示さないタン白物質を吸収することになる。
【0008】
さらに、ヨーロッパ特許0577903号明細書にはヘリオバクター・ピロリの作用と関連する潰瘍の治療または予防処置用に意図された支持物質の製造に、潰瘍の発現に認知された原因であるヘリオバクター・ピロリに取って代る能力を有するような乳酸菌の使用について言及されている。
【0009】
介在するWO99/29833号明細書には、確定した大きさの3つのプラスミドをもつ特別の菌株、LMGP17806が記載される。この菌株はサルモネラ・ティフィムリウムによる侵入から腸細胞を防止できることを記載する。
【0010】
乳酸菌の特定菌株が有し得る有用な性質を認識して、ヒトおよび/または動物の生活状態に有利である付加的乳酸菌菌株に対する願望が業界にある。
従って、本発明の課題はヒトおよび/または動物に有利な新しい性質を示す付加的細菌菌株を供することである。
【0011】
上記問題は新規微生物、すなわち下痢を起こす病原菌による腸のコロニー形成を予防しかつロタウイルスによる腸上皮細胞の感染を予防しうる特性を有するラクトバチルス属に属する乳酸菌を供することにより解決された。好ましい態様によれば、このラクトバチルス菌株は宿主生物の腸粘膜に付着することができ、そしてそこに本質的にコロニーを形成することができるものである。
【0012】
別の好ましい態様によれば、このラクトバチルス菌株は0.4%までの胆汁酸塩の存在下で生育することができるので、容易に胃腸管を通過でき、本質的に活性のままでとどまることができる。
【0013】
他の好ましい態様によれば、本乳酸菌はラクトバチルス・ラム、サスまたはラクチトバチルス・パラカゼイ、好ましくはラクトバチルス・パラカゼイから選択され、一層好ましくはラクトバチルス・パラカゼイCNCM I−2116である。
【0014】
本発明の微生物は次の性質を有することが分った。即ち、グラム陽性、カタラーゼ陰性、NH3形成アルギニン陰性およびCO2産生陰性である。これらはL(+)乳酸を産生し、約0.4%までの濃度の胆汁酸塩の存在下で生育でき、かつロタウイルスによる上皮細胞の感染を本質的に予防できる。
【0015】
新規微生物は各種摂取可能な支持物質、例えば乳、ヨーグルト、カード、発酵乳、乳をベースとする発酵製品、発酵穀類をベースとする製品、乳をベースとする粉末、乳児用調製粉乳の製造に使用でき、約105cfu/g〜約1011cfu/gの量で支持物質に含ませることができる。本発明において、各語cfuは「コロニー形成単位」を示し、寒天プレート上の微生物数により示される細菌細胞数として規定される。
本発明はまた上記特性を有する少なくとも1つのラクトバチルス菌株を含有する食品または医薬組成物を供する。
【0016】
本発明の食品組成物の製造に対し、本発明による少なくとも1つのラクトバチルス菌株は適当な支持物質に約105cfu/g〜約1011cfu/g、好ましくは約106cfu/g〜約1010cfu/g、一層好ましくは約107cfu/g〜約109cfu/gの量で添加される。
【0017】
医薬製剤の場合、製品は錠剤、細菌液体サスペンジョン、乾燥経口サプリメント、含水経口サプリメント、乾燥経管栄養または含水経管栄養などの形で製造することができ、そこに添加されるラクトバチルス菌株量は1012cfu/gまでの範囲、好ましくは約107cfu/g〜約1011cfu/g、一層好ましくは約107cfu/g〜約1010cfu/gである。
【0018】
固体の腸における新規微生物の活性は当然用量依存である。すなわち、上記食品物質または医薬組成物を摂取することにより新規微生物の量が多い程、微生物の保護活性および/または治療活性は高い。新規微生物は人類および動物には有害でなくかつ最終的に乳児の***物から単離されるので、本質的に個体の腸の高割合が新規微生物によりコロニー形成できるようにその高量を添加できる。
【0019】
図中、
図1は細菌菌株によるロタウイルス保護性を評価するために選別する細胞培養の概略図を示す。
図2は異る生育培地のL.カゼイ菌株CNCM I−2116(ST11と呼ぶ)の酸性化を示す。
図3は10℃で30日間測定したL.カゼイ菌株ST11の生存割合を示す。
図4はST11の連続稀釈により細胞を培養した後骨髄由来のマウス付着細胞の1L−12およびIL−10のmRNAパターンを示す。
図5はIL−4産生が減少したことによるTh2分化の結果を示す。
図6は培養ST11細胞を、病原性大腸菌が上皮細胞に付着するのを防止する試験で使用された細胞培養実験結果の概畧を示す。
図7はST11培養物の上澄液を、病原性大腸菌が上皮細胞に付着するのを阻止する試験で使用する細胞培養実験結果の概畧を示す。
図8は培養ST11細胞を、サルモネラ・チフィムリウムが上皮細胞中に侵入するのを阻止する試験で使用する、細胞培養実験結果の概畧を示す。
図9はST11培養物の上澄液を、サルモネラ・チフィムリウムが上皮細胞中に侵入するのを阻止する試験で使用する、細胞培養実験結果の概畧を示す。
【0020】
本発明に導く広汎な研究中、発明者らは乳児***物を調査し、そこから多種の異る細菌菌株を単離した。これらの菌株は続いてロタウイルスおよび下痢を引き起こすことが既知の病原菌による上皮細胞の感染を防止するその能力を試験した。
【0021】
ラクトバチルス、ラクトコッカス、ストレプトコッカスを含む数種の菌属の阻害活性を選別した。試験は本質的にヒトのウイルス性下痢の主要な病原体を表わす3つのロタウイルスセロタイプ(セロタイプG1、G3およびG4)および感染個体に下痢を起こす代表的病原性微生物として病原性大腸菌およびサルモネラ・チフィムリウムにより行なった。
【0022】
各種乳酸菌はMRS、Hugo−JagoまたはM17培地のような適当な培地でこれらの最適生育温度に相当する約30°〜40℃の温度で生育させた。定常生育に到達後、細菌は遠心分離して集め、生理的食塩水に再懸濁した。異る試験別に細菌細胞は冷凍貯蔵した(−20℃)。
【0023】
ロタウイルス試験
各種ロタウイルスのストックを集密的細胞単層の感染により調製した。ロタウイルスは感染前に培養した。細胞は20の組織培養感染用量により感染させた。抗−ロタウイルス特性を評価するために、2つの異るプロトコルを適用した。1つのプロトコルによれば各種細菌菌株はロタウイルスとの直接の相互作用を試験し、一方第2プロトコルでは細菌は細胞性ロタウイルス受容体と相互作用する菌株を選別した。第1プロトコルは各細菌サスペンジョンを異るロタウイルス菌株と接触させ、ついで適当な培地で培養することを含んだ。その後、ウイルス−細菌混合物はヒト未分化結腸腺腫細胞HT−29の細胞単層に適用し、そして培養を続けた。次にウイルス複製を試験した。第2プロトコルは先ず各細菌サスペンジョンをヒト未分化結腸腺腫細胞HT−29の細胞単層と一緒に培養し、次にウイルスを添加するものである。連続培養後ウイルス複製を試験した。ロタウイルスの複製は感染細胞のロタウイルスタン白の組織−免疫学染色により容易に評価できる。ロタウイルスを単独接種した細胞と比較して、ロタウイルス+指示細菌を接種した細胞カルチャーで感染細胞数が90%まで減少した場合、ロタウイルスの阻害効果は供試細菌によるものとされた。
【0024】
最初に単離した合計260種の細菌菌株のうち単に9種が本質的にロタウイルス複製を阻害することが分った。異る細菌はラクトバチルス属亜種ラムノサスまたはパラカゼイに属することが確かめられた。ブタペスト條約により寄託され、寄託番号NCC2461(I−2116)を受けたラクトバチルス・カゼイST11と命名された1菌株は、ロタウイルスによるヒト細胞の感染防止に非常に有効であることが分った。さらに、この特別の菌株は各種培地で酸性化を示すことから、すぐれた生育性を示す。本菌株はまた約10℃の低温で貯蔵中生存割合に関しすぐれた性能を示し、これにより冷蔵条件で貯蔵される食品または医薬組成物に含まれるすぐれた候補対象になる。
【0025】
抗−病原菌試験
抗−細菌性を評価するために、次のアプローチを選択した。1プロトコルによれば、本発明の培養ラクトバチルス菌株は腸細胞に下痢を起こす病原菌の付着または腸細胞中へのその侵入を防止するその能力について試験した。このため、腸細胞を病原菌および本発明の培養ラクトバチルス菌株と接触させ、付着または侵入の各割合を評価した。第2プロトコルによれば、本発明のラクトバチルス菌株の細胞培養物の上澄を病原性微生物と一緒に腸細胞に添加し、付着または侵入のそれぞれの割合を評価した。実験中、培養したラクトバチルスおよび上澄は腸細胞に付着および細胞中への侵入の双方の防止に非常に有効であることの証拠を示すことができ、これは新規微生物が分泌する代謝化合物が病原菌に関し抗−下痢活性に寄与しているらしいことを示している。
【0026】
上記発見の他に、本菌株は意外なことに異る免疫メディエーターの合成にインパクトを有することで抗−アレルギー性も示すことも分った。
【0027】
体液性免疫応答およびアレルギー反応はタイプ2フェノタイプ(Th2)を有するCD4+T細胞により媒介されることが一般に認められる。Th2−細胞は高レベルのインターロイキン4(IL−4)、IgE(アレルギー反応に含まれる主要な抗体クラスである)の分泌に必要なサイトカインを産生することで特徴づけられる。
【0028】
Th2細胞の分化はIFN−r、CD4+T細胞の相互に排他的のTH1サブセットから生ずる特別のサイトカインにより損なわれる。このTH1細胞は順次インターロイキン12(IL−12)により強く誘発される。これと対照的にIL−10、別のサイトカインはTH1細胞の増殖に強い抑制インパクトを有することが分ったから、免疫−抑制機作に役割を演ずると思われる。
【0029】
要約すれば、IL−12およびIL−10の双方はTh1サブセットの発生に影響を与えることにより、CD4+T細胞の発生に強い調節効果を有する。IL−12はTh1分化の誘発に対し鍵となる調整サイトカインであるから、Th2応答の発生を抑止する。従って、Th2細胞を抑止する主な道は補助細胞によるIL−12合成の刺激に見られる。
【0030】
LPSのようなグラム陰性菌のいくつかの成分はマクロファージおよび樹枝状細胞のような付着細胞に高レベルのIL−12を誘発することは周知である。一貫して、グラム陰性菌はCD4+T細胞の分化をTh1フェノタイプの方向に強くかたよらせることができることが分った。
【0031】
本発明のラクトバチルス菌株の例として、微生物ST11はCD4+T細胞の分化の調節に含まれるサイトカインの誘導の潜在的な役割を試験した。特に、Th2分化中のCD4+T細胞のフェノタイプに及ぼすST11の効果が研究された。
【0032】
この点で骨髄由来のマウス付着細胞のこれら2つの調節サイトカインをコードするmRNAの合成を誘導するST11の能力は4つの他のラクトバチルス菌株および対照のグラム陰性菌(大腸菌K12)と比較した。mRNAは109〜107cfu/mlの範囲の細菌の連続稀釈した細胞を6時間培養後、半定量的RT−PCRにより測定した。
【0033】
すべてのラクトバチルス菌株は或る程度までIL−12mRNAの転写を誘導できるが、ST11は最強の誘導物質であることが分った。強いPCRシグナルとして最低細菌用量でさえ検出できるからである。実際に、IL−12mRNA転写を誘導するST11の能力は大腸菌と同じくらい強かった。IL−10mRNAの誘導はIL−12mRNAより一般に弱く、より高い細菌用量でのみシグナルは検出できた。それでもやはりST11は他のラクトバチルスおよび大腸菌対照と比較してIL−10mRNAの最強の誘導物質であった。
【0034】
すなわち、ST11はCD4+T細胞の分化に含まれる免疫−調節サイトカインの誘導に有効であると思われる。IL−12を誘導するその強い能力はTh2応答を阻害する候補であり、その測定可能なIL−10の誘導は炎症性応答を防止できる。
【0035】
上記知見の他に、ST11がTh2分化中のCD4+T細胞に対する阻害効果およびTh1機能に対するプラス効果を示すかどうかも測定された。十分に樹立した分化培養系が使用され、そこで前駆体CD4+T細胞はポリクローナル的に活性化させかつ培養培地に供された共通刺激(co−stimuli)の型により、Th1またはTh2分化を経るように調節させた。Th1/Th2分化は7日の最初の培養中誘発され、その後細胞は培地単独を有する第2培養で2日間再刺激され、そして特異的フェノタイプ(Th1またはTh2)の獲得は上澄で生産されたサイトカインの型(IFN−r対IL−4)を測定することにより評価した。
【0036】
BALB/cバックグラウンドのマウスからの前駆体CD4+T細胞は中性条件下(1ry培養で培地単独)で活性化後優勢なTh2フェノタイプ(2ryカルチャー上澄の高IL−4、低IFN−r)に優先的に分化することが知られる。このフェノタイプは1ryカルチャーのIL−4にブロッキング性モノクロナール抗体を添加すると完全にTh1パターン(高IFN−r、低IL−4)に復帰できた。
【0037】
Th2阻害に対しST11の潜在的な役割を調査するために、BALB/cマウスからの精製前駆体CD4+T細胞は1ry培養中補助細胞として骨髄付着細胞の存在下で活性化させた。これらの細胞は培地単独で、または1mg/ml LPS、または108cfu/ml ST11、または108cfu/mlの別のラクトバチルスの存在で共同培養した。この後細胞を洗浄し、CD4+T細胞はもう一度精製し、そして培地単独で2ry培養で再刺激させた。分化CD4+T細胞により生成されたサイトカインは2日後測定した。予期されたように、培地単独の存在下で分化した細胞は優勢なTh2フェノタイプを示した。1ry培養にST11を添加すると、IL−4の生産が8倍の減少となるように、Th2分化の結果を調節した。この阻害はLPSの存在下で分化した細胞から誘導された培養で観察されたものと同様の大きさのものであった。対照的に、他のラクトバチルス菌株はIL−4量に測定可能なインパクトを有しなかった。興味あることに、IFN−r量は1ry培養でST11の添加により増加しなかった。
【0038】
要約すると、ST11はTh2分化を経るCD4+T細胞によるIL−4産生を特異的に損なったが、IFN−r分泌を有意に増加しなかった。ST11がIFN−r生産を増加しない事実はIL−10を誘導するその能力によるが、その結果抗−Th2活性にも拘らず低炎症性インパクトを保持できる。
結果として、ST11はすぐれた抗−Th2プロフィルを有するラクトバチルス菌株であり、このプロフィルにより抗−アレルギー、プロビオチック活性を有する細菌としてその用途のすぐれた候補たらしめていることが分った。
【0039】
本発明は例としてここに記載する。
培地および溶液
MRS(ディフコ)、
Hugo−Jago(トリプトン ディフコ 30g/l、酵母抽出物 ディフコ 10g/l、ラクトース ディフコ 5g/l、KH2PO4 5g/l、牛肉抽出物 ディフコ 2g/l、寒天 ディフコ 2g/l)、
M17(ディフコ)、
M199(セロメッド)、
リンゲル液(オキソイド)、
PBS(NaCl 8g/l,KCl 0.2g/l,Na2HPO4 1.15g/l,KH2PO4 0.2g/l)、
トリプトース ホスフェート ブロス(フロー)トリプシン−EDTA溶液(セロメッド)。
ヒトロタウイルス Wa(G1 セロタイプ)およびシミアン ロタウイルスSA−11(G3 セロタイプ)は、P.A.オフィット、フィラデルフィア小児病院、米国から得た。DS−IxRRV リアソルタント ウイルスはA.カピキアン、NIH ベセスダ、米国から得た。セロタイプ4ヒト ロタウイルス ホチはP.バックマン、ミュンヘン大学、ドイツから得た。大腸菌DAEC C1845はワシントン大学、シアトルから得、かつ大腸菌JPN 15はメリーランド大(米国)のワクチン開発センターから得た。サルモネラ・チフィムリウム菌株SL1344はスタンフォード大の微生物学部、米国から得た。
【0040】
例1
乳児***物から乳酸菌の単離
新しい***物を生後15〜27日の健康な乳児16人のおしめから集めた。1gの新しい***物は実験室に輸送するため嫌気条件下に置き、微生物分析は試料収集後2時間内にリンゲル液に連続稀釈し、選択培地に置くことにより行なった。MRS寒天+抗生物質(ホスフォマイシン 80μg/ml、スルファメトキサゾール 93μg/ml、トリメトプライム 5μg/ml)は37℃、48時間培養し、乳酸菌を単離するために使用した。コロニーをランダムに採取し、精製した。生理学的および遺伝的特徴づけを単離物について行なった。
【0041】
例2
抗−ロタウイルス活性に対し細胞培養の菌株の試験
ラクトバチルス、ラクトコッカス、ストレプトコッカス属を含む数種の乳酸菌を選択し、細胞培養阻害試験で抗−ロタウイルス活性を示したものに対し試験した。ラクトコッカス属では2つの亜種(Lc.ラクチス亜種ラクチスおよびクレモリス)から成る単一種(Lc.ラクチス)により表わした。合計30菌株を試験した。ストレプトコッカス属では45菌株で1種(S.サーモフィラス)を表わした。ロイコノストックおよびプロピオニバクテリウム属では単一種(6菌株)を表わしたが、エンテロコッカスおよびスタフィロコッカス属では各2種で合計17菌株を表わした。
全体で260個の菌株についてロタウイルス阻害活性を試験した。
第1プロトコル
30μlの細菌サスペンジョン(平均3×106細菌を含有)は10%トリプトース ホスフェート ブロス(フロー)および5%トリプシン−EDTA溶液(セロメッド)(HT−29細胞の場合1:4に稀釈)および補充M199培地では100μlウイルスを補充した70μl M199培地と混合した。ウイルス−細菌混合物は4℃で1時間および37℃で1時間培養した。96の穴を有する微量定量プレートの集密的細胞単層として生育するヒト未分化結腸腺腫細胞HT−29の細胞はリン酸塩緩衝生理的食塩水(PBS、pH7.2)で3回洗浄した。ウイルス−細菌混合物は細胞に適用し、微量定量プレートはCO2インキュベータ(ヘレウス)で18時間培養した。ウイルスの複製は下記のように試験した。
第2プロトコル
30μlの細菌サスペンジョン(前記)は10% トリプトース ホスフェート ブロス(フロー)および5% トリプシン−EDTA溶液(セロメッド)(HT−29細胞の場合1:4に稀釈)を補充した70μl M199培地と混合し、そして微量定量プレートの細胞に直接適用した。37℃で1時間培養後、補充したM199培地の100μlのウイルスを微量定量プレートの細胞に添加した。培養はCO2インキュベータ(ヘレウス)で18時間継続した。ウイルスの複製は下記のように試験した。
ロタウイルス複製は下記のように感染細胞のロタウイルス タン白の組織−免疫染色により評価した。
感染1日後、細胞培養培地は微量定量プレートから捨て、細胞は無水エタノールで10分固定した。エタノールは捨て、プレートは3回PBS緩衝液で洗浄した。次にウサギに産生し(ローザンヌのISREC大学から得た)、PBSに1:2000に稀釈した50μlの抗−ロタウイルス血清(主としてVP6 タン白に向けられる)を各穴に添加し、穴の乾燥を防止するためにカバースリップをかぶせて37℃で1時間培養した。抗血清はその後捨て、プレートはPBSにより3回洗浄した。山羊に産生しかつペルオキシダーゼに結合した(GAR−IgG−PO、ノルディック)50μlの抗−ウサギ免疫グロブリンG(IgG)抗血清はPBSに1:500に稀釈して各穴に添加し、そしてプレートは37℃で1時間培養した。血清は捨て、プレートはもう一度PBSにより3回洗浄した。次に100μlの次の基質混合物を各穴に添加した:10mlの0.05Mトリス−塩酸塩(pH7.8)、1mlのH22(30%容、H2Oに1:600に稀釈、メルク)および200μlの3−アミノ−9−エチルカルバゾール(−80℃で200μl試料で貯蔵した0.1g/10ml エタノール、A−5754、シグマ)。プレートは室温で少なくとも30分インキュベートした。基質は捨て、穴は200μlのH2Oを満たして反応を停止させた。感染細胞病巣は倒立顕微鏡(ダイアバート、レイツ)により計数した。
ごく少数の細菌菌株がロタウイルスと相互作用した。初めに選択した260個の細菌細胞のうち単に9個のみが少なくとも1つのプロトコルのロタウイルス複製を阻害した。ラクトバチルス・パラカゼイNCC2461(ST11)はセロタイプ1ロタウイルス、セロタイプ3ロタウイルスSA11およびセロタイプ4ロタウイルスホチに対し非常に高い活性を示した。
【0042】
例3
Caco−2細胞の培養
(病原性)細菌阻害試験では、細胞系Caco−2を腸のモデルとして使用した。この細胞系は例えば、ポーラリゼーション、腸酵素の発現、特別構造のポリペプチドの生産のような腸細胞に対し特有の特徴を提示する。
この細胞は3つの異る支持体、すなわち生育および増殖用にプラスチック皿で(25cm2、コーニング)、付着試験では脱脂および滅菌した6個の穴を有するガラスプレート(22×22mm、コーニング)および阻害試験では24個の穴を有するガラスプレート(コーニング)で生育させた。
培養2日後に培地(DMEM)を毎日変えた。使用前培地は100U/mlペニシリン/ストレプトマイシン、1μg/ml アンホテリンおよび56°で30分不活性化した20%FCSを補充した。培養は90%空気と10%CO2を含む大気で37℃で行なった。細胞は6日毎に分離した。細胞は0.25%トリプシンおよび3mMEDTAを含むpH7.2のPBSで処理して穴の壁から分離した。トリプシンの効果を中和するために、等容積のFCSを生成細胞サスペンジョンに添加し、混合物は遠心分離し(1000rpmで10分)、ペレットは再び培養物に入れた。約3.5×105細胞を新しい培養びんに移し、集密的細胞単層を得るまで培養した。
【0043】
例4
細菌の培養
ST11:
細菌菌株は15%グリセロールを含有するMRS培地に−20℃で貯蔵した。菌株はMRSに嫌気条件下で成育し、阻害試験に使用する前24時間の間隔で新しい培地に2回移した。この試験では、2×109cfu/mlの濃度を使用した。
上澄は20,000rpmで1時間遠心分離して集め、得た上澄はその後細菌の存在を点検した。
大腸菌:
2つの大腸菌菌株、大腸菌DAEC C1845(拡散付着大腸菌)および大腸菌JPN15(EPEC、エンテロ・パソジェニック大腸菌)を使用した。
解凍後、最初の継代培養はCFA−ミュラーヒントン寒天培地で行ない、これは細菌による付着率を表現するのに適する。
各実験前に細菌細胞は37℃で培養し、新しい培地への移送は各24時間後に2回行なう。JPN15はアンピシリン耐性遺伝子を有するので、この抗生物質は生育中の選択に使用した。
サルモネラ:
サルモネラ・チフィムリウム菌株SL1344を実験に使用し、これはLB培地に使用前生育した。
【0044】
例5
大腸菌の阻害試験
新しい培地に第2継代培養後、病原菌菌株はLB培地で10μCi/mlのC14−アセテートを使用して放射性同位元素により標識した。この培地で菌株の培養は37℃で18時間行なった。
その後細菌サスペンジョンは遠心分離(1041g、15分)して、残留するC14−アセテートを含む上澄を除いた。ペレットを懸濁し、PBSで洗浄し、ついで細胞を1%無菌マンノースml当たり約108細胞の濃度で懸濁させた。マンノースは特別の付着を示さないことが分っている。
異る病原菌株(大腸菌)をCaco−2細胞(37℃、10%CO2、90%空気)の単層と3時間接触させた。同じ実験は上澄(20,000rpmで40分遠心分離して得た)を使用して行なった。
対照として病原菌はST11または培養上澄のそれぞれを同時添加せずにCaco−2単層と接触させた。
3時間の培養後、培地を変え、単層はPBSで3回洗浄した。各洗浄工程は本質的にすべての非特異的付着を除くためにPBS溶液の20×撹拌を含んだ。細胞はその後1mlの炭酸ナトリウムを添加しそして37℃で40分培養して溶解した。均質化後、試料(250ml)は5mlのシンチレーション流体(ヒオニック−フルオル パッカード)で稀釈し、計数した(パッカード2000)。病原性細胞のCaco−2細胞への付着率%は100%(付着、又は例6の侵入)にセットした対照に対し計算した。
【0045】
例6
サルモネラに対する阻害試験
サルモネラは表皮細胞に侵入しかつそこで増殖する細菌である。ST11の阻害活性を測定するために、サルモネラ・チフィムリウム菌株SL1344を上記のように14C−アセテート含有培地で培養し、例5記載の実験を行なった。
培養後、Caco−2細胞はPBSで洗浄してすべての非付着細胞を除いた。その後ゲンタマイシン(20μg/ml)を含有する培地を添加し、培養は37℃で1時間継続した。ゲンタマイシンはすべての菌体外微生物が殺されるように腸細胞に入りこまない抗生物質であり、一方腸細胞に既に侵入したサルモネラは生き残こる。PBSにより2回細胞を洗浄後、細胞は無菌蒸留水を添加して溶解し、放射能は例4に記載のように測定した。
例5および6の結果は図6〜9に示す。培養ST11細胞および培養上澄は下痢を起こす病原性微生物による腸細胞への付着および細胞中への侵入防止に非常に有効であった。
【0046】
例7
ST11の性質
ST11は人工胃液中で培養した。人工胃液はペプシン(3g/l)を無菌生理的食塩水(0.5% w/v)に懸濁し、pHをそれぞれ2.0および3に濃HClにより調整して製造した。ST11は上記培地で量を変えて生育させ、微生物の耐性を測定した。
結果は表1に要約する。

Figure 0003765983
ST11は乳酸菌の属で開示した方法により規定された次の性質を有する(Ed.B.J.B.Wood and W.H.Holzapfel,Blackie A&P)。
−グラム陽性
−カタラーゼ陰性
−NH3生成アルギニン陰性
−CO2産生陰性
−L(+)乳酸の産生
−約0.4%までの濃度の胆汁酸塩の存在で生育。
【0047】
例8
各種条件下のST11の生育
ST11はシュクロース(0,0.5,1または2%)または大豆ペプトン(0.5%)またはグルコース(0.5%)を補充したトマトをベースとする培地(蒸留水に水和した4%トマト粉末)に異る期間37℃で培養した。結果は図2に示す。
ST11はさらに米粉(3%)、小麦粉(2%)およびシュクロース(3%)から成る培地に2.5%の量で添加し、4.4のpHに達するまで37℃で培養した。冷却後、製品はビタミンCを添加または添加せずに包装し、10℃で貯蔵した。
【0048】
例9
マウス付着細胞のST11による1L−12および1L10−mRNAの合成の誘導
8週令の特別の病原体を含まないC57BL/6マウスの大腿骨および脛骨から骨髄を単離し、10%牛胎児血清、1mM L−グルタミン、12mMヘペス、0.05mM 2−メルカプトエタノール、100U/mlペニシリンおよび100μg/mlストレプトマイシン(すべての試薬はギブコから)を含有するRPMI培地(ギブコ)に2×106細胞/mlの濃度で、37℃で12時間、5%CO2大気で培養した。非付着細胞は温かい培地で3回連続洗浄して捨て、残こる付着細胞を集め、106細胞/mlの濃度で6時間細菌の存在または不存在下で培養した。6時間はLPSの応答でマウス付着細胞によるサイトカインmRNA合成の最適時点を表わすことは予め測定した。細菌は109〜107cfu/mlの範囲の異る濃度で添加した。細胞を生育し、上記のように貯蔵した。
6時間の培養期間の最後に、細胞は遠心分離により単離し、TRIzol試薬キット(gibcoBRL,Cat.No.15596−018)を使用し、メーカーの教示に従って溶解した。総RNAはイソプロパノール沈澱により単離し、200mMトリスpH8.3、25mM KCl、1μg/mlオリゴd(T)15(ベーリンガー マンハイム)、1mM DDT(ベーリンガー マンハイム)、4mMの各dNTP(ベーリンガー マンハイム)および40U/ml Rnasin(プロメガ)を含有する40−μl反応容量で200U逆転写酵素(スーパースクリプトII,BRL)を使用して42℃で90分cDNAに逆転写した。PCRプライマーおよび条件は既にコプフらが記載したものを使用した(ジャーナル・オブ・エクスペリメンタル・メディシン、1996年9月1日、184(3)、1127−36)。cDNA量はハウスキーピング遺伝子(β−2−ミクログロブリン)に特異的プライマーを使用して試料内で標準化した。PCR生成物は2%アガロースゲル上で分離し、バンドはUV下で分析した。
図4に示すように、ST11はもっとも強い1L−12および1L−10mRNAの誘導を示し、これは積極的なコントロール(腸菌)で観察されたレベルに匹敵できるものであった。最低細菌濃度(107cfu/ml)で最大の差が見られた。
【0049】
例10
ST11による1L−4合成の抑制
CD4+T細胞はミルテニ・バイオテク(Cat.No.492−01)からMiniMACSキットを使用して特定病原体未感染のBALB/cマウスの脾臓から精製した。CD4+T細胞は10%牛胎児血清、1mML−グルタミン、12mMヘペス、0.05mM 2−メルカプトエタノール、100U/mlペニシリンおよび100μg/mlストレプトマイシンを含有するRPMI培地に2×105細胞/mlの濃度で培養し、プレート−結合モノクローナル抗体と架橋結合することにより1週中活性化し、CD3(クローン 2C11)およびCD28(クローン37.51、双方の抗体はファーミンゲンから)を得た。この1ry培養中、CD4+T細胞は補助細胞として骨髄付着細胞(上記のように単離)と、および108cfu/ml ST11、または108cfu/ml Lal、または1mg/ml LPSと、または培地のみで同時培養した。この後、この細胞は洗浄し、CD4+T細胞はMiniMACSキット技術を使用してもう一度精製し、ついで培地のみを含有する2ry培養で再刺激した。分化CD4+T細胞により産生されたサイトカインは2日後サンドイッチELISA(エンドーゲンおよびファーミンゲンからのキット)を使用して上澄で測定した。
結果は図5に示す。培地のみの存在で分化した細胞は高レベルの1L−4を特徴とする優勢なTh2フエノタイプを示した。1ry培養物にST11を添加することにより、1L−4産生が8倍減少したように、Th2分化の結果を強く調節した。この阻害はLPSの存在で分化した細胞から誘導された培養物に認められるものと同様の大きさのものであった。これと対照的に、他のラクトバチルス菌株は1L−4レベルについて測定可能なインパクトを有しなかった。興味あることに、IFN−r量は1ry培養物にST11を添加することにより増加しなかった。
上記から分かるように、本発明の菌株は微生物の有用な性質を利用して食品および/または医薬品キャリアの製造に十分に準備できる。
【0050】
例11
ST11菌株はガテマラ市郊外のコンミュニティでこの地域の大部分の子供が経験する雨期の急性下痢疾病の媒介および体験に影響を与えるその能力に関し臨床試験を行なった。35〜70ヶ月令の合計203人の子供が研究に登録し、29日の供与期間にわたって1010の生菌(ST11)の目標用量を受け、または何も(偽薬)受けなかった。試料および偽薬の双方をそれぞれ選択した子供は栄養不十分のため年令に対する体重および年令に対する身長で典型的不足があった。
学令前の子供の供与試験の開始前、安全評価は試験管内および生体内研究に基づいて行なった。試験管内研究では食品適用に使用する他のラクトバチルスと同様の抗生物質耐性パターンを示したが、生体アミンの形成、ムチンの分解および胆汁酸塩の脱結合の可能性はない。42人の成人ボランティアを含む偽薬−調整臨床研究では、ST11は十分に許容され、そして皷腸、1日の便通の回数および便の固さのような監視される可能性のある発現のうち悪影響を全く誘導せず、血清の急性期タン白量は潜在的炎症反応に関し何らの懸念も起こさなかった。
試料および偽薬はネスレの製品技術センターで小袋に包装し、ガテマラに冷凍して船積みした。各10gの小袋はチョコレートフレーバ付与ビヒクルおよび0.2gのST11(1010cfu)、または偽薬の場合、0.2gの粉乳から成っていた。チョコレートフレーバ付与ビヒクルはココア粉末、糖、大豆レシチン、バニラおよびシナモンから成るものであった。小袋は使用前2時間まで4°〜6℃で貯蔵した。使用前、小袋はネスレが供する、細菌汚染の全くない100mlの水に溶解しなければならなかった。
適用されたプロトコルによれば、下痢は24時間中に3回以上の液体または未固形***の発生として規定された。下痢症状は下痢の証拠(24時間中に3回の下痢***)を提示した場合として規定された。その合計期間(時間で)は最初の3回の指標便通時から最初の有形便通の出現まで、または24時間排便のない期間までが計算された。「新しい」症状を有する子供では、前期症状の終るまで48時間経過しなければならなかった。そうでなければ、同じ症状の継続が考えられ、その場合全体の期間が評価に使用される。29日の観察期間中1回以上の実証された下痢の症状を経験するのは子供の場合であった。下痢症状の強さは産生した軟便の総回数を基準とした。症状のきびしさの要素は便通に血液、粘液または膿汁の存在、同時に伴なう発熱および嘔吐を包含する。24時間に7回の便通の烈しさ、または診療所、健康センター、または病院で健康専門職による介在が必要の場合も症状をきびしいものとして分類する。
下痢の症状が監視系によって診断される場合、下痢便通は症状に対し可能な病因病原体を確認するため顕微鏡試験および培養を行なうため収集した。試験品は試料が赤痢である場合、ロタウイルス抗原、(giardia,and E.histolytica)に対し、およびシゲラ、サルモネラ、アエロモナス、プレシオモナス・シゲロイデス、大腸菌、あるいはV.コレラに対し診断された。
試験期間中、製品試料は投与期間中に含まれる微生物の生存性を試験するため集めた。微生物は全試験中小袋中で生存可能な状態のままであり、試験の終了時にも小袋は水により再構成すると1010の生存可能な微生物を含むことが分かった。
プロビオチック微生物を含有する試料は対照群(偽薬)と比較して下痢の発生を約30%だけ減少できたことが試験により分かった。尚、また対照群は試料または偽薬のそれぞれを受けない通常の人以上に下痢発生数の減少を既に示した。この後者の発見は付加的の貴重な栄養と汚染のない水を受ける子供基準で一部説明できる。しかし、試験は現場で行われたので、ST11は生体内の下痢の発生を疑いなく低減できることを明らかに誘導できる。
【図面の簡単な説明】
【図1】 ロタウイルスに対し保護性を示す細菌菌株の細胞培養概略図である。
【図2】 異る培地におけるL.カゼイ ST11菌株の酸性化を示す。
【図3】 10℃、30日間のL.カゼイ ST11菌株の生存割合を示す。
【図4】 骨髄由来のマウス付着細胞の1L−12および1L−10のmRNAパターンを示す。
【図5】 1L−4産生の減少によるTh2分化を示す。
【図6】 ST11細胞による大腸菌の上皮細胞への付着阻害を示す。
【図7】 ST11カルチャー上澄による大腸菌の上皮細胞への付着阻害を示す。
【図8】 ST11細胞によるサルモネラ・チフィムリウムの上皮細胞への侵入防止を示す。
【図9】 ST11カルチャー上澄によるサルモネラ・チフィムリウムの上皮細胞への侵入防止を示す。[0001]
The present invention relates to novel microorganisms of the genus Lactobacillus, which are useful for preventing diarrhea caused by pathogenic bacteria and rotavirus. In particular, the invention relates to the use of this microorganism for the production of ingestible support materials and to compositions containing this microorganism.
[0002]
Microorganisms that produce lactic acid as a major metabolic component have been known for a long time. Each of these bacteria can be found in milk or milk processing plants, in living and decaying plants, and in the intestines of humans and animals. These microorganisms, summarized as “lactic acid bacteria”, rather represent a heterogeneous group and include, for example, Lactococcus, Lactobacillus, Streptococcus, Bifidobacterium, Pediococcus and the like.
[0003]
Lactic acid bacteria have been used as fermenting agents for the preservation of foods that benefit from low pH and for the action of fermentation products produced during their fermentation activity that inhibit the growth of spoilage bacteria. For this reason, lactic acid bacteria are used in the manufacture of a variety of different foods such as cheese, yogurt and other fermented dairy products from milk.
[0004]
Most recently, lactic acid bacteria have drawn great attention because it has been found that certain strains show useful properties in humans and animals upon ingestion. In particular, it has been found that certain strains of the genus Lactobacillus or Bifidobacterium can colonize the intestinal mucosa and help maintain the living conditions of humans and animals.
[0005]
In this regard, EP 0 768 375 discloses a specific strain of the genus Bifidobacterium that can be transplanted into intestinal flora and attached to enterocytes. These bifidobacteria have been reported to assist in immune regulation and to competitively eliminate the pathogenic bacteria from adhering to intestinal cells and thus help maintain personal health.
[0006]
In recent years, research has focused on the potential use of lactic acid bacteria as probiotic agents. Probiotics are thought to be viable microbial formulations that promote personal health by retaining the natural microflora in the gut. Microbial preparations are usually acceptable as probiotics if their effective microorganisms and their mode of action are known. Probiotics are thought to adhere to the intestinal mucosa and form colonies in the intestinal tract, as well as prevent the attachment of harmful microorganisms thereon. The decisive requirement for these actions is that the lactic acid bacteria must reach the intestinal mucosa in a suitable and viable form and are not destroyed by the effects of normal low pH in the upper part of the gastrointestinal tract, especially in the stomach. is there.
[0007]
In this regard, WO 97/00078 discloses a specific strain called Lactobacillus GG (ATCC 53103) as such a probiotic. The microorganisms are particularly used in methods for preventing or treating hypersensitivity reactions derived from foods, in which food substances hydrolyzed with pepsin and / or trypsin are administered to recipients. The selected Lactobacillus strains are described as exhibiting adherence and colony formation and exhibiting a protease enzyme system, and the protein substances contained in the administered food are further hydrolyzed by the protease secreted by the specific Lactobacillus strain. Disassembled. The method described in this document eventually absorbs protein substances that no longer show substantial amounts of allergens by the intestines.
[0008]
In addition, European Patent No. 0 577 903 describes the production of supporting substances intended for the treatment or prevention of ulcers associated with the action of Heliobacter pylori, which is a recognized cause of the development of ulcers. Reference is made to the use of lactic acid bacteria that have the ability to replace them.
[0009]
The intervening WO 99/29833 describes a special strain, LMGP 17806, with three plasmids of defined size. It is described that this strain can prevent enterocytes from invasion by Salmonella typhimurium.
[0010]
Recognizing the useful properties that certain strains of lactic acid bacteria may have, there is a desire in the industry for additional lactic acid bacteria strains that are advantageous for human and / or animal living conditions.
The object of the present invention is therefore to provide additional bacterial strains exhibiting new properties advantageous to humans and / or animals.
[0011]
The above problems have been solved by providing a novel microorganism, that is, a lactic acid bacterium belonging to the genus Lactobacillus, which has the characteristics of preventing intestinal colonization by pathogenic bacteria causing diarrhea and preventing infection of intestinal epithelial cells by rotavirus. According to a preferred embodiment, the Lactobacillus strain is capable of adhering to the intestinal mucosa of the host organism and essentially forming colonies therein.
[0012]
According to another preferred embodiment, the Lactobacillus strain can grow in the presence of up to 0.4% bile salts, so that it can easily pass through the gastrointestinal tract and remain essentially active. Can do.
[0013]
According to another preferred embodiment, the lactic acid bacterium is selected from Lactobacillus ram, Sus or Lactobacillus paracasei, preferably Lactobacillus paracasei, more preferably Lactobacillus paracasei CNCM I-2116.
[0014]
It has been found that the microorganism of the present invention has the following properties. That is, Gram positive, Catalase negative, NHThreeFormed arginine negative and CO2Production negative. They produce L (+) lactic acid, can grow in the presence of bile salts at concentrations up to about 0.4%, and can essentially prevent epithelial cell infection by rotavirus.
[0015]
New microorganisms are used to produce various ingestible support materials such as milk, yogurt, curd, fermented milk, fermented products based on milk, fermented cereal based products, milk based powders, infant formulas About 10Fivecfu / g to about 1011It can be included in the support material in an amount of cfu / g. In the present invention, each word cfu indicates “colony forming unit” and is defined as the number of bacterial cells indicated by the number of microorganisms on the agar plate.
The present invention also provides a food or pharmaceutical composition containing at least one Lactobacillus strain having the above characteristics.
[0016]
For the production of the food composition according to the invention, at least one Lactobacillus strain according to the invention is about 10Fivecfu / g to about 1011cfu / g, preferably about 106cfu / g to about 10Tencfu / g, more preferably about 107cfu / g to about 109Added in the amount of cfu / g.
[0017]
In the case of pharmaceutical preparations, the product can be manufactured in the form of tablets, bacterial liquid suspension, dry oral supplement, hydrous oral supplement, dry tube nutrition or hydro tube nutrition, etc., and the amount of Lactobacillus strain added to it is 1012up to cfu / g, preferably about 107cfu / g to about 1011cfu / g, more preferably about 107cfu / g to about 10Tencfu / g.
[0018]
The activity of new microorganisms in the solid intestine is naturally dose dependent. That is, the greater the amount of new microorganisms obtained by ingesting the food substance or pharmaceutical composition, the higher the protective activity and / or therapeutic activity of the microorganism. Since the new microorganisms are not harmful to mankind and animals and are ultimately isolated from infant excrement, high amounts can be added so that essentially a high percentage of an individual's intestine can be colonized by the new microorganisms.
[0019]
In the figure,
FIG. 1 shows a schematic diagram of a cell culture selected to evaluate rotavirus protection by bacterial strains.
FIG. 2 shows L. of different growth media. The acidification of casei strain CNCM I-2116 (referred to as ST11) is shown.
FIG. 3 is a graph showing L.P. The survival rate of casei strain ST11 is shown.
FIG. 4 shows the 1L-12 and IL-10 mRNA patterns of bone marrow-derived mouse adherent cells after cells were cultured by serial dilution of ST11.
FIG. 5 shows the results of Th2 differentiation due to decreased IL-4 production.
FIG. 6 shows an overview of the results of cell culture experiments used in the test for preventing cultured ST11 cells from attaching pathogenic E. coli to epithelial cells.
FIG. 7 shows an overview of the results of cell culture experiments in which ST11 culture supernatants are used in tests to prevent pathogenic E. coli from adhering to epithelial cells.
FIG. 8 shows an overview of the results of cell culture experiments in which cultured ST11 cells are used in a test that blocks Salmonella typhimurium from entering epithelial cells.
FIG. 9 shows an overview of the results of cell culture experiments in which the supernatant of the ST11 culture is used in a test that blocks Salmonella typhimurium from entering the epithelial cells.
[0020]
During extensive research leading to the present invention, the inventors investigated infant excreta and isolated a variety of different bacterial strains therefrom. These strains were subsequently tested for their ability to prevent infection of epithelial cells by rotavirus and pathogens known to cause diarrhea.
[0021]
The inhibitory activity of several species of fungi including Lactobacillus, Lactococcus and Streptococcus was selected. The study is based on three rotavirus serotypes (cellotypes G1, G3 and G4), which essentially represent the major pathogens of human viral diarrhea, and pathogenic E. coli and Salmonella typhimurium as representative pathogenic microorganisms that cause diarrhea in infected individuals. I did it.
[0022]
The various lactic acid bacteria were grown in a suitable medium such as MRS, Hugo-Jago or M17 medium at a temperature of about 30 ° to 40 ° C. corresponding to their optimum growth temperature. After reaching steady growth, the bacteria were collected by centrifugation and resuspended in physiological saline. Bacterial cells were stored frozen (−20 ° C.) for different tests.
[0023]
Rotavirus test
Various rotavirus stocks were prepared by confluent cell monolayer infection. Rotavirus was cultured before infection. Cells were infected with 20 tissue culture infectious doses. Two different protocols were applied to assess anti-rotavirus properties. According to one protocol, various bacterial strains were tested for direct interaction with rotavirus, while in the second protocol, bacteria selected strains that interacted with cellular rotavirus receptors. The first protocol involved contacting each bacterial suspension with a different rotavirus strain and then culturing in an appropriate medium. The virus-bacteria mixture was then applied to the cell monolayer of human anaplastic colon adenoma cells HT-29 and culture continued. Virus replication was then tested. In the second protocol, each bacterial suspension is first cultured with a cell monolayer of human undifferentiated colon adenoma cells HT-29 and then the virus is added. Virus replication was tested after continuous culture. Rotavirus replication can be readily assessed by tissue-immunology staining of rotavirus proteins in infected cells. When the number of infected cells was reduced to 90% in the cell culture inoculated with rotavirus + indicator bacteria compared to cells inoculated with rotavirus alone, the inhibitory effect of rotavirus was attributed to the test bacteria.
[0024]
Of the total 260 bacterial strains isolated initially, only 9 were found to essentially inhibit rotavirus replication. Different bacteria were confirmed to belong to Lactobacillus subsp. Rhamnosus or paracasei. One strain, designated Lactobacillus casei ST11, deposited by the Budapest Spare and received the deposit number NCC2461 (I-2116), was found to be very effective in preventing infection of human cells by rotavirus. Furthermore, since this special strain shows acidification in various media, it exhibits excellent growth. The strain also exhibits excellent performance in terms of survival during storage at low temperatures of about 10 ° C., making it a good candidate for inclusion in food or pharmaceutical compositions stored under refrigerated conditions.
[0025]
Anti-pathogenic bacteria test
The following approach was chosen to evaluate anti-bacterial properties. According to one protocol, the cultured Lactobacillus strains of the present invention were tested for their ability to prevent the attachment of pathogens that cause diarrhea to enterocytes or their entry into enterocytes. For this reason, intestinal cells were brought into contact with pathogenic bacteria and the cultured Lactobacillus strain of the present invention, and each rate of adhesion or invasion was evaluated. According to the second protocol, cell culture supernatants of Lactobacillus strains of the invention were added to enterocytes together with pathogenic microorganisms to assess the respective rates of adhesion or invasion. During the experiment, the cultured Lactobacillus and the supernatant can show evidence that it is very effective in preventing both adhesion and entry into the enterocytes, which is the metabolic compound secreted by new microorganisms. This indicates that it seems to contribute to anti-diarrheal activity with respect to pathogenic bacteria.
[0026]
In addition to the above findings, it has also been found that this strain also exhibits anti-allergic properties by having an impact on the synthesis of a different immune mediator.
[0027]
Humoral immune and allergic reactions are CD4 with type 2 phenotype (Th2)+It is generally accepted that it is mediated by T cells. Th2-cells are characterized by producing cytokines necessary for the secretion of high levels of interleukin 4 (IL-4), IgE (a major antibody class involved in allergic reactions).
[0028]
Differentiation of Th2 cells is IFN-r, CD4+Damaged by special cytokines that arise from mutually exclusive TH1 subsets of T cells. TH1 cells are sequentially strongly induced by interleukin 12 (IL-12). In contrast, IL-10, another cytokine, has been found to have a strong inhibitory impact on TH1 cell proliferation and appears to play a role in immune-suppressive mechanisms.
[0029]
In summary, both IL-12 and IL-10 affect CD4 by affecting the development of the Th1 subset.+It has a strong regulatory effect on T cell development. Since IL-12 is a regulatory cytokine that is key to the induction of Th1 differentiation, it suppresses the generation of a Th2 response. Therefore, the main way to suppress Th2 cells is seen in the stimulation of IL-12 synthesis by auxiliary cells.
[0030]
It is well known that some components of Gram-negative bacteria such as LPS induce high levels of IL-12 in adherent cells such as macrophages and dendritic cells. Consistently, Gram-negative bacteria are CD4+It has been found that T cell differentiation can be strongly driven in the direction of the Th1 phenotype.
[0031]
As an example of the Lactobacillus strain of the present invention, the microorganism ST11 is CD4.+The potential role of cytokine induction involved in the regulation of T cell differentiation was examined. In particular, CD4 during Th2 differentiation+The effects of ST11 on T cell phenotypes were studied.
[0032]
In this regard, the ability of ST11 to induce synthesis of mRNA encoding these two regulatory cytokines in bone marrow-derived mouse adherent cells was compared to four other Lactobacillus strains and a control Gram-negative bacterium (E. coli K12). mRNA is 109-107Bacteria serially diluted in the range of cfu / ml were cultured for 6 hours and then measured by semi-quantitative RT-PCR.
[0033]
Although all Lactobacillus strains can induce IL-12 mRNA transcription to some extent, ST11 has been found to be the strongest inducer. This is because even the lowest bacterial dose can be detected as a strong PCR signal. Indeed, ST11's ability to induce IL-12 mRNA transcription was as strong as E. coli. The induction of IL-10 mRNA was generally weaker than IL-12 mRNA, and a signal could only be detected at higher bacterial doses. Nevertheless, ST11 was the strongest inducer of IL-10 mRNA compared to other Lactobacillus and E. coli controls.
[0034]
That is, ST11 is CD4+It appears to be effective in inducing immune-regulated cytokines involved in T cell differentiation. Its strong ability to induce IL-12 is a candidate to inhibit the Th2 response, and its measurable induction of IL-10 can prevent an inflammatory response.
[0035]
In addition to the above findings, ST4 is CD4 during Th2 differentiation+It was also determined whether it exhibited an inhibitory effect on T cells and a positive effect on Th1 function. A well-established differentiation culture system is used, where the precursor CD4+T cells were polyclonally activated and adjusted to undergo Th1 or Th2 differentiation according to the type of co-stimuli provided to the culture medium. Th1 / Th2 differentiation is induced in the first culture on day 7, after which the cells are restimulated for 2 days in a second culture with medium alone and the acquisition of a specific phenotype (Th1 or Th2) is produced in the supernatant. The cytokine type (IFN-r vs. IL-4) was measured.
[0036]
Precursor CD4 from BALB / c background mice+It is known that T cells preferentially differentiate into Th2 phenotypes (high IL-4, low IFN-r in 2ry culture supernatant) that are dominant after activation under neutral conditions (medium alone in 1ry culture). This phenotype could be completely restored to the Th1 pattern (high IFN-r, low IL-4) when a blocking monoclonal antibody was added to IL-4 of 1ry culture.
[0037]
To investigate the potential role of ST11 for Th2 inhibition, purified precursor CD4 from BALB / c mice+T cells were activated as auxiliary cells in 1ry culture in the presence of bone marrow adherent cells. These cells are medium alone, or 1 mg / ml LPS, or 108cfu / ml ST11 or 108Co-cultured in the presence of another cfu / ml Lactobacillus. The cells are then washed and CD4+T cells were once more purified and restimulated in 2ry cultures with medium alone. Differentiation CD4+Cytokines produced by T cells were measured after 2 days. As expected, cells differentiated in the presence of medium alone showed a predominant Th2 phenotype. The results of Th2 differentiation were adjusted so that the addition of ST11 to 1ry culture resulted in an 8-fold decrease in IL-4 production. This inhibition was similar in magnitude to that observed in cultures derived from cells differentiated in the presence of LPS. In contrast, other Lactobacillus strains had no measurable impact on IL-4 levels. Interestingly, the amount of IFN-r was not increased by addition of ST11 in 1ry culture.
[0038]
In summary, ST11 is CD4 undergoing Th2 differentiation.+Although specifically impaired IL-4 production by T cells, it did not significantly increase IFN-r secretion. The fact that ST11 does not increase IFN-r production depends on its ability to induce IL-10, so that it can retain a low inflammatory impact despite anti-Th2 activity.
As a result, it was found that ST11 is a Lactobacillus strain having an excellent anti-Th2 profile, and this profile makes it an excellent candidate for its use as a bacterium having anti-allergic and probiotic activities.
[0039]
The invention will now be described by way of example.
Medium and solution
MRS (Difco),
Hugo-Jago (Trypton Difco 30 g / l, Yeast Extract Difco 10 g / l, Lactose Difco 5 g / l, KH2POFour  5 g / l, beef extract diffco 2 g / l, agar diffco 2 g / l),
M17 (Difco),
M199 (Ceromed),
Ringer's solution (oxoid),
PBS (NaCl 8 g / l, KCl 0.2 g / l, Na2HPOFour  1.15 g / l, KH2POFour  0.2 g / l),
Tryptose phosphate broth (flow) trypsin-EDTA solution (Cellomed).
Human rotavirus Wa (G1 serotype) and simian rotavirus SA-11 (G3 serotype) A. Obtained from Offfit, Philadelphia Children's Hospital, USA. The DS-IxRRV reassortant virus is Obtained from Kapikian, NIH Bethesda, USA. Serotype 4 human rotavirus Obtained from Bachmann, University of Munich, Germany. E. coli DAEC C1845 was obtained from the University of Washington, Seattle, and E. coli JPN 15 was obtained from the University of Maryland (USA) Vaccine Development Center. Salmonella typhimurium strain SL1344 was obtained from Stanford Microbiology, USA.
[0040]
Example 1
Isolation of lactic acid bacteria from infant excrement
New excreta was collected from the diapers of 16 healthy babies 15 to 27 days old. 1 g of fresh excreta was placed under anaerobic conditions for transport to the laboratory, and microbial analysis was performed by serial dilution in Ringer's solution within 2 hours after sample collection and placing in selective media. MRS agar + antibiotics (fosfomycin 80 μg / ml, sulfamethoxazole 93 μg / ml, trimethoprim 5 μg / ml) were cultured at 37 ° C. for 48 hours and used to isolate lactic acid bacteria. Colonies were randomly picked and purified. Physiological and genetic characterization was performed on the isolate.
[0041]
Example 2
Testing cell culture strains for anti-rotavirus activity
Several types of lactic acid bacteria including Lactobacillus, Lactococcus and Streptococcus were selected and tested against those that showed anti-rotavirus activity in cell culture inhibition tests. In the genus Lactococcus, it was represented by a single species (Lc. Lactis) consisting of two subspecies (Lc. Lactis subspecies lactis and cremolith). A total of 30 strains were tested. In the genus Streptococcus, 45 strains represented one species (S. thermophilus). Leukonostock and Propionibacterium spp. Represented a single species (6 strains), whereas Enterococcus and Staphylococcus spp. Each represented 17 strains in total.
A total of 260 strains were tested for rotavirus inhibitory activity.
First protocol
30 μl of bacterial suspension (average 3 × 106Bacteria) contain 10% tryptophosphate broth (flow) and 5% trypsin-EDTA solution (Ceromed) (diluted 1: 4 for HT-29 cells) and supplemented M199 medium with 70 μl M199 medium supplemented with 100 μl virus Mixed. The virus-bacteria mixture was incubated for 1 hour at 4 ° C and 1 hour at 37 ° C. Cells of human undifferentiated colon adenoma cells HT-29 growing as confluent cell monolayers in a microtiter plate with 96 holes were washed 3 times with phosphate buffered saline (PBS, pH 7.2). . The virus-bacteria mixture is applied to the cells and the microtiter plate is CO.2The cells were cultured for 18 hours in an incubator (Heraeus). Viral replication was tested as follows.
Second protocol
30 μl of bacterial suspension (above) is mixed with 70 μl M199 medium supplemented with 10% tryptophosphate phosphate broth (flow) and 5% trypsin-EDTA solution (cellomed) (diluted 1: 4 for HT-29 cells), and Applied directly to cells in microtiter plates. After 1 hour incubation at 37 ° C., 100 μl virus in supplemented M199 medium was added to the cells on the microtiter plate. Cultivation is CO2Continued for 18 hours in incubator (Heraeus). Viral replication was tested as follows.
Rotavirus replication was assessed by rotavirus protein tissue-immunostaining of infected cells as described below.
One day after infection, the cell culture medium was discarded from the microtiter plate, and the cells were fixed with absolute ethanol for 10 minutes. The ethanol was discarded and the plate was washed 3 times with PBS buffer. Next, 50 μl of anti-rotavirus serum (primarily directed to the VP6 protein) produced in rabbits (obtained from ISREC University in Lausanne) and diluted 1: 2000 in PBS was added to each well and the wells dried. In order to prevent this, it was incubated at 37 ° C. for 1 hour with a cover slip. The antiserum was then discarded and the plate was washed 3 times with PBS. 50 μl of anti-rabbit immunoglobulin G (IgG) antiserum produced in goat and conjugated to peroxidase (GAR-IgG-PO, Nordic) was diluted 1: 500 in PBS and added to each well, and the plate was The cells were cultured at 37 ° C for 1 hour. The serum was discarded and the plate was washed once more with PBS three times. Then 100 μl of the following substrate mixture was added to each well: 10 ml 0.05 M Tris-hydrochloride (pH 7.8), 1 ml H2O2(30% volume, H2Diluted 1: 600 in O, Merck) and 200 μl of 3-amino-9-ethylcarbazole (0.1 g / 10 ml ethanol, A-5754, Sigma stored in 200 μl sample at −80 ° C.). Plates were incubated at room temperature for at least 30 minutes. The substrate is discarded and the hole is 200 μl H2The reaction was stopped by filling O. Infected cell lesions were counted with an inverted microscope (Diavert, Leitz).
Only a few bacterial strains interacted with rotavirus. Of the 260 bacterial cells initially selected, only 9 inhibited rotavirus replication of at least one protocol. Lactobacillus paracasei NCC2461 (ST11) showed very high activity against serotype 1 rotavirus, serotype 3 rotavirus SA11 and serotype 4 rotavirus hot spot.
[0042]
Example 3
Caco-2 cell culture
In the (pathogenicity) bacterial inhibition test, the cell line Caco-2 was used as an intestinal model. This cell line presents unique features for intestinal cells such as, for example, polarization, expression of intestinal enzymes, production of specially structured polypeptides.
The cells are placed in three different supports: a plastic dish (25 cm for growth and propagation).2, Corning), degreased and sterilized glass plates (22 × 22 mm, Corning) for adhesion tests and 24 plates (cornings) for inhibition tests.
The medium (DMEM) was changed every day after 2 days of culture. The pre-use medium was supplemented with 100 U / ml penicillin / streptomycin, 1 μg / ml amphoterin and 20% FCS inactivated at 56 ° for 30 minutes. Culture is 90% air and 10% CO2At 37 ° C. in an atmosphere containing Cells were detached every 6 days. Cells were detached from the hole wall by treatment with PBS pH 7.2 containing 0.25% trypsin and 3 mM EDTA. To neutralize the effect of trypsin, an equal volume of FCS was added to the production cell suspension, the mixture was centrifuged (10 minutes at 1000 rpm), and the pellet was again placed in the culture. 3.5 × 10FiveThe cells were transferred to a new culture bottle and cultured until a confluent cell monolayer was obtained.
[0043]
Example 4
Bacterial culture
ST11:
Bacterial strains were stored at −20 ° C. in MRS medium containing 15% glycerol. Strains were grown in MRS under anaerobic conditions and transferred twice to fresh medium at 24 hour intervals before being used for inhibition testing. In this test, 2 × 109A concentration of cfu / ml was used.
The supernatant was collected by centrifugation at 20,000 rpm for 1 hour, and the resulting supernatant was then checked for the presence of bacteria.
E. coli:
Two E. coli strains, E. coli DAEC C1845 (Diffusion-attached E. coli) and E. coli JPN15 (EPEC, Entero-Pasogenic E. coli) were used.
After thawing, the first subculture is performed on CFA-Müller Hinton agar, which is suitable for expressing the adherence rate by bacteria.
Bacterial cells are cultured at 37 ° C. before each experiment and transferred to fresh medium twice after 24 hours each. Since JPN15 has an ampicillin resistance gene, this antibiotic was used for selection during growth.
Salmonella:
Salmonella typhimurium strain SL1344 was used in the experiment and was grown in LB medium before use.
[0044]
Example 5
E. coli inhibition test
After the second subculture in a new medium, the pathogenic strain is 10 μCi / ml C in LB medium.14-Labeled with radioisotope using acetate. The strain was cultured in this medium at 37 ° C. for 18 hours.
The bacterial suspension is then centrifuged (1041 g, 15 min) to leave residual C14-The supernatant containing acetate was removed. The pellet is suspended and washed with PBS, then the cells are about 10 per ml of 1% sterile mannose.8Suspended at cell concentration. Mannose is known not to show any particular adhesion.
Different pathogenic strains (E. coli) were transformed into Caco-2 cells (37 ° C, 10% CO2, 90% air) for 3 hours. The same experiment was performed using the supernatant (obtained by centrifugation at 20,000 rpm for 40 minutes).
As a control, the pathogen was contacted with the Caco-2 monolayer without the simultaneous addition of ST11 or culture supernatant, respectively.
After 3 hours of culture, the medium was changed and the monolayer was washed 3 times with PBS. Each wash step included 20 × agitation of the PBS solution to remove essentially all non-specific attachment. The cells were then lysed by adding 1 ml of sodium carbonate and incubating at 37 ° C. for 40 minutes. After homogenization, the sample (250 ml) was diluted with 5 ml of scintillation fluid (Hionic-Fluor Packard) and counted (Packard 2000). The percent adherence of pathogenic cells to Caco-2 cells was calculated relative to a control set at 100% (attachment or invasion of Example 6).
[0045]
Example 6
Inhibition test against Salmonella
Salmonella is a bacterium that invades and grows in epidermal cells. In order to determine the inhibitory activity of ST11, Salmonella typhimurium strain SL1344 was14Culturing was carried out in a medium containing C-acetate, and the experiment described in Example 5 was performed.
After incubation, Caco-2 cells were washed with PBS to remove all non-adherent cells. Thereafter, a medium containing gentamicin (20 μg / ml) was added, and the culture was continued at 37 ° C. for 1 hour. Gentamicin is an antibiotic that does not enter the gut cells so that all extracellular microorganisms are killed, while Salmonella that has already entered the gut cells survive. After washing the cells twice with PBS, the cells were lysed by adding sterile distilled water and the radioactivity was measured as described in Example 4.
The results of Examples 5 and 6 are shown in FIGS. Cultured ST11 cells and culture supernatant were very effective in preventing adhesion to enterocytes and invasion into cells by pathogenic microorganisms causing diarrhea.
[0046]
Example 7
Properties of ST11
ST11 was cultured in artificial gastric juice. The artificial gastric juice was prepared by suspending pepsin (3 g / l) in sterile physiological saline (0.5% w / v) and adjusting the pH to 2.0 and 3 with concentrated HCl, respectively. ST11 was grown in various amounts in the above medium, and the resistance of microorganisms was measured.
The results are summarized in Table 1.
Figure 0003765983
ST11 has the following properties defined by the method disclosed in the genus of lactic acid bacteria (Ed. B. J. B. Wood and W. H. Holzapfel, Blackie A & P).
-Gram positive
-Catalase negative
-NHThreeArginine negative
-CO2Production negative
Production of -L (+) lactic acid
-Growing in the presence of bile salts at concentrations up to about 0.4%.
[0047]
Example 8
Growth of ST11 under various conditions
ST11 is a tomato-based medium (4 hydrated in distilled water) supplemented with sucrose (0, 0.5, 1 or 2%) or soy peptone (0.5%) or glucose (0.5%). % Tomato powder) at 37 ° C. for different periods. The results are shown in FIG.
ST11 was further added to a medium consisting of rice flour (3%), wheat flour (2%) and sucrose (3%) in an amount of 2.5% and cultured at 37 ° C. until a pH of 4.4 was reached. After cooling, the product was packaged with or without vitamin C and stored at 10 ° C.
[0048]
Example 9
Induction of synthesis of 1L-12 and 1L10-mRNA by ST11 in mouse adherent cells
Bone marrow was isolated from femur and tibia of C57BL / 6 mice free of special pathogens at 8 weeks of age, 10% fetal bovine serum, 1 mM L-glutamine, 12 mM hepes, 0.05 mM 2-mercaptoethanol, 100 U / ml 2 × 10 2 in RPMI medium (Gibco) containing penicillin and 100 μg / ml streptomycin (all reagents from Gibco)65% CO2 at 37 ° C for 12 hours at a concentration of cells / ml2Cultured in air. Non-adherent cells are washed three times with warm medium and discarded, and the remaining adherent cells are collected.6Incubated in the presence or absence of bacteria at a concentration of cells / ml for 6 hours. It was determined in advance that 6 hours represents the optimal time point for cytokine mRNA synthesis by mouse adherent cells in response to LPS. 10 bacteria9-107Added at different concentrations in the cfu / ml range. Cells were grown and stored as described above.
At the end of the 6 hour culture period, the cells were isolated by centrifugation and lysed using the TRIzol reagent kit (gibcoBRL, Cat. No. 15596-018) according to the manufacturer's instructions. Total RNA was isolated by isopropanol precipitation, 200 mM Tris pH 8.3, 25 mM KCl, 1 μg / ml oligo d (T)15(Boehringer Mannheim), 1Um DDT (Boehringer Mannheim), 4OmM each dNTP (Boehringer Mannheim) and 40U / ml Rnasin (Promega) in a 40-μl reaction volume using 200U reverse transcriptase (Superscript II, BRL) And reverse transcribed into cDNA at 42 ° C. for 90 minutes. The PCR primers and conditions already described by Kopf et al. Were used (Journal of Experimental Medicine, September 1, 1996, 184 (3), 1127-36). The amount of cDNA was normalized within the sample using primers specific for the housekeeping gene (β-2-microglobulin). PCR products were separated on a 2% agarose gel and bands were analyzed under UV.
As shown in FIG. 4, ST11 showed the strongest induction of 1L-12 and 1L-10 mRNA, which was comparable to the level observed with aggressive controls (enterococci). Minimum bacterial concentration (107cfu / ml) showed the greatest difference.
[0049]
Example 10
Inhibition of 1L-4 synthesis by ST11
CD4+T cells were purified from the spleen of BALB / c mice uninfected with a specific pathogen using the MiniMACS kit from Milteni Biotech (Cat. No. 492-01). CD4+T cells were 2 × 10 2 in RPMI medium containing 10% fetal bovine serum, 1 mM L-glutamine, 12 mM hepes, 0.05 mM 2-mercaptoethanol, 100 U / ml penicillin and 100 μg / ml streptomycin.FiveCultured at a concentration of cells / ml and activated throughout the week by cross-linking with plate-bound monoclonal antibody, CDThree(Clone 2C11) and CD28 (clone 37.51, both antibodies were from Pharmingen). During this 1ry culture, CD4+T cells are bone marrow adherent cells (isolated as described above) as accessory cells, and 108cfu / ml ST11 or 108Co-cultured with cfu / ml Lal, 1 mg / ml LPS, or medium alone. After this, the cells are washed and CD4+T cells were purified once again using MiniMACS kit technology and then restimulated with 2ry cultures containing medium only. Differentiation CD4+Cytokines produced by T cells were measured in the supernatant after 2 days using a sandwich ELISA (kit from Endogen and Pharmingen).
The results are shown in FIG. Cells differentiated in the presence of medium alone showed a predominant Th2 phenotype characterized by high levels of 1L-4. The addition of ST11 to 1ry cultures strongly regulated the results of Th2 differentiation, such that 1L-4 production was reduced 8-fold. This inhibition was similar in magnitude to that observed in cultures derived from cells differentiated in the presence of LPS. In contrast, other Lactobacillus strains had no measurable impact on 1L-4 levels. Interestingly, the amount of IFN-r was not increased by adding ST11 to 1ry cultures.
As can be seen from the above, the strains of the present invention can be fully prepared for the production of food and / or pharmaceutical carriers utilizing the useful properties of microorganisms.
[0050]
Example 11
The ST11 strain was clinically tested in a suburb of Guatemala City for its ability to influence and influence the rainy season acute diarrhea disease experienced by most children in the region. A total of 203 children, 35-70 months old, enrolled in the study and 10TenReceived a target dose of live bacteria (ST11) or nothing (placebo). Children who chose both sample and placebo each had a typical deficiency in weight relative to age and height relative to age due to poor nutrition.
Safety assessments were based on in vitro and in vivo studies prior to the start of pre-decoration child donation studies. In vitro studies showed similar antibiotic resistance patterns as other lactobacilli used for food applications, but there is no possibility of biogenic amine formation, mucin degradation and bile salt debinding. In a placebo-controlled clinical study involving 42 adult volunteers, ST11 is well tolerated and adversely affects the potential monitored such as enema, number of bowel movements and stool consistency Serum acute protein levels did not raise any concern regarding the potential inflammatory response.
Samples and placebo were packaged in sachets at the Nestlé Product Technology Center, frozen in Guatemala and shipped. Each 10 g sachet contains chocolate flavored vehicle and 0.2 g ST11 (10Tencfu), or placebo, consisted of 0.2 g of milk powder. The chocolate flavored vehicle consisted of cocoa powder, sugar, soy lecithin, vanilla and cinnamon. The pouches were stored at 4 ° -6 ° C. for up to 2 hours before use. Prior to use, the sachets had to be dissolved in 100 ml of water provided by Nestlé without any bacterial contamination.
According to the protocol applied, diarrhea was defined as the occurrence of 3 or more liquid or non-solid excretions during 24 hours. Diarrhea symptoms were defined as presenting evidence of diarrhea (3 diarrhea excretion over 24 hours). The total duration (in hours) was calculated from the time of the first three indicator stools to the appearance of the first tangible bowel movement or the period without 24-hour defecation. For children with “new” symptoms, 48 hours had to pass before the end of the first symptom. Otherwise, continuation of the same symptoms can be considered, in which case the entire period is used for evaluation. It was in the case of children that they experienced one or more demonstrated symptoms of diarrhea during the 29-day observation period. The intensity of diarrhea symptoms was based on the total number of loose stools produced. Symptoms of severity include the presence of blood, mucus or pus in the bowel, as well as fever and vomiting. Symptoms are also classified as severe if seven days of bowel movements are required, or if intervention by a health professional is required in a clinic, health center, or hospital.
When diarrheal symptoms were diagnosed by the monitoring system, diarrheal bowel movements were collected for microscopic examination and culture to identify possible etiological pathogens for the symptoms. The test article is against rotavirus antigen, (giardia, and E. histolytica), and Shigella, Salmonella, Aeromonas, Plesiomonas sigeloides, E. coli, or V. Diagnosed for cholera.
During the test period, product samples were collected to test the viability of the microorganisms contained during the dosing period. The microorganisms remain viable in the sachet during the entire test, and the sachet is reconstituted with water at the end of the test.TenOf viable microorganisms.
Tests have shown that samples containing probiotic microorganisms can reduce the incidence of diarrhea by about 30% compared to the control group (placebo). In addition, the control group already showed a decrease in the incidence of diarrhea over normal people who did not receive either the sample or placebo. This latter finding can be explained in part by child standards that receive additional valuable nutrition and clean water. However, since the test was performed in the field, ST11 can clearly induce that the occurrence of diarrhea in vivo can be reduced without any doubt.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of cell culture of a bacterial strain showing protection against rotavirus.
FIG. 2 L. in different media. Casei shows acidification of ST11 strain.
FIG. 3 is a graph showing L.P. The survival rate of casei ST11 strain is shown.
FIG. 4 shows 1L-12 and 1L-10 mRNA patterns of bone marrow derived mouse adherent cells.
FIG. 5 shows Th2 differentiation by decreasing 1L-4 production.
FIG. 6 shows inhibition of adhesion of E. coli to epithelial cells by ST11 cells.
FIG. 7 shows inhibition of adhesion of E. coli to epithelial cells by ST11 culture supernatant.
FIG. 8 shows the prevention of entry of Salmonella typhimurium into epithelial cells by ST11 cells.
FIG. 9 shows the prevention of invasion of Salmonella typhimurium into epithelial cells by ST11 culture supernatant.

Claims (8)

ラクトバチルス・パラカゼイCNCM I−2116(NCC2461)。  Lactobacillus paracasei CNCM I-2116 (NCC2461). ラクトバチルス・パラカゼイCNCM I−2116(NCC2461)を含む、摂取できる支持物質。  An ingestible support material comprising Lactobacillus paracasei CNCM I-2116 (NCC2461). ラクトバチルス・パラカゼイCNCM I−2116(NCC2461)は約105cfu/g〜約1012cfu/g支持物質の量で支持物質に含まれる、請求項2に記載の摂取できる支持物質。The ingestible support material of claim 2, wherein Lactobacillus paracasei CNCM I-2116 (NCC2461) is included in the support material in an amount of from about 10 5 cfu / g to about 10 12 cfu / g support material. ラクトバチルス・パラカゼイCNCM I−2116(NCC2461)の培養物の上澄を含む、摂取できる支持物質。  An ingestible support material comprising a culture supernatant of Lactobacillus paracasei CNCM I-2116 (NCC2461). 前記支持物質は、乳、ヨーグルト、カード、チーズ、発酵乳、乳をベースとする発酵製品、アイスクリーム、発酵穀類をベースとする製品、乳をベースとする粉末、乳児用調製粉乳から選択した食品組成物である、請求項2又は4に記載の摂取できる支持物質。  The support material is selected from milk, yogurt, curd, cheese, fermented milk, fermented milk-based products, ice cream, fermented cereal-based products, milk-based powder, infant formula The ingestible support material according to claim 2 or 4, which is a composition. 支持物質は下痢と関連する疾病の治療および/または予防に使用する、請求項2から5のいずれか1項に記載の摂取できる支持物質。  6. An ingestible support material according to any one of claims 2 to 5, wherein the support material is used for the treatment and / or prevention of diseases associated with diarrhea. ラクトバチルス・パラカゼイCNCM I−2116(NCC2461)又はその培養物の上澄を含有する、食品組成物又は医薬組成物。  A food composition or a pharmaceutical composition comprising Lactobacillus paracasei CNCM I-2116 (NCC2461) or a supernatant of a culture thereof. 乳、ヨーグルト、カード、チーズ、発酵乳、乳をベースとする発酵製品、アイスクリーム、発酵穀物をベースとする製品、乳をベースとする粉末、乳児用調製粉乳、錠剤、細菌液体サスペンジョン、経口用乾燥サプリメント、経口用含水サプリメント、乾燥経管栄養又は含水経管栄養から選択する、請求項7に記載の組成物。  Milk, yogurt, curd, cheese, fermented milk, fermented milk-based products, ice cream, fermented cereal-based products, milk-based powder, infant formula, tablets, bacterial liquid suspension, oral 8. A composition according to claim 7, selected from dry supplements, oral hydrous supplements, dry tube feeding or water containing tube feeding.
JP2000603691A 1999-03-11 2000-03-02 Lactobacillus strains that can prevent diarrhea caused by pathogenic bacteria and rotavirus Expired - Fee Related JP3765983B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP99104922A EP1034787A1 (en) 1999-03-11 1999-03-11 Lactobacillus strains preventing diarrhea caused by pathogenic bacteria
EP99104924A EP1034788A1 (en) 1999-03-11 1999-03-11 Lactic acid bacteria strains capable of preventing diarrhea
EP99104922.2 1999-03-11
EP99104924.8 1999-03-11
PCT/EP2000/001798 WO2000053202A1 (en) 1999-03-11 2000-03-02 Lactobacillus strains capable of preventing diarrhoea caused by pathogenic bacteria and rotaviruses

Publications (3)

Publication Number Publication Date
JP2002537867A JP2002537867A (en) 2002-11-12
JP2002537867A5 JP2002537867A5 (en) 2005-11-17
JP3765983B2 true JP3765983B2 (en) 2006-04-12

Family

ID=26152924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000603691A Expired - Fee Related JP3765983B2 (en) 1999-03-11 2000-03-02 Lactobacillus strains that can prevent diarrhea caused by pathogenic bacteria and rotavirus

Country Status (17)

Country Link
US (1) US6887465B1 (en)
EP (1) EP1165105A1 (en)
JP (1) JP3765983B2 (en)
CN (1) CN1244684C (en)
AU (1) AU779789B2 (en)
BR (1) BR0008920A (en)
CA (1) CA2364440A1 (en)
CZ (1) CZ20013269A3 (en)
HK (1) HK1046864B (en)
HU (1) HUP0200374A2 (en)
IL (2) IL145080A0 (en)
MX (1) MXPA01009017A (en)
NO (1) NO20014298L (en)
NZ (1) NZ513804A (en)
PL (1) PL203281B1 (en)
RO (1) RO121700B1 (en)
WO (1) WO2000053202A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537865A (en) * 1999-03-11 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Lactobacillus strains that prevent diarrheal pathogens
JP2002537866A (en) * 1999-03-11 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Lactic acid bacteria strain that can prevent diarrhea

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL207930B1 (en) * 2000-05-25 2011-02-28 Nestle Sa Novel probiotics for pet food applications
KR100419132B1 (en) * 2000-12-29 2004-02-18 조성근 Lactobacillus paracasei subsp. paracasei CSK 01
GB0124580D0 (en) 2001-10-12 2001-12-05 Univ Reading New composition
KR100356672B1 (en) * 2001-12-27 2002-10-19 주식회사 바이로박트 Novel Lactobacillus sp. Strain And Using The Same
EP1384483A1 (en) * 2002-07-23 2004-01-28 Nestec S.A. Probiotics for treatment of irritable bowel disease (IBS) through improvement of gut neuromuscular function
NZ549600A (en) * 2004-02-24 2010-03-26 Chr Hansen Holding As Frozen lactic acid bacteria culture of individual pellets
MY143693A (en) * 2004-03-24 2011-06-30 Nestec Sa Shelf stable product wih living micro-organisms
ES2460891T3 (en) * 2005-10-06 2014-05-14 Probi Ab Use of lactobacillus for the treatment of autoimmune diseases
ATE478568T1 (en) * 2007-02-02 2010-09-15 May Amadeus Alexander PRODUCT WITH LIVE PROBIOTIC MICROORGANISMS
JP2012526752A (en) * 2009-05-11 2012-11-01 ネステク ソシエテ アノニム Bifidobacterium longum NCC2705 (CNCMI-2618) and immune disorders
WO2011044516A2 (en) * 2009-10-09 2011-04-14 Prothera, Inc. Compositions and methods comprising pediococcus for reducing at least one symptom associated with autism spectrum disease in a person diagnosed with an autism spectrum disease
PT2693885T (en) * 2011-04-08 2018-06-04 Chr Hansen As Synergistic antimicrobial effect
JP6028962B2 (en) * 2012-02-16 2016-11-24 国立大学法人金沢大学 Lactic acid bacteria composition for preventing viral infection and lactic acid fermented food for preventing viral infection
CN112869170B (en) * 2019-11-29 2023-05-23 伊利伊诺科技(上海)有限责任公司 Probiotics prebiotic nutritional composition capable of improving gastrointestinal tract immunity and application
CN118020940A (en) * 2019-11-29 2024-05-14 内蒙古伊利实业集团股份有限公司 Application of lactobacillus paracasei K56 in improving intestinal bacterial infection resistance and intestinal immunity
CN115024382B (en) * 2022-05-05 2023-03-14 浙江大学 Animal diarrhea-resistant combined lactobacillus ZJUIDS-R2 and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ239370A (en) * 1990-08-22 1994-04-27 Merck & Co Inc Bioerodible implantable controlled release dosage form comprising a poly(ortho ester) or a polyacetal with an active agent incorporated into the chain backbone
EP0577903B1 (en) 1992-07-06 1997-12-17 Societe Des Produits Nestle S.A. Agent antigastrite contenant lactobacillus acidophilus
JP3653277B2 (en) 1994-05-26 2005-05-25 ブラッコ エッセ ピ ア Lactobacillus strain, composition of the strain and method of using the strain
US5837238A (en) * 1996-06-05 1998-11-17 Biogaia Biologics Ab Treatment of diarrhea
IT1284877B1 (en) 1996-08-09 1998-05-22 Dicofarm Spa TREATMENT OF ACUTE DIARRHEA IN CHILDREN AND PREVENTION OF ALLERGIC SENSITIZATION TO FOODS INTRODUCED DURING THE PHASE
IT1289984B1 (en) 1997-02-27 1998-10-19 Proge Farm Srl STRAINS OF LACTOBACILLUS USEFUL IN THE TREATMENT OF DISTURBANCES OF THE GASTROINTESTINAL SYSTEM
SE510813C2 (en) * 1997-12-08 1999-06-28 Arla Ekonomisk Foerening Bacterial strain of the species Lactobacillus Paracasei subsp. paracasei, its composition for use in food, and product containing the strain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537865A (en) * 1999-03-11 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Lactobacillus strains that prevent diarrheal pathogens
JP2002537866A (en) * 1999-03-11 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Lactic acid bacteria strain that can prevent diarrhea

Also Published As

Publication number Publication date
PL203281B1 (en) 2009-09-30
IL145080A0 (en) 2002-06-30
CZ20013269A3 (en) 2002-04-17
RO121700B1 (en) 2008-02-28
US6887465B1 (en) 2005-05-03
CN1350462A (en) 2002-05-22
AU779789B2 (en) 2005-02-10
NZ513804A (en) 2001-09-28
HK1046864B (en) 2006-10-27
JP2002537867A (en) 2002-11-12
CA2364440A1 (en) 2000-09-14
EP1165105A1 (en) 2002-01-02
NO20014298D0 (en) 2001-09-04
BR0008920A (en) 2001-12-18
MXPA01009017A (en) 2002-04-24
IL145080A (en) 2006-12-10
WO2000053202A1 (en) 2000-09-14
AU3162900A (en) 2000-09-28
CN1244684C (en) 2006-03-08
NO20014298L (en) 2001-11-05
HK1046864A1 (en) 2003-01-30
HUP0200374A2 (en) 2002-06-29
PL350776A1 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
US6835376B1 (en) Lactobacillus paracasei strain for preventing diarrhea caused by pathogenic bacteria
US7029669B1 (en) Lactic acid bacteria strains capable of preventing diarrhoea
JP3765983B2 (en) Lactobacillus strains that can prevent diarrhea caused by pathogenic bacteria and rotavirus
JP4176715B2 (en) Probiotic strains, selection methods thereof, compositions thereof, and uses thereof
EP1353681B1 (en) Bifidobacteria capable of preventing diarrhea
MXPA01008927A (en) Lactic acid bacteria strains capable of preventing diarrhoea
MXPA01008976A (en) Lactobacillus strains preventing diarrhoea pathogenic bacteria

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050201

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050829

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees