JP3765971B2 - リング構成方法及びそのノード装置 - Google Patents

リング構成方法及びそのノード装置 Download PDF

Info

Publication number
JP3765971B2
JP3765971B2 JP2000225728A JP2000225728A JP3765971B2 JP 3765971 B2 JP3765971 B2 JP 3765971B2 JP 2000225728 A JP2000225728 A JP 2000225728A JP 2000225728 A JP2000225728 A JP 2000225728A JP 3765971 B2 JP3765971 B2 JP 3765971B2
Authority
JP
Japan
Prior art keywords
node
topology
topology data
ring
blsr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000225728A
Other languages
English (en)
Other versions
JP2001326664A (ja
Inventor
久美子 植松
広志 ▲かん▼沢
崇 本田
順一 森山
一成 汐田
英俊 河村
勲 高田
由紀江 吉原
寛治 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000225728A priority Critical patent/JP3765971B2/ja
Priority to US09/748,672 priority patent/US6785224B2/en
Publication of JP2001326664A publication Critical patent/JP2001326664A/ja
Application granted granted Critical
Publication of JP3765971B2 publication Critical patent/JP3765971B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • H04L41/0853Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/427Loop networks with decentralised control
    • H04L12/43Loop networks with decentralised control with synchronous transmission, e.g. time division multiplex [TDM], slotted rings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リング構成方法及びそのノード装置に関し、光双方向リング切り替え方式のプロテクションをオープンリング構成で実行可能とするリング構成方法及びそのノード装置に関する。
【0002】
【従来の技術】
近年の光伝送装置のネットワーク構成として、BLSR(Bidirectional Line Switched Ring:光双方向リング切り替え方式)構成が主流になってきている。BLSRは、ライン上の1つのタイムスロットを複数のパスで利用し、他のサービススロットを予備として複数のパスで共有することで高い回線収容効率を実現できる。また、回線の大容量化が進むと共に、光伝送装置間が数100Kmといった構成の大規模化が進んでいる。
【0003】
しかし、ネットワークを構築する場合、光伝送装置の設置及び運用コスト等の問題から一度に全装置を設置してリングを構成するのではなく、段階的に光伝送装置を増やしてネットワークを拡大して行き、最終的にBLSRとして運用したいという要求がある。
【0004】
例えば、図1に示すように、ノード(光伝送装置)A,Bを光ファイバで接続し、また,ノードB,Cを光ファイバで接続してリニア構成(即ち、オープンリング構成)とする。次に、ノードDを追加するとき、図2に示すように、ノードDをノードA,Cそれぞれに光ファイバで接続してリング構成とする。そして、切り替えプロトコルをリニア切り替えプロトコルからBLSR切り替えプロトコルに変更する。
【0005】
【発明が解決しようとする課題】
しかるに、リニア構成では障害のあったノード間のショートパスを使ったスパン切り替えしかないのに対し、リング構成では障害のあったノード間のショートパスを使ったスパン切り替えと、ロングパスを使ったリング切り替えとがあるため、BLSR切り替えプロトコルを機能させるためにはトポロジーテーブル及びスケルチテーブルを各ノードに構築する必要がある。トポロジーテーブルにはリングを構成するノードの並びを表したノード接続情報であるトポロジーが保持され、スケルチテーブルには障害時のBLSR切り替えにより誤ったパスの信号が出力されないようパス毎に断する障害状況が保持されている。
【0006】
スケルチテーブルはトポロジーテーブルに基づいて、パス単位で設定されるために、1本の光ファイバを通るパス数が数10〜数100と大量である場合、正確な設定を一度に行うことが非常に困難である。従来から、リング構成ではトポロジーテーブル及びスケルチテーブルを自動構築する技術が存在するものの、これをリニア構成に適応してトポロジーテーブル及びスケルチテーブルを自動構築することはできないという問題があった。
【0007】
また、リニア切り替えプロトコル、BLSR切り替えプロトコル共に、SONET(Synchronous Optical Network)の主信号ラインオーバーヘッド内のk1,k2バイトが用いられているものの、各バイトの使用方法は異なっている。このため、切り替えプロトコルをリニア切り替えプロトコルからBLSR切り替えプロトコルに変更する途中に、障害による切り換えが行われると救済の誤動作が発生するため、切り替えプロトコルの変更時には一旦双方の切り換えプロトコルを停止させる必要がある。そして、停止の間にトポロジーテーブル及びスケルチテーブルを各ノードに構築しなければならないため、切り替えプロトコルの変更を短時間でスムーズに行うことができないという問題があった。
【0008】
本発明は、上記の点に鑑みなされたものであり、オープンリングでBLSRに必要なトポロジー構築を行うことができ、オープンリングでBLSR切り替えプロトコルによる切り換えを行うことができるリング構成方法及びそのノード装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1に記載の発明は、複数のノードをリニアに接続したオープンリング構成のネットワークで各ノードにトポロジーデータを巡回させて前記リングを構成する各ノードの接続情報を収集し前記リングのトポロジー構築を行うリング構成方法において、
前記トポロジーデータに、各ノードにおける接続情報の収集の有無を指示するフラグを設け、
前記オープンリングの両端のノードである端局で前記フラグを反転させて前記トポロジーデータを折り返し、
前記端局でない場合に前記フラグをそのままにして通過させ、
各ノードで前記フラグに従って前記トポロジーデータに接続情報を付加しトポロジー構築を行う。
【0010】
このように、オープンリングの端局でフラグを反転させてトポロジーデータを折り返し、端局でない場合にフラグをそのままにして通過させ、各ノードでフラグに従ってトポロジー構築を行うため、オープンリングにおいてBLSRに必要なトポロジー構築を自動で行うことができ、これをもとにスケルチテーブルの構築を行うことができる。
【0011】
請求項2に記載の発明は、請求項1記載のリング構成方法において、 任意のノードから前記リングの右方向及び左方向のいずれか一方向に前記トポロジーデータを送出して巡回させ、
前記任意のノードで送出とは逆方向から前記トポロジーデータを受信してトポロジー構築を行う。
【0012】
このように、任意のノードから一方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向からトポロジーデータを受信してトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を自動で行うことができる。
【0013】
請求項3に記載の発明は、請求項1記載のリング構成方法において、任意のノードから前記リングの右方向及び左方向の両方向に前記トポロジーデータを送出して巡回させ、
前記任意のノードでそれぞれ送出とは逆方向から受信したトポロジーデータが一致したときトポロジー構築を行う。
【0014】
このように、任意のノードから両方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向から受信したトポロジーデータが一致したときトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を更に正確に自動で行うことができる。
【0015】
請求項4に記載の発明は、複数のノードをリニアに接続したオープンリング構成のネットワークのノード装置において、
前記リングを巡回するトポロジーデータを受信し前記トポロジーデータに設けられているフラグが接続情報の収集することを指示するとき前記トポロジーデータに自装置のノードIDを付加して送出し、前記フラグが接続情報の収集しないことを指示するとき前記トポロジーデータを通過させる収集/通過制御手段と、 自ノードが前記オープンリングの両端のノードである端局の場合に前記フラグを反転させて前記トポロジーデータを折り返し、自ノードが端局でない場合に前記フラグをそのままで通過させる折り返し/通過制御手段とを有する。
【0016】
このように、オープンリングの端局でフラグを反転させてトポロジーデータを折り返し、端局でない場合にフラグをそのままにして通過させ、各ノードでフラグに従ってトポロジー構築を行うため、オープンリングにおいてBLSRに必要なトポロジー構築を自動で行うことができ、これをもとにスケルチテーブルの構築を行うことができる。
【0017】
請求項5に記載の発明は、請求項4記載のノード装置において、
前記リングの右方向及び左方向のいずれか一方向に前記トポロジーデータを送出して巡回させる一方向送出手段を有し、
前記送出とは逆方向から前記トポロジーデータを受信してトポロジー構築を行う。
【0018】
このように、任意のノードから一方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向からトポロジーデータを受信してトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を自動で行うことができる。
【0019】
請求項6に記載の発明は、請求項4記載のノード装置において、
前記リングの右方向及び左方向の両方向に前記トポロジーデータを送出して巡回させる両方向送出手段と、
前記任意のノードでそれぞれ送出とは逆方向から受信したトポロジーデータを比較する比較手段とを有し、
前記比較手段の比較結果が一致のときトポロジー構築を行う。
【0020】
このように、任意のノードから両方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向から受信したトポロジーデータが一致したときトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を更に正確に自動で行うことができる。
【0021】
請求項7に記載の発明は、請求項4乃至6のいずれかに記載のノード装置において、
自ノードの両サイドに接続されている現用回線及び予備回線が共に使用できなくなるリング障害が発生時に光双方向リング切り替え方式のリング切り換えを停止させるロックアウトワークリング手段を有する。
【0022】
このように、リング障害が発生時に光双方向リング切り替え方式のリング切り換えを停止させることにより、オープンリングでBLSR切り替えプロトコルによる切り換えを行うことができ、その際に不要な回線断の発生を防止することができる。
【0023】
請求項8に記載の発明は、請求項4記載のノード装置において、
自装置がマスタに設定されているとき前記フラグに固定値を設定する固定値設定手段と、
自装置がマスタに設定されているとき自装置のノードIDを受信したトポロジーデータの先頭のノードIDと比較して、自装置が前記トポロジーデータの先頭になり得ない場合に自装置をスレーブに変更する変更手段とを有する。
【0024】
このように、マスタに設定されているノード装置でフラグに固定値を設定し、また、マスタに設定されているノード装置がトポロジーデータの先頭になり得ない場合に自装置をスレーブに変更することにより、複数のノード装置がマスタに設定されていても単一のノード装置がマスタとなるように淘汰でき、単一のトポロジーデータを得るようにトポロジー構築を行うことができる。
【0025】
請求項9に記載の発明は、請求項8記載のノード装置において、
前記リングの右方向に前記トポロジーデータを送出して巡回させる手段と、左方向に前記トポロジーデータを送出して巡回させる手段とで、独立して前記マスタまたはスレーブの設定を行う。
【0026】
このように、トポロジーデータを右方向に巡回させる手段と、左方向に巡回させる手段とで独立してマスタまたはスレーブの設定を行うため、右方向に巡回させる手段と、左方向に巡回させる手段とで別々にトポロジーデータを設定することが可能となり、トポロジーデータ設定の自由度を向上させることができる。
【0027】
【発明の実施の形態】
図3は、本発明のノード装置の第1実施例のブロック構成図を示す。同図中、ノード装置20は、光ファイバ31から入来する主信号及びトポロジーデータをサイド1信号終端部21で受信して、トポロジーデータをサイド12方向トポロジー制御部22に供給すると共に主信号を主信号制御部24に供給する。サイド12方向トポロジー制御部22では受信したトポロジーデータをBLSR/オープンリング制御部27に供給すると共に、BLSR/オープンリング制御部27の制御に基づいてトポロジーデータの処理、つまりノードIDの付加(即ちノード接続情報の収集)やトポロジーデータの保持(即ちノード接続情報の設定)を行う。サイド12方向トポロジー制御部22の出力するトポロジーデータは主信号制御部24からの主信号と共にサイド2信号終端部23から光ファイバ32に送出される。
【0028】
また、光ファイバ33から入来する主信号及びトポロジーデータをサイド2信号終端部23で受信して、トポロジーデータをサイド21方向トポロジー制御部26に供給すると共に主信号を主信号制御部25に供給する。サイド21方向トポロジー制御部26では受信したトポロジーデータをBLSR/オープンリング制御部27に供給すると共に、BLSR/オープンリング制御部27の制御に基づいてトポロジーデータの処理、つまりノードIDの付加やトポロジーデータの保持を行う。サイド21方向トポロジー制御部26の出力するトポロジーデータは主信号制御部25からの主信号と共にサイド1信号終端部21から光ファイバ34に送出される。
【0029】
なお、上記実施例ではサイド12方向トポロジー制御部22とサイド21方向トポロジー制御部26とを備えているが、サイド12方向トポロジー制御部22とサイド21方向トポロジー制御部26とのいずれか一方を備えていれば、本発明を実施することが可能である。
【0030】
BLSR/オープンリング制御部27は、BLSR/オープンリング識別情報を保持する。このBLSR/オープンリング識別情報はオペレータにより変更可能とされている。また、BLSR/オープンリング制御部27はサイド1信号終端部21及びサイド2信号終端部23それぞれから光ファイバの接続情報を供給されている。
【0031】
図4はBLSR/オープンリング制御部27が実行する切り替え制御処理の一実施例のフローチャートを示す。この処理はBLSR/オープンリング識別情報の設定変更時または障害発生時に実行開始される。
【0032】
同図中、まず、ステップS10でBLSR/オープンリング識別情報の設定変更であるか否かを判別し、BLSR/オープンリング識別情報の設定変更でなければステップS12で障害等の切り替え要因が発生したか否かを判別し、切り替え要因が発生した場合はステップS14でBLSR切り換えを実施して処理を終了する。
【0033】
一方、ステップS10でBLSR/オープンリング識別情報の設定変更であればステップS16に進み、BLSRからオープンリングへの変更であるか否かを判別し、BLSRからオープンリングへの変更でない場合、つまりオープンリングからBLSRへの変更である場合にはステップS18で自ノードをロックアウトワークリング解除状態にして処理を終了する。
【0034】
また、ステップS16でBLSRからオープンリングへの変更である場合にはステップS20に進み、サイド1信号終端部21及びサイド2信号終端部23の両サイドに光ファイバが有効に接続されているか否かを判別する。両サイドに光ファイバが有効に接続されている場合は、ステップS22で自ノードは端局ではない(中継局)と判定し、両サイドに光ファイバが有効に接続されてない場合は、ステップS24で自ノードは端局であると判定する。なお、BLSR/オープンリング制御部27は、上記の自ノードが端局か端局でないかの判定情報をサイド12方向トポロジー制御部22及びサイド21方向トポロジー制御部26に通知する。
【0035】
この後、オープンリングへの変更であるため、ステップS26で自ノードをロックアウトワークリング実施状態にして処理を終了する。なお、ロックアウトワークリング実施とは、自ノードの両サイドに接続されている光ファイバで現用回線及び予備回線が共に使用できなくなるリング障害が発生しても救済を行わない、つまりリング切り換えを行わないという制御である。
【0036】
ここで、トポロジー構築にはSONETのラインオーバーヘッド内のD5#5〜#12,D6#5〜#12,D7#5〜#12バイトが使用される。図5(A)にトポロジーデータのフレームフォーマットを示す。D5#5バイトはフレームバイトFRであり、値C3(12進表示)でデータの先頭を表す。D5#6バイトはノードナンバーNNであり、送信ノードがD5#7〜D7#6のうちのどの位置にノードIDを挿入したかを示す。D5#7〜D7#6バイトはトポロジーデータ部である。D7#7〜D7#11バイトは他の用途に使用されるリザーブである。D7#12は上記フレームバイトFRからリザーブまでの計23バイトを対象とする誤り検出コードCRCである。ノードナンバーNNの詳細を図5(B)に示す。第1ビットB1はスルー判定フラグであり、第4ビットB4はエンドビットである。第5〜第8ビットはノード数である。
【0037】
図6はサイド12方向トポロジー制御部22またはサイド21方向トポロジー制御部26が実行するトポロジー自動構築処理の一実施例のフローチャートを示す。この処理はトポロジーデータ受信値が変化した時またはトポロジー構築コマンド投入時に開始される。
【0038】
同図中、トポロジーデータ受信時には、まず、ステップS30で受信したトポロジーデータ内のノードナンバーNNのエンドビットB4が1で、リング(オープンリングを含む)を構成する全ノードのトポロジーを収集済みでトポロジーデータをトポロジーテーブルに設定することを指示しているか否かを判別する。エンドビットB4が0で各ノードのトポロジーを収集中であればステップS32に進む。トポロジー構築コマンド投入時にはステップS30からステップS32に進む。
【0039】
ステップS32では自ノードは端局か否かを判別する。BLSR/オープンリング制御部27から通知されている判定情報が端局でない場合にはステップS34に進み、トポロジーデータ内のノードナンバーNNのスルー判定フラグB1が1で構築(収集)を指示していればステップS38に進み、スルー判定フラグが0でスルーを指示していればステップS38をバイパスしてステップS40に進む。一方、ステップS32で端局と判別された場合にはステップS36に進み、ノードナンバーNNのスルー判定フラグB1の値を反転させた後ステップS38に進む。
【0040】
ステップS38ではトポロジーデータの加工を行う。ここでは、トポロジー構築コマンド投入であれば、トポロジーデータのD5#7バイトに自ノードIDを挿入し、エンドビットを0に落とし、トポロジーデータの他のバイトに全0とする。また、トポロジーデータの受信であれば、自ノードIDと受信トポロジーデータのD5#7バイトの内容(マスタのノードID)とを比較し、自ノードID>D5#7であれば受信トポロジーデータのNNバイト(ノードナンバーNN)のノード数の値に1を加算してNNバイトのノード数の値を更新し、トポロジーデータ部のうちD5#7バイトからX番目のバイトに自ノードIDを挿入する。自ノードID=D5#7であれば受信トポロジーデータのNNバイトのエンドビットに1を立て、受信トポロジーデータのその他全ビットはそのままにする。自ノードID<D5#7であればトポロジーデータのD5#7バイトに自ノードIDを挿入し、エンドビットを0に落とし、トポロジーデータの他のバイトに全0とする。
【0041】
ステップS38の実行後はステップS40に進み、トポロジーデータを隣接するノードに送信して、この処理を終了する。このとき、端局の場合はトポロジーデータを受信したサイド(サイド1信号終端部21またはサイド2信号終端部23)から送信し、端局でない(中継局)場合はトポロジーデータを受信したサイド(例えばサイド1信号終端部21)とは逆のサイド(サイド2信号終端部23)から送信する。
【0042】
一方、ステップS30で受信したトポロジーデータのエンドビットB4が1で全ノードのトポロジーを収集済みであれば、ステップS42で受信したトポロジーデータのD5#7〜D7#6の内容及びノードナンバーNNのノード数をBLSR/オープンリング制御部27に送りトポロジーテーブルに保持した後、ステップS40に進み、トポロジー構築(収集)を終えたトポロジーデータを再度リングを巡回させて各ノードのトポロジーテーブルに設定させる。なお、トポロジー構築コマンドが投入されたノードでエンドビットB4が1のトポロジーデータを受信した場合には、このトポロジーデータを破棄してトポロジー自動構築を終了する。
【0043】
次に、オープンリングでトポロジー自動構築を行う2つの方法について説明する。第1の方法はトポロジー構築コマンドが投入されたノードからサイド1,サイド2のいずれか一方向にトポロジーデータを送信して巡回させる方法であり、第2の方法はトポロジー構築コマンドが投入されたノードからサイド1,サイド2の両方向にトポロジーデータを送信して巡回させる方法である。
【0044】
図7は本発明のオープンリングのトポロジー構築方法の第1実施例におけるトポロジー構築コマンドが投入されたノードのBLSR/オープンリング制御部27が実行するフローチャートを示す。この処理はトポロジー構築コマンドが投入されることによって開始される。
【0045】
同図中、BLSR/オープンリング制御部27はステップS100でサイド21方向トポロジーデータ制御部26を起動し、スルー判定フラグを1つまり構築を設定し、かつ、自ノードのノードIDをトポロジーデータ部の先頭にし、リング内におけるノードの並びを示すトポロジーデータをサイド1信号終端部21から隣接するノードに対して送出する。この後、ステップS102でトポロジーデータを送出したサイド1とは逆側のサイド2信号終端部23でトポロジーデータを受信したか否かを判別し、サイド2信号終端部23でトポロジーデータを受信した場合にのみステップS104に進む。ステップS104ではトポロジー構築完了と認識して、受信したトポロジーデータをBLSR/オープンリング制御部27のトポロジーテーブルに設定し、この処理を終了する。
【0046】
図8は本発明方法によるオープンリングのトポロジー構築の第1実施例の動作説明図を示す。同図中、ノードAのサイド1信号終端部21とノードBのサイド2信号終端部23を光ファイバで接続し、また,ノードBのサイド1信号終端部21とノードCのサイド1信号終端部21を光ファイバで接続し、また,ノードCのサイド2信号終端部23とノードDのサイド1信号終端部21を光ファイバで接続して、オープンリングを構成している。
【0047】
(1)オペレータが例えばノードBに対し、トポロジー構築コマンドを投入する。
【0048】
(2)ノードBは、スルー判定フラグを1つまり構築を設定したトポロジーデータTD2をサイド1信号終端部21から送信する。
【0049】
(3)ノードCは、サイド1信号終端部21で上記トポロジーデータTD2を受信しスルー判定を行う。スルー判定フラグは1つまり構築であるため、自ノードID「C」を追加したトポロジーデータTD3をサイド2信号終端部23から送信する。
【0050】
(4)ノードDは、サイド1信号終端部21で上記トポロジーデータTD3を受信し、自ノードが端局であるためスルー判定フラグを1から0(スルー)に反転し、自ノードID「C」を追加したトポロジーデータTD4を受信したサイドと同じサイド1信号終端部21から送信する。
【0051】
(5)ノードCは、サイド2信号終端部23で上記トポロジーデータTD4を受信しスルー判定を行う。スルー判定フラグは0つまりスルーであるため、加工しないトポロジーデータTD5をサイド1信号終端部21から送信する。
【0052】
(6)ノードBは、サイド1信号終端部21で上記トポロジーデータTD5を受信しスルー判定を行う。スルー判定フラグは0つまりスルーであるため、加工しないトポロジーデータTD6をサイド2信号終端部23から送信する。
【0053】
(7)ノードAは、サイド1信号終端部21で上記トポロジーデータTD6を受信し、自ノードが端局であるためスルー判定フラグを0から1(構築)に反転し、自ノードID「A」を追加したトポロジーデータTD7を受信したサイドと同じサイド1信号終端部21から送信する。
【0054】
(8)ノードBは、トポロジー構築を開始した、つまりトポロジーデータTD2を送信したサイド1信号終端部21とは逆側のサイド2信号終端部23で上記トポロジーデータTD7を受信したため、トポロジー構築完了と認識してこのトポロジーデータをトポロジーテーブルに設定する。
【0055】
このようにして、オープンリング構成においてBLSRに必要なトポロジー構築を自動で行うことができ、これをもとにスケルチテーブルの構築を行うことができる。また、オープンリングの各ノードは図4に示す動作で、BLSR切り替えプロトコルで切り換えを行うため、オープンリング構成をリング構成に変更するときに、新たにトポロジー構築及びテーブルスケルチテーブルの構築を行う必要がなく、リニア切り替えプロトコルからBLSR切り替えプロトコルに変更する必要がない。
【0056】
図9は本発明のオープンリングのトポロジー構築方法の第2実施例におけるトポロジー構築コマンドが投入されたノードのBLSR/オープンリング制御部27が実行するフローチャートを示す。この処理はトポロジー構築コマンドが投入されることによって開始される。
【0057】
同図中、BLSR/オープンリング制御部27はステップS110でサイド21方向トポロジーデータ制御部26を起動し、スルー判定フラグを1つまり構築を設定し、かつ、自ノードのノードIDを付したトポロジーデータをサイド1信号終端部21から隣接するノードに対して送出し、ステップS112でサイド12方向トポロジーデータ制御部22を起動し、スルー判定フラグを1つまり構築を設定し、かつ、自ノードのノードIDを付したトポロジーデータをサイド2信号終端部23から隣接するノードに対して送出する。
【0058】
この後、ステップS114でトポロジーデータを送出したサイド1,サイド2とは逆側のサイド2信号終端部23及びサイド1信号終端部21で共にトポロジーデータを受信したか否かを判別し、サイド2信号終端部23で及びサイド1信号終端部21で共にトポロジーデータを受信した場合にのみステップS116に進む。
【0059】
ステップS116では、サイド1側及びサイド2側から受信したトポロジーデータが一致するか否かを判別し、一致の場合ステップS118でトポロジー構築完了と認識して、受信したトポロジーデータをBLSR/オープンリング制御部27のトポロジーテーブルに設定してこの処理を終了する。不一致の場合ステップS120でアラームを出力してオペレータに異常を通知してこの処理を終了する。
【0060】
この実施例は右周回方向と左周回方向のトポロジーデータ(ノード接続情報)が一致したとき、各ノードにトポロジーデータのノード接続情報を設定するため、正確なノード接続情報を収集して各ノードに設定することができる。
【0061】
図10は本発明方法によるオープンリングのトポロジー構築の第2実施例の動作説明図を示す。同図中、ノードAのサイド1信号終端部21とノードBのサイド2信号終端部23を光ファイバで接続し、また,ノードBのサイド1信号終端部21とノードCのサイド1信号終端部21を光ファイバで接続し、また,ノードCのサイド2信号終端部23とノードDのサイド1信号終端部21を光ファイバで接続して、オープンリングを構成している。
【0062】
(1)オペレータが例えばノードBに対し、トポロジー構築コマンドを投入する。
【0063】
(2)ノードBは、スルー判定フラグを1つまり構築を設定したトポロジーデータTD2,TD2’をサイド1信号終端部21及びサイド2信号終端部23から両方向に送信する。
[サイド1側のトポロジーデータの流れ]
(3a)ノードCは、サイド1信号終端部21で上記トポロジーデータTD2を受信しスルー判定を行う。スルー判定フラグは1つまり構築であるため、自ノードID「C」を追加したトポロジーデータTD3をサイド2信号終端部23から送信する。
【0064】
(4a)ノードDは、サイド1信号終端部21で上記トポロジーデータTD3を受信し、自ノードが端局であるためスルー判定フラグを1から0(スルー)に反転し、自ノードID「C」を追加したトポロジーデータTD4を受信したサイドと同じサイド1信号終端部21から送信する。
【0065】
(5a)ノードCは、サイド2信号終端部23で上記トポロジーデータTD4を受信しスルー判定を行う。スルー判定フラグは0つまりスルーであるため、加工しないトポロジーデータTD5をサイド1信号終端部21から送信する。
【0066】
(6a)ノードBは、サイド1信号終端部21で上記トポロジーデータTD5を受信しスルー判定を行う。スルー判定フラグは0つまりスルーであるため、加工しないトポロジーデータTD6をサイド2信号終端部23から送信する。
【0067】
(7a)ノードAは、サイド1信号終端部21で上記トポロジーデータTD6を受信し、自ノードが端局であるためスルー判定フラグを0から1(構築)に反転し、自ノードID「A」を追加したトポロジーデータTD7を受信したサイドと同じサイド1信号終端部21から送信する。
【0068】
(8a)ノードBは、トポロジー構築を開始した、つまりトポロジーデータTD2を送信したサイド1信号終端部21とは逆側のサイド2信号終端部23で上記トポロジーデータTD7を受信したため、トポロジー構築完了と認識する。
[サイド2側のトポロジーデータの流れ]
(3b)ノードAは、サイド1信号終端部21で上記トポロジーデータTD2’を受信し、自ノードが端局であるためスルー判定フラグを1から0(スルー)に反転し、自ノードID「A」を追加したトポロジーデータTD3’を受信したサイドと同じサイド1信号終端部21から送信する。
【0069】
(4b)ノードBは、サイド2信号終端部23で上記トポロジーデータTD3’を受信しスルー判定を行う。スルー判定フラグは0つまりスルーであるため、加工しないトポロジーデータTD4’をサイド1信号終端部21から送信する。
(5b)ノードCは、サイド1信号終端部21で上記トポロジーデータTD4’を受信しスルー判定を行う。スルー判定フラグは0つまりスルーであるため、加工しないトポロジーデータTD5’をサイド2信号終端部23から送信する。
(6b)ノードDは、サイド1信号終端部21で上記トポロジーデータTD5’を受信し、自ノードが端局であるためスルー判定フラグを0から1(構築)に反転し、自ノードID「D」を追加したトポロジーデータTD6’を受信したサイドと同じサイド1信号終端部21から送信する。
【0070】
(7b)ノードCは、サイド2信号終端部23で上記トポロジーデータTD6’を受信しスルー判定を行う。スルー判定フラグは1つまり構築であるため、自ノードID「C」を追加したトポロジーデータTD7’をサイド1信号終端部21から送信する。
【0071】
(8b)ノードBは、トポロジー構築を開始した、つまりトポロジーデータTD2’を送信したサイド2信号終端部23とは逆側のサイド1信号終端部21で上記トポロジーデータTD7’を受信したため、トポロジー構築完了と認識する。
【0072】
(9)ノードBは、両サイドから受信したトポロジーデータTD7,TD7’を比較して、同一であれば正常データであると判定して、このトポロジーデータTD7をトポロジーテーブルに設定する。
【0073】
次に、図11、図12、図13を用いて、本発明方法によるオープンリングのリング障害発生時の動作を説明する。
【0074】
図11は正常時を表しており、ノードAのサイド1信号終端部21とノードBのサイド2信号終端部23を2本の光ファイバで接続し、また,ノードBのサイド1信号終端部21とノードCのサイド1信号終端部21を2本の光ファイバで接続し、また,ノードCのサイド2信号終端部23とノードDのサイド1信号終端部21を2本の光ファイバで接続して、オープンリングを構成している。
【0075】
なお、図中、光ファイバ内の現用回線を実線で示し、予備回線を破線で示している。また、ノードBで外部からのパスP1をオープンリングにアッド(挿入)し、ノードCでパスP1をオープンリングから外部にドロップ(抽出)しており、ノードDで外部からのパスP2をオープンリングにアッドし、ノードBでパスP2をオープンリングから外部にドロップしている。
【0076】
ここで、図12に示すように、ノードBとノードCとを接続する光ファイバPF1のX印で示す部分で現用回線(ワーク)及び予備回線(プロテクション)が共に使用できなくなるリング障害(なお、現用回線だけが使用できなくなる障害をスパン障害と呼ぶ)が発生すると、本発明方法を適応したノードBでは光ファイバPF1のリング障害を検出するものの、図4のステップS26の実行によってロックアウトワークリング実施状態になっているため、BLSRのリングスイッチ及びスパンスイッチによるパスP2の救済動作を行わない。これによって、ノードB,C間で障害が発生していない光ファイバPF2を通るパス1が断することを防止できる。
【0077】
これに対して、オープンリングにおいて、ロックアウトワークリングを実施しない通常のBLSRのノードを用いた場合について考える。通常のBLSRでは図13に示すノードA,D間が2本の光ファイバで接続されているものとして動作を行う。このため、図13に示すように、ノードBとノードCとを接続する光ファイバPF1のX印で示す部分でリング障害が発生すると、ノードBではパスP1を2分岐して予備回線でノードA,Dを経由してノードCに到達するパスP1を設定し、光ファイバPF2の現用回線に送出するパスP1に障害情報AISを付加し、ノードCにおいて予備回線で到達するパスP1をドロップするために光ファイバPF2を通るパスP1のスケルチ(削除)を行うよう制御する。しかし、オープンリングではノードA,D間が光ファイバで接続されてないため、ノードCではパスP1をドロップすることができず、結果的には、障害が発生していない光ファイバPF2を通るパスP1が断することになる。なお、図中、スケルチの行われる位置を丸で囲んだX印で示している。
【0078】
図14は、本発明のノード装置の第2実施例のブロック構成図を示す。同図中、図3と同一部分には同一符号を付す。図14において、ノード装置20は、光ファイバ31から入来する主信号及びトポロジーデータをサイド1信号終端部21で受信して、トポロジーデータをサイド12方向トポロジー制御部122に供給すると共に主信号を主信号制御部24に供給する。サイド12方向トポロジー制御部122では受信したトポロジーデータをBLSR/オープンリング制御部128に供給すると共に、BLSR/オープンリング制御部128の制御に基づいてトポロジーデータの処理、つまりノードIDの付加(即ちノード接続情報の収集)やトポロジーデータの保持(即ちノード接続情報の設定)を行う。サイド12方向トポロジー制御部122の出力するトポロジーデータは主信号制御部24からの主信号と共にサイド2信号終端部23から光ファイバ32に送出される。
【0079】
また、光ファイバ33から入来する主信号及びトポロジーデータをサイド2信号終端部23で受信して、トポロジーデータをサイド21方向トポロジー制御部126に供給すると共に主信号を主信号制御部25に供給する。サイド21方向トポロジー制御部126では受信したトポロジーデータをBLSR/オープンリング制御部129に供給すると共に、BLSR/オープンリング制御部129の制御に基づいてトポロジーデータの処理、つまりノードIDの付加やトポロジーデータの保持を行う。サイド21方向トポロジー制御部126の出力するトポロジーデータは主信号制御部25からの主信号と共にサイド1信号終端部21から光ファイバ34に送出される。
【0080】
BLSR/オープンリング制御部128,129それぞれは、BLSR/オープンリング識別情報、及び自ノードが端局か端局でないかの判定情報、及び自ノードがマスタかスレーブかの情報を保持する。このBLSR/オープンリング識別情報はオペレータにより変更可能とされている。また、BLSR/オープンリング制御部128,129それぞれは、サイド1信号終端部21,サイド2信号終端部23それぞれから光ファイバの接続情報を供給されており、BLSR/オープンリング識別情報の設定変更時または障害発生時に、前述の図4に示す切り替え制御処理を実行開始する。
【0081】
このように、BLSR/オープンリング制御部128,129それぞれで、BLSR/オープンリング識別情報、及び自ノードが端局か端局でないかの判定情報、及び自ノードがマスタかスレーブかの情報を独立して保持することにより、サイド12方向とサイド21方向とでマスタ/スレーブの設定を独立して行うことができ、サイド12方向とサイド21方向とで別々にトポロジーデータを設定することが可能となり、トポロジーデータ設定の自由度が向上する。
【0082】
図15はサイド12方向トポロジー制御部122,サイド21方向トポロジー制御部126それぞれが実行するトポロジー自動構築処理の一実施例のフローチャートを示す。この処理はトポロジーデータ受信時に開始される。なお、トポロジー構築コマンド投入時には、トポロジーデータのD5#7バイトに自ノードIDを挿入し、エンドビットを0に落とし、トポロジーデータの他のバイトに全0とするトポロジーデータが生成される。
【0083】
図15において、まず、ステップS230で受信したトポロジーデータ内のノードナンバーNNのエンドビットB4が1で、リング(オープンリングを含む)を構成する全ノードのトポロジーを収集済みでトポロジーデータをトポロジーテーブルに設定することを指示しているか否かを判別する。エンドビットB4が0で各ノードのトポロジーを収集中であればステップS232に進む。
【0084】
ステップS232では自ノードは端局か否かを判別する。BLSR/オープンリング制御部128,129から通知されている判定情報が端局でない場合にはステップS234で自ノードはマスタか否かを判別する。BLSR/オープンリング制御部128,129から通知されている判定情報がマスタの場合にはステップS236でトポロジーデータ内のノードナンバーNNのスルー判定フラグB1に0(スルー)を設定してステップS240に進み、マスタではない場合にはステップS251に進む。
【0085】
ステップS240では、自ノードIDと受信トポロジーデータのD5#7バイト(トポロジーデータ部の先頭ノードID)の内容とを比較する。ここで、自ノードID<D5#7であれば、ステップS242でトポロジーデータ部の先頭であるD5#7バイトに自ノードIDを挿入し、エンドビットを0に落とし、トポロジーデータの他のバイトに全0としてトポロジーデータを再構築する。また、自ノードID=D5#7であれば、ステップS244で受信トポロジーデータのNNバイト(ノードナンバーNN)のエンドビットに1を立て、受信トポロジーデータのその他全ビットはそのままにしてトポロジー構築完了を指示する。また、自ノードID>D5#7で、自ノードが受信トポロジーデータ内のトポロジーデータ部の先頭になり得ない場合には、ステップS246でBLSR/オープンリング制御部128,129に保持されている判定情報をマスタからスレーブに変更し、ステップS248で受信トポロジーデータのノードナンバーNNのノード数の値に1を加算してノードナンバーNNのノード数の値を更新し、トポロジーデータ部のうちD5#7バイトからX(=NN+1)番目のバイトである最後尾のバイトに自ノードIDを挿入(追加)する。
【0086】
ステップS242,ステップS244,S248の実行後はステップS250に進み、トポロジーデータを隣接するノードに送信して、この処理を終了する。このとき、端局の場合はトポロジーデータを受信したサイド(サイド1信号終端部21またはサイド2信号終端部23)から送信し、端局でない(中継局)場合はトポロジーデータを受信したサイド(例えばサイド1信号終端部21)とは逆のサイド(サイド2信号終端部23)から送信する。
【0087】
ステップS234において、マスタではない、つまり、スレーブと判定された場合にはステップS251でトポロジーデータ内のノードナンバーNNのスルー判定フラグB1が0でスルーを指示しているか否かを判別する。スルー判定フラグB1が1で構築(収集)を指示していればステップS248に進み、受信トポロジーデータのノードナンバーNNのノード数の値に1を加算してノードナンバーNNのノード数の値を更新し、トポロジーデータ部のうちD5#7バイトからX(=NN+1)番目のバイトである最後尾のバイトに自ノードIDを挿入(追加)してステップS250に進む。ステップS251でスルー判定フラグが0でスルーを指示していればステップS250に進み、トポロジーデータを隣接するノードに送信して、この処理を終了する。
【0088】
一方、ステップS232で端局と判別された場合にはステップS252で自ノードはマスタか否かを判別する。BLSR/オープンリング制御部128,129から通知されている判定情報がマスタである場合にはステップS254でトポロジーデータ内のノードナンバーNNのスルー判定フラグB1に0(スルー)を設定してステップS248に進み、マスタではない場合にはステップS256でノードナンバーNNのスルー判定フラグB1の値を反転させた後ステップS248に進む。
【0089】
更に、ステップS230で受信したトポロジーデータのエンドビットB4が1で全ノードのトポロジーを収集済みであれば、ステップS258に進んで、受信したトポロジーデータのD5#7〜D7#6の内容及びノードナンバーNNのノード数をBLSR/オープンリング制御部128,129に送り、トポロジーテーブルに保持した後、ステップS250に進み、トポロジー構築(収集)を終えたトポロジーデータを再度リングを巡回させて各ノードのトポロジーテーブルに設定させる。なお、マスタのノードでエンドビットB4が1のトポロジーデータを受信した場合には、このトポロジーデータを破棄してトポロジー自動構築を終了する。
【0090】
ここで、図16に示すように、ノードA(ノードID=2),ノードB(ノードID=8),ノードC(ノードID=3),ノードD(ノードID=A)それぞれのサイド12方向トポロジー制御部122及びBLSR/オープンリング制御部128を用いてBLSRを構成している場合(但し、各ノードIDは16進表示)のトポロジー構築の様子について、図17に示すトポロジーデータのタイムテーブルを用いて説明する。当初において、ノードA,B,C,Dは全てマスタに設定されている。
【0091】
図17に示す時刻T01で、ノードナンバーNN=00(16進表示)で、最小(=2)のノードIDをトポロジーデータ部の先頭のD5#7に挿入したトポロジーデータが、ノードAからノードBに送信される。次の時刻T02で、自ノードIDが受信トポロジーデータのD5#7より大きいためノードBはスレーブに変更され、ノード数が1となりノードナンバーNN=01(16進表示)で、値8のノードIDをトポロジーデータ部の最後尾のD5#8に挿入したトポロジーデータが、ノードBからノードCに送信される。
【0092】
更に、時刻T03でノードCはスレーブに変更され、ノードナンバーNN=02(16進表示)で、値3のノードIDをトポロジーデータ部の最後尾のD5#9に挿入したトポロジーデータが、ノードCからノードDに送信される。次の時刻T04でノードDはスレーブに変更され、ノードナンバーNN=03(16進表示)で、値AのノードIDをトポロジーデータ部の最後尾のD5#10に挿入したノードIDの並びが「2,8,3,A」のトポロジーデータが、ノードDからノードAに送信される。
【0093】
これによって、時刻T05でノードAにおけるノードナンバーNNのエンドビットが1となり(NN=13)、時刻T06〜T09で、上記ノードIDの並びが「2,8,3,A」のトポロジーデータが各ノードのトポロジーテーブルに設定される。
【0094】
次に、図18に示すように、ノードA(ノードID=2)のサイド12方向トポロジー制御部122及びBLSR/オープンリング制御部128であるAa,ノードB(ノードID=8)のサイド12方向トポロジー制御部122及びBLSR/オープンリング制御部128,ノードA(ノードID=2)のサイド21方向トポロジー制御部126及びBLSR/オープンリング制御部129であるAc,ノードD(ノードID=A)のサイド12方向トポロジー制御部122及びBLSR/オープンリング制御部128を用い、ノードB,Dを端局としてオープンリングを構成している場合(但し、各ノードIDは16進表示)のトポロジー構築の様子について、図19に示すトポロジーデータのタイムテーブルを用いて説明する。当初において、ノードAのAaはマスタ、Acはスレーブに設定され、ノードB,Cはマスタに設定されている。
【0095】
図19に示す時刻T01で、スルー判定フラグが0のためノードナンバーNN=00(16進表示)で、最小(=2)のノードIDをトポロジーデータ部の先頭のD5#7に挿入したトポロジーデータが、ノードAのAaからノードBに送信される。次の時刻T02で、自ノードIDが受信トポロジーデータのD5#7より大きいためノードBはスレーブに変更され、ノード数が1となりスルー判定フラグが1に反転されたためノードナンバーNN=81(16進表示)で、値8のノードIDをトポロジーデータ部の最後尾のD5#8に挿入したトポロジーデータが、ノードBからノードAのAcに送信される。
【0096】
更に、時刻T03で、スルー判定フラグが1のためにスルーされた、ノードナンバーNN=81(16進表示)で、ノードIDの並びが「2,8,0,0」のトポロジーデータが、ノードCからノードDに送信される。次の時刻T04で、ノードDはスレーブに変更され、ノード数が2となりスルー判定フラグが0に反転されたためノードナンバーNN=02(16進表示)で、値AのノードIDをトポロジーデータ部の最後尾のD5#9に挿入したノードIDの並びが「2,8,A,0」のトポロジーデータが、ノードDからノードAのAaに送信される。これによって、時刻T05でノードAのAaにおけるノードナンバーNNのエンドビットが1となり(NN=12)、時刻T06〜T09で、上記ノードIDの並びが「2,8,A,0」のトポロジーデータが各ノードのトポロジーテーブルに設定される。
【0097】
更に、図20に示すように、ノードC(ノードID=F),ノードA(ノードID=8),ノードB(ノードID=2),ノードE(ノードID=5),ノードD(ノードID=4),ノードF(ノードID=9)のうちノードC,Fを端局としてオープンリングを構成している場合(但し、各ノードIDは16進表示)のトポロジー構築の様子について、図21に示すトポロジーデータのタイムテーブルを用いて説明する。
【0098】
当初において、ノードCは、サイド12方向側(図中「(1)」で示す)のBLSR/オープンリング制御部128にマスタ(M)が設定され、サイド21方向側は使用されない。ノードAは、サイド12方向側のBLSR/オープンリング制御部128にスレーブ(S)が設定され、かつ、サイド21方向側(図中「(2)」で示す)のBLSR/オープンリング制御部129にマスタが設定されている。ノードBは、サイド12方向側のBLSR/オープンリング制御部128にマスタが設定され、かつ、サイド21方向側のBLSR/オープンリング制御部129にスレーブが設定されている。ノードEは、サイド12方向側のBLSR/オープンリング制御部128にマスタが設定され、かつ、サイド21方向側のBLSR/オープンリング制御部129にスレーブが設定されている。ノードDは、サイド12方向側のBLSR/オープンリング制御部128にスレーブが設定され、かつ、サイド21方向側のBLSR/オープンリング制御部129にマスタが設定されている。ノードFは、サイド12方向側のBLSR/オープンリング制御部128にマスタが設定され、サイド21方向側は使用されない。
【0099】
図21に示す時刻T1で、スルー判定フラグが0のためノードナンバーNN=00(16進表示)で、最小(=2)のノードIDをトポロジーデータ部の先頭のD5#7に挿入したトポロジーデータが、ノードBのサイド21方向側からノードEのサイド12方向側に送信され、また、ノードBのサイド12方向側からノードAのサイド12方向側に送信される。
【0100】
次の時刻T2で、自ノードIDが受信トポロジーデータのD5#7より大となるために、ノードCのサイド12方向側のBLSR/オープンリング制御部128、ノードEのサイド12方向側のBLSR/オープンリング制御部128、ノードFのサイド12方向側のBLSR/オープンリング制御部128それぞれはマスタからスレーブに変更される。
【0101】
更に、時刻T4で、自ノードIDが受信トポロジーデータのD5#7より大となるために、ノードAのサイド21方向側のBLSR/オープンリング制御部129はマスタからスレーブに変更され、次の時刻T5で、自ノードIDが受信トポロジーデータのD5#7より大となるために、ノードDのサイド21方向側のBLSR/オープンリング制御部129はマスタからスレーブに変更される。この結果、時刻T5に、最小(=2)のノードIDを持つノードBのサイド12方向側のBLSR/オープンリング制御部128のみがマスタとして残り、最小(=2)のノードIDをトポロジーデータ部の先頭のD5#7に挿入して再構築されたトポロジーデータが、ノードBのサイド12方向側からノードAのサイド12方向側に送信される。
【0102】
そして、時刻T10に、ノードIDの並びが「2,8,F,9,4,5」のトポロジーデータが、ノードEのサイド21方向側からノードBのサイド12方向側に送信される。これによって、時刻T11でノードBのサイド12方向側におけるノードナンバーNNのエンドビットが1となり(NN=15)、時刻T12〜T19で、上記ノードIDの並びが「2,8,F,9,4,5」のトポロジーデータが各ノードのトポロジーテーブルに設定され、時刻T20にてこのトポロジーデータがオープンリングを一周してノードBのサイド12方向側に戻り、トポロジー構築の全過程が終了する。
【0103】
このように、マスタにおいて、自ノードIDを受信トポロジーデータのD5#7と比較して自ノードIDが大なるとき自ノードをスレーブに変更することにより、複数のマスタが設定されていても単一のマスタに淘汰することができる。更に、マスタでスルー判定フラグに固定値0を設定し、端局でスルー判定フラグを反転することにより、単一のトポロジーデータを得るようにトポロジー構築を行うことができる。
【0104】
なお、ステップS38が請求項記載の収集/通過制御手段に対応し、ステップS36が折り返し/通過制御手段に対応し、ステップS100が一方向送出手段に対応し、ステップS110,S112が両方向送出手段に対応し、ステップS116が比較手段に対応し、ステップS26がロックアウトワークリング手段に対応し、ステップS236,S254が固定値設定手段に対応し、ステップS246が変更手段に対応し、サイド12方向トポロジー制御部122及びBLSR/オープンリング制御部128が右方向にトポロジーデータを送出して巡回させる手段に対応し、サイド21方向トポロジー制御部126及びBLSR/オープンリング制御部129が左方向にトポロジーデータを送出して巡回させる手段に対応する。
【0105】
【発明の効果】
上述の如く、請求項1に記載の発明は、オープンリングの端局でフラグを反転させてトポロジーデータを折り返し、端局でない場合にフラグをそのままにして通過させ、各ノードでフラグに従ってトポロジー構築を行うため、オープンリングにおいてBLSRに必要なトポロジー構築を自動で行うことができ、これをもとにスケルチテーブルの構築を行うことができる。
【0106】
また、請求項2に記載の発明は、任意のノードから一方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向からトポロジーデータを受信してトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を自動で行うことができる。
【0107】
また、請求項3に記載の発明は、任意のノードから両方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向から受信したトポロジーデータが一致したときトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を更に正確に自動で行うことができる。
【0108】
また、請求項4に記載の発明は、オープンリングの端局でフラグを反転させてトポロジーデータを折り返し、端局でない場合にフラグをそのままにして通過させ、各ノードでフラグに従ってトポロジー構築を行うため、オープンリングにおいてBLSRに必要なトポロジー構築を自動で行うことができ、これをもとにスケルチテーブルの構築を行うことができる。
【0109】
また、請求項5に記載の発明は、任意のノードから一方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向からトポロジーデータを受信してトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を自動で行うことができる。
【0110】
また、請求項6に記載の発明は、任意のノードから両方向にトポロジーデータを送出して巡回させ、任意のノードで送出とは逆方向から受信したトポロジーデータが一致したときトポロジー構築を行うため、オープンリング構成においてBLSRに必要なトポロジー構築を更に正確に自動で行うことができる。
【0111】
また、請求項7に記載の発明は、リング障害が発生時に光双方向リング切り替え方式のリング切り換えを停止させることにより、オープンリングでBLSR切り替えプロトコルによる切り換えを行うことができ、その際に不要な回線断の発生を防止することができる。
【0112】
また、請求項8に記載の発明は、マスタに設定されているノード装置でフラグに固定値を設定し、また、マスタに設定されているノード装置がトポロジーデータの先頭になり得ない場合に自装置をスレーブに変更することにより、複数のノード装置がマスタに設定されていても単一のノード装置がマスタとなるように淘汰でき、単一のトポロジーデータを得るようにトポロジー構築を行うことができる。
【0113】
また、請求項9に記載の発明は、トポロジーデータを右方向に巡回させる手段と、左方向に巡回させる手段とで独立してマスタまたはスレーブの設定を行うため、右方向に巡回させる手段と、左方向に巡回させる手段とで別々にトポロジーデータを設定することが可能となり、トポロジーデータ設定の自由度を向上させることができる。
【図面の簡単な説明】
【図1】リニア構成ネットワークの一例の構成図である。
【図2】リング構成ネットワークの一例の構成図である。
【図3】本発明のノード装置の第1実施例のブロック構成図である。
【図4】BLSR/オープンリング制御部127が実行する切り替え制御処理の一実施例のフローチャートである。
【図5】トポロジーデータのフレームフォーマットを示す図である。
【図6】サイド12方向トポロジー制御部またはサイド21方向トポロジー制御部が実行するトポロジー自動構築処理の一実施例のフローチャートである。
【図7】本発明のオープンリングのトポロジー構築方法の第1実施例におけるトポロジー構築コマンドが投入されたノードのBLSR/オープンリング制御部27が実行するフローチャートである。
【図8】本発明方法によるオープンリングのトポロジー構築の第1実施例の動作説明図である。
【図9】本発明のオープンリングのトポロジー構築方法の第2実施例におけるトポロジー構築コマンドが投入されたノードのBLSR/オープンリング制御部27が実行するフローチャートである。
【図10】本発明方法によるオープンリングのトポロジー構築の第2実施例の動作説明図である。
【図11】本発明方法によるオープンリングのリング障害発生時の動作を説明するための図である。
【図12】本発明方法によるオープンリングのリング障害発生時の動作を説明するための図である。
【図13】本発明方法によるオープンリングのリング障害発生時の動作を説明するための図である。
【図14】本発明のノード装置の第2実施例のブロック構成図である。
【図15】サイド12方向トポロジー制御部122,サイド21方向トポロジー制御部126それぞれが実行するトポロジー自動構築処理の一実施例のフローチャートである。
【図16】各ノードがBLSRを構成している場合のトポロジー構築の様子を説明するための図である。
【図17】トポロジーデータのタイムテーブルを示す図である。
【図18】各ノードがオープンリングを構成している場合のトポロジー構築の様子を説明するための図である。
【図19】トポロジーデータのタイムテーブルを示す図である。
【図20】各ノードがオープンリングを構成している場合のトポロジー構築の様子を説明するための図である。
【図21】トポロジーデータのタイムテーブルを示す図である。
【符号の説明】
20 ノード装置
21 サイド1信号終端部
22 サイド12方向トポロジー制御部
23 サイド2信号終端部
24,25 主信号制御部
26 サイド21方向トポロジー制御部
27 BLSR/オープンリング制御部
31〜34 光ファイバ

Claims (9)

  1. 複数のノードをリニアに接続したオープンリング構成のネットワークで各ノードにトポロジーデータを巡回させて前記リングを構成する各ノードの接続情報を収集し前記リングのトポロジー構築を行うリング構成方法において、
    前記トポロジーデータに、各ノードにおける接続情報の収集の有無を指示するフラグを設け、
    前記オープンリングの両端のノードである端局で前記フラグを反転させて前記トポロジーデータを折り返し、
    前記端局でない場合に前記フラグをそのままにして通過させ、
    各ノードで前記フラグに従って前記トポロジーデータに接続情報を付加しトポロジー構築を行うことを特徴とするリング構成方法。
  2. 請求項1記載のリング構成方法において、
    任意のノードから前記リングの右方向及び左方向のいずれか一方向に前記トポロジーデータを送出して巡回させ、
    前記任意のノードで送出とは逆方向から前記トポロジーデータを受信してトポロジー構築を行うことを特徴とするリング構成方法。
  3. 請求項1記載のリング構成方法において、
    任意のノードから前記リングの右方向及び左方向の両方向に前記トポロジーデータを送出して巡回させ、
    前記任意のノードでそれぞれ送出とは逆方向から受信したトポロジーデータが一致したときトポロジー構築を行うことを特徴とするリング構成方法。
  4. 複数のノードをリニアに接続したオープンリング構成のネットワークのノード装置において、
    前記リングを巡回するトポロジーデータを受信し前記トポロジーデータに設けられているフラグが接続情報の収集することを指示するとき前記トポロジーデータに自装置のノードIDを付加して送出し、前記フラグが接続情報の収集しないことを指示するとき前記トポロジーデータを通過させる収集/通過制御手段と、
    自ノードが前記オープンリングの両端のノードである端局の場合に前記フラグを反転させて前記トポロジーデータを折り返し、自ノードが端局でない場合に前記フラグをそのままで通過させる折り返し/通過制御手段とを
    有することを特徴とするノード装置。
  5. 請求項4記載のノード装置において、
    前記リングの右方向及び左方向のいずれか一方向に前記トポロジーデータを送出して巡回させる一方向送出手段を有し、
    前記送出とは逆方向から前記トポロジーデータを受信してトポロジー構築を行うことを特徴とするノード装置。
  6. 請求項4記載のノード装置において、
    前記リングの右方向及び左方向の両方向に前記トポロジーデータを送出して巡回させる両方向送出手段と、
    前記任意のノードでそれぞれ送出とは逆方向から受信したトポロジーデータを比較する比較手段とを有し、
    前記比較手段の比較結果が一致のときトポロジー構築を行うことを特徴とするノード装置。
  7. 請求項4乃至6のいずれかに記載のノード装置において、
    自ノードの両サイドに接続されている現用回線及び予備回線が共に使用できなくなるリング障害が発生時に光双方向リング切り替え方式のリング切り換えを停止させるロックアウトワークリング手段を
    有することを特徴とするノード装置。
  8. 請求項4記載のノード装置において、
    自装置がマスタに設定されているとき前記フラグに固定値を設定する固定値設定手段と、
    自装置がマスタに設定されているとき自装置のノードIDを受信したトポロジーデータの先頭のノードIDと比較して、自装置が前記トポロジーデータの先頭になり得ない場合に自装置をスレーブに変更する変更手段とを
    有することを特徴とするノード装置。
  9. 請求項8記載のノード装置において、
    前記リングの右方向に前記トポロジーデータを送出して巡回させる手段と、左方向に前記トポロジーデータを送出して巡回させる手段とで、独立して前記マスタまたはスレーブの設定を行うことを特徴とするノード装置。
JP2000225728A 2000-03-06 2000-07-26 リング構成方法及びそのノード装置 Expired - Fee Related JP3765971B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000225728A JP3765971B2 (ja) 2000-03-06 2000-07-26 リング構成方法及びそのノード装置
US09/748,672 US6785224B2 (en) 2000-03-06 2000-12-26 Ring configuring method and node apparatus used in the ring

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-61092 2000-03-06
JP2000061092 2000-03-06
JP2000225728A JP3765971B2 (ja) 2000-03-06 2000-07-26 リング構成方法及びそのノード装置

Publications (2)

Publication Number Publication Date
JP2001326664A JP2001326664A (ja) 2001-11-22
JP3765971B2 true JP3765971B2 (ja) 2006-04-12

Family

ID=26586872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000225728A Expired - Fee Related JP3765971B2 (ja) 2000-03-06 2000-07-26 リング構成方法及びそのノード装置

Country Status (2)

Country Link
US (1) US6785224B2 (ja)
JP (1) JP3765971B2 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487232B1 (en) * 2000-09-13 2009-02-03 Fortinet, Inc. Switch management system and method
US8250357B2 (en) 2000-09-13 2012-08-21 Fortinet, Inc. Tunnel interface for securing traffic over a network
US7272643B1 (en) 2000-09-13 2007-09-18 Fortinet, Inc. System and method for managing and provisioning virtual routers
US7111072B1 (en) 2000-09-13 2006-09-19 Cosine Communications, Inc. Packet routing system and method
US7389358B1 (en) 2000-09-13 2008-06-17 Fortinet, Inc. Distributed virtual system to support managed, network-based services
US7444398B1 (en) * 2000-09-13 2008-10-28 Fortinet, Inc. System and method for delivering security services
US7574495B1 (en) * 2000-09-13 2009-08-11 Fortinet, Inc. System and method for managing interworking communications protocols
US7209436B1 (en) * 2000-12-30 2007-04-24 Redback Networks Inc. Method and apparatus for variable rate pipes
US7016300B2 (en) * 2000-12-30 2006-03-21 Redback Networks Inc. Protection mechanism for an optical ring
US6975589B2 (en) * 2000-12-30 2005-12-13 Redback Networks Inc. Method and apparatus for a hybrid variable rate pipe
JP4433624B2 (ja) * 2001-02-28 2010-03-17 日本電気株式会社 通信ネットワーク、集中制御装置、通信ノード装置及びそれらに用いる状態通知情報相互交換方法
US20020131418A1 (en) * 2001-03-14 2002-09-19 Michael Raftelis Method and apparatus for establishing a path identifier in a communication network
US20020133698A1 (en) * 2001-03-14 2002-09-19 Wank Richard B. Method and apparatus for a network element to support a protected communication link in a communication network
US20020131431A1 (en) * 2001-03-14 2002-09-19 Wank Richard B. Method and apparatus for a network element to support a communication link in a communication network
US6975588B1 (en) 2001-06-01 2005-12-13 Cisco Technology, Inc. Method and apparatus for computing a path through a bidirectional line switched
US7031253B1 (en) * 2001-06-01 2006-04-18 Cisco Technology, Inc. Method and apparatus for computing a path through specified elements in a network
US7181547B1 (en) 2001-06-28 2007-02-20 Fortinet, Inc. Identifying nodes in a ring network
US6973049B2 (en) * 2001-10-16 2005-12-06 Corrigent Systems Ltd. Auto-configuration of network interfaces in a bidirectional ring network
US20030174656A1 (en) * 2002-01-18 2003-09-18 Rodrigo Fernandez APS identification allocation in communication networks
US7376125B1 (en) 2002-06-04 2008-05-20 Fortinet, Inc. Service processing switch
US7161904B2 (en) 2002-06-04 2007-01-09 Fortinet, Inc. System and method for hierarchical metering in a virtual router based network switch
US7116665B2 (en) * 2002-06-04 2006-10-03 Fortinet, Inc. Methods and systems for a distributed provider edge
US7203192B2 (en) * 2002-06-04 2007-04-10 Fortinet, Inc. Network packet steering
US7177311B1 (en) * 2002-06-04 2007-02-13 Fortinet, Inc. System and method for routing traffic through a virtual router-based network switch
US20040057377A1 (en) * 2002-09-10 2004-03-25 John Tinney Routing patterns for avoiding congestion in networks that convert between circuit-switched and packet-switched traffic
US7266120B2 (en) * 2002-11-18 2007-09-04 Fortinet, Inc. System and method for hardware accelerated packet multicast in a virtual routing system
US7599315B2 (en) * 2002-12-16 2009-10-06 Alcatel-Lucent Canada Inc. Topology discovery in a dual ring network
JP2004215056A (ja) * 2003-01-07 2004-07-29 Fujitsu Ltd 伝送装置,空きノード番号検索方法およびトポロジデータ生成方法
WO2005008392A2 (en) * 2003-07-08 2005-01-27 Sycamore Networks, Inc. Network span protection using span identifiers
US7720095B2 (en) 2003-08-27 2010-05-18 Fortinet, Inc. Heterogeneous media packet bridging
US7499419B2 (en) * 2004-09-24 2009-03-03 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
DE102004046858B4 (de) * 2004-09-27 2007-03-15 Siemens Ag Verfahren zur Bestimmung eines leitenden Teilnehmers in einem Netzwerk
US7925265B2 (en) 2004-10-14 2011-04-12 Novatel Wireless, Inc. Method and apparatus for routing voice traffic over a residential gateway
US7808904B2 (en) * 2004-11-18 2010-10-05 Fortinet, Inc. Method and apparatus for managing subscriber profiles
US7590130B2 (en) * 2004-12-22 2009-09-15 Exar Corporation Communications system with first and second scan tables
US20060133383A1 (en) * 2004-12-22 2006-06-22 Russell Homer Communications system with scan table identification
CN100531092C (zh) * 2005-01-25 2009-08-19 华为技术有限公司 智能光网络的业务重路由触发方法
US7468955B2 (en) * 2005-04-11 2008-12-23 At&T Intellectual Property I, L.P. System and method of defining a modified UPSR SONET network including sub-tending rings
US7668920B2 (en) * 2006-03-01 2010-02-23 Fortinet, Inc. Electronic message and data tracking system
US7702741B2 (en) * 2007-07-31 2010-04-20 Oracle International Corporation Configuring or reconfiguring a multi-master information sharing environment
US7899785B2 (en) 2007-07-31 2011-03-01 Oracle International Corporation Reconfiguring propagation streams in distributed information sharing
JP5381379B2 (ja) * 2009-06-18 2014-01-08 富士電機株式会社 ネットワークシステム及びネットワークシステムのシステム構成解析方法
WO2011114481A1 (ja) * 2010-03-18 2011-09-22 富士通株式会社 ノードおよびリング情報送信方法
WO2012042623A1 (ja) * 2010-09-29 2012-04-05 富士通株式会社 リングネットワークを構築する方法
FR2978315B1 (fr) * 2011-07-20 2013-09-13 Thales Sa Reseau de transmission d'informations et noeud de reseau correspondant
CN103297257B (zh) * 2012-02-27 2016-10-19 北京东土科技股份有限公司 一种冗余网络的实现方法
CN111901148B (zh) * 2020-06-29 2022-11-18 飞诺门阵(北京)科技有限公司 网络拓扑结构的管理方法、装置、电子设备及存储介质
JP7246773B1 (ja) 2021-12-20 2023-03-28 株式会社テクノ高槻 気体式マッサージ機用給排気システム及びそれを備える気体式マッサージ機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234059A (ja) * 1988-07-25 1990-02-05 Mitsubishi Electric Corp ノード装置の処理方式
US5442620A (en) * 1992-03-26 1995-08-15 At&T Corp. Apparatus and method for preventing communications circuit misconnections in a bidirectional line-switched ring transmission system
US5282200A (en) * 1992-12-07 1994-01-25 Alcatel Network Systems, Inc. Ring network overhead handling method
JP3307508B2 (ja) * 1994-09-01 2002-07-24 富士通株式会社 通信ネットワーク構成検出方法
JP3259126B2 (ja) 1995-09-26 2002-02-25 富士通株式会社 リング伝送システム及び該システムのスケルチ方法
JP3976397B2 (ja) * 1998-04-28 2007-09-19 株式会社日立コミュニケーションテクノロジー Blsrネットワークシステム

Also Published As

Publication number Publication date
US20010019540A1 (en) 2001-09-06
JP2001326664A (ja) 2001-11-22
US6785224B2 (en) 2004-08-31

Similar Documents

Publication Publication Date Title
JP3765971B2 (ja) リング構成方法及びそのノード装置
EP0951196B1 (en) Optical layer quasi-centralized restoration
EP2129039B1 (en) Audio signal processor and network system
JP3782229B2 (ja) パス情報構築方法
US7433371B2 (en) Optical cross connect apparatus and network
US5942989A (en) Automatic path setting apparatus for a synchronous communication system
US7133370B2 (en) Network topology collection device
EP0321907B1 (en) Duplex system of transmission lines in a loop network
JPH0993278A (ja) リング伝送システム及び該システムのスケルチ方法
EP3605881B1 (en) Method and device for transmitting and receiving network management information, transmitting apparatus and receiving apparatus
EP2178250A1 (en) Network system and audio signal processor
US6678781B1 (en) Network configuration method
JPH07111703B2 (ja) リンク確立方法及び相互接続装置
US8279762B2 (en) Interface switching method and device
US7515545B2 (en) Signal repeater and switching device, method of detecting connecting relation between signal repeater and switching device and communication system
JP5141169B2 (ja) 音響信号処理装置及びネットワークシステム
US6535529B1 (en) Cross connect apparatus capable of reducing workload of operator
CN113162872B (zh) 一种自检测可动态切换可监测的arinc818交换机
JP2009094587A (ja) 音響信号処理装置及びネットワークシステム
JP3952387B2 (ja) ネットワーク処理装置及び設定方法
JP2008182616A (ja) 光双方向ラインスイッチリング伝送システム、伝送装置及びスルークロスコネクト設定方法
JP2867865B2 (ja) 予備回線切替制御方式
JP3787810B2 (ja) リング伝送システムのスケルチ方法
WO2006038248A1 (ja) リング伝送システムにおける光伝送装置
JP4199101B2 (ja) 伝送システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees