JP3765007B2 - Renovation cost evaluation method based on building seismic performance evaluation value - Google Patents

Renovation cost evaluation method based on building seismic performance evaluation value Download PDF

Info

Publication number
JP3765007B2
JP3765007B2 JP2001345708A JP2001345708A JP3765007B2 JP 3765007 B2 JP3765007 B2 JP 3765007B2 JP 2001345708 A JP2001345708 A JP 2001345708A JP 2001345708 A JP2001345708 A JP 2001345708A JP 3765007 B2 JP3765007 B2 JP 3765007B2
Authority
JP
Japan
Prior art keywords
value
building
calculation
repair
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001345708A
Other languages
Japanese (ja)
Other versions
JP2003147970A (en
Inventor
均 瀬谷
吉之 佐藤
裕史 恒川
勝 藤村
俊也 樫村
博 沢田
敦 小田島
一臣 中根
英夫 久家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2001345708A priority Critical patent/JP3765007B2/en
Publication of JP2003147970A publication Critical patent/JP2003147970A/en
Application granted granted Critical
Publication of JP3765007B2 publication Critical patent/JP3765007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、コンピュータにより既存建物の耐震性能を速やかに算定評価する建物の耐震性能評価方法と、前記建物の耐震性能評価方法により得られた耐震性能評価値に基いて同既存建物の改修費用を評価する改修費用評価方法の技術分野に属する。
【0002】
【従来の技術】
現在、既存建物の耐震性を高める改修工事を行うにあたっては、専門技術者が直接建物へ出向いて耐震診断を行い、耐震性能の指標である構造耐震指標値(以下、Is値と云う。)を算定し、各建物毎の耐震性能を評価した後に、改修計画が練られている。従って、耐震性能の評価には数日から数週間程度の期間を必要としている。
【0003】
建設業界では、従来より建物の耐震性能を国内の耐震診断基準に基づいた上記Is値により評価している。
一方、金融・保険業界では、地震保険料の設定、証券化に伴う不動産の資産価値の目安等に用いる指標として予想最大損失率(Probable Maximum Loss )が考案され、その数値(以下、PML値と云う。)は耐震性能を評価する世界標準の指標として用いられている。
【0004】
最近、耐震改修によって建物の資産価値向上を望むビル所有者が増えているため、建設業界では顧客ニーズに応えるべく、資産価値と対応させ易い等の利便性を有するPML値が、建物の耐震性能の評価を示す新たな指標として採用されつつある。
【0005】
上記PML値は、475年に1度の確率で起こり得る最大の地震に被災した建物を被災前の状態に復旧する補修工事の、総建替工事費(再調達価格)に占める割合(%)を示している。このPML値は、建物の脆弱性を表す指標(例えばIs値)や過去の地震履歴データ等から算定され、475年に1度の確率で起こり得る最大の地震に対する損失の90%非超過値を示している。
PML値の算定は、Is値を基にしているのでIs値の算定作業と同様に専門の技術者により数日から数週間程度の期間を要している。
【0006】
【発明が解決しようとする課題】
上記のとおり、PML値及びIs値の算定作業は、専門技術者により手間と時間を掛けて行われており、早急に所有する建物のPML値を知り得たいとの顧客ニーズに即応できない問題や前記算定作業に人件費等の費用が嵩む問題がある。
【0007】
また、PML値及びIs値は、単なる指標数値であるため、費用の面から建物の改修の有効性を検討する際にどの程度の改修を行えば、どの程度の費用対効果、即ち投資効果が得られるのかを、即時に検討し評価することができず、前記投資効果等を即座に知り得ることを望む顧客ニーズに即応できない問題がある。
【0008】
本発明の目的は、コンピュータを用いて、専門技術者で無くとも、簡便且つ速やかに耐震性能をIs値やPML値により定量的に算定でき、しかも上記顧客ニーズに即応できるほか、コスト削減にも寄与する、建物の耐震性能評価方法及びその耐震性能評価値に基く改修費用評価方法を提供することにある。
【0009】
本発明の次の目的は、コンピュータを用いて、目標とする改修後の耐震性能に応じた建物の改修費及び被災時の被害額を費用対効果として定量的に且つ明確に把握でき、しかも上記顧客ニーズに即応できる、建物の耐震性能評価値に基く改修費用評価方法を提供することにある。
【0010】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1に記載した発明に係る建物の耐震性能評価値に基づく改修費用評価方法は、
既存建物の耐震改修費用を算定し、耐震改修への投資効果を評価する方法であって、
コンピュータが、評価対象建物の構造情報、地理情報、地盤情報から成る建物環境データの入力を促すステップと、
前記コンピュータが前記建物環境データの入力に基づいてIs値算定データベース及びPML値算定データベースとから構成される基礎データを参照して前記評価対象建物の現状耐震性能評価値(現状Is値及び現状PML値)を次のように算定するステップと、
現状Is値の算定:コンピュータが、前記建物環境データの構造情報を基に、Is値算定 用データベースに格納するIs値算定表、即ち、過去に耐震診断を行 った建物の耐震診断データを基に、前記構造情報の各入力項目情報と Is値との関係を数値データとして取りまとめたもの、を用いて算定 する。
現状PML値の算定:コンピュータが、PML値算定データベースの基礎データを参照し 、地震ハザード解析、損傷度解析、破壊確率の算定、被害関数、リス クカーブの解析の各工程を一連に処理して算定する。
前記コンピュータが、目標耐震性能評価値(目標Is値)、及び前記評価対象建物の改修費用の算定に必要な対象建物の基準階面積、坪単価、改修単価等の算定情報の入力を促すステップと、
前記コンピュータが前記評価対象建物の改修工事前後における被災時の予測被害額、及び改修費用を前記現状PML値を算定した際のデータ及び前記入力された対象建物の目標耐震性能評価値、建物環境データ、算定情報を基に算定するステップと、
前記コンピュータが算定した評価対象建物の改修工事前後における被災時の予測被害額、及び改修費用をモニター等の出力表示手段に出力するステップとから成ることを特徴とする。
【0013】
請求項記載の発明は、請求項1に記載した建物の耐震性能評価値に基く改修費用評価方法において、
予想被害額は、耐震改修を行う場合と、免震改修を行う場合とに分けて各々算定すること、そして、免震改修を行う場合の予測被害額は、上記耐震改修を行う場合と同様に現状Is値及び現状PML値を算定した上で、目標Is値の入力を促し、被災時の予測被害額、及び改修費用を算定し、出力表示手段に出力することを特徴とする。
【0014】
請求項記載の発明は、請求項1又はに記載した建物の耐震性能評価値に基づく改修費用評価方法において、
耐震改修費用の算定は、コンピュータが、対象建物の目標耐震性能評価値、建物環境データ、算定情報を基に、前記建物規模と改修費用算定データベース内の改修一覧データとを照合し、目標Is値を達成するために要する不足水平力を割り出し、この不足水平力と不足水平力1トンあたりの改修単価とから算定し、
免震改修費用の算定は、コンピュータが、対象建物の目標耐震性能評価値、建物環境データ、算定情報を基に対象建物の総面積と免震改修の改修単価とから算定することを特徴とする。
【0015】
【発明の実施形態及び実施例】
以下、図面を参照して、請求項1〜に記載した発明に係る建物の耐震性能評価値に基づく改修費用評価方法の実施例を説明する。
先ず図1は、 建物の耐震性能評価方法を実施するコンピュータ1の構成例を示している。
【0016】
このコンピュータ1は、主にCPU等から成る演算・制御装置2と、ハードディスクドライブや光磁気ディスクドライブ等の読み書き可能な記憶媒体及び駆動デバイスから成る補助記憶装置5と、出力表示手段であるモニターやプリンター等の出力装置4と、キーボードやマウス等の入力装置3とから構成された、所謂パーソナルコンピュータが好適に用いられる。
【0017】
上記の補助記憶装置5は、建物の耐震性能評価方法を実行するためのプログラムを記憶格納しているだけでなく、種々の基礎データを項目別に配備したデータベース群を記憶格納する。
前記データベース群は、Is値算定データベース、PML値算定データベースとから構成される。
【0018】
前記Is値算定データベースは、Is値算定表等の現状Is値の算定に必要な各種基礎データを記憶格納する。
前記PML値算定データベースは、過去に発生した全国の地震データ、全国の地盤特性データ等のPML値の算定に必要な各種基礎データを記憶格納する。
【0019】
次に図2は、図1に示したコンピュータ1にて実施される、建物の耐震性能評価方法の流れ図を示している。以下、図2の流れ図に沿って処理内容を説明する。
【0020】
先ず、ステップAとして、コンピュータ1へ評価対象建物(以下、単に対象建物と云う。)の「構造情報」、「地理情報」、「地盤情報」から成る建物環境データがオペレータにより入力・設定される。
【0021】
前記「構造情報」は、構造種別、建築年、階数、用途、壁の量、壁の配置、ピロティーの有無の7つの入力項目から成る。これらの各項目は、出力装置4のモニターに表示された図3のダイアログボックス10上でマウス等の入力装置3を用いて該当する条件を選択し入力・設定が行われる。
【0022】
前記「地理情報」は、図4に示すダイアログボックス11上で対象建物の建設場所を地点リスト51中からマウス等の入力装置3を用いて選択し入力・設定する。なお、選択された地点は、連動して表示欄52に表示され、同時に前記表示欄52の直下に当該地点の経度/緯度がやはり連動して自動的に表示される。
【0023】
前記「地盤情報」は、出力装置4のモニターに表示された図4に示すダイアログボックス11上で地盤条件の項目に該当する条件のラジオボックスをマウス等の入力装置3を用いて選択し入力・設定する。
その後、オペレータによりダイアログボックス11上の計算ボタン56が押される。
【0024】
続く図2のステップBでは、前記ステップAでの入力・設定が完了した後に、コンピュータ1が前記建物環境データを基にデータベースの基礎データを参照して対象建物の現状耐震性能評価値である「現状Is値」と、「現状PML値」をそれぞれ算定する。
【0025】
前記「現状Is値」は、コンピュータ1が入力された「構造情報」の7つの入力項目の情報を基に、Is値算定データベースに記憶格納するIs値算定表を用いて算定する。なお、前記Is値算定表は、過去に耐震診断を行った建物の耐震診断データを基に、前記「構造情報」の7つの入力項目の情報とIs値との関連を数値データとして取りまとめたものである。
【0026】
一方、「現状PML値」の算定にあたっては、コンピュータ1がデータベースのPML値算定データベースの基礎データを参照し、 i)地震ハザード解析、ii)損傷度解析、iii)破壊確率の算定、iv)被害関数、 v)リスクカーブ解析の各工程を一連に処理して、最終的に当該「現状PML値」を算定する。
【0027】
詳細な処理内容は、先ず、「地震ハザード解析」の工程で、対象建物の建設場所で過去に起きた地震データ等の基礎データを基に将来において前記建設現場で発生し得る地震の年超過確率が算定される(ステップB21)。要するに、建物の建設場所において発生し得る地震の大きさ、即ち最大加速度(PME)とその頻度(年超過確率)との関係を表した地震ハザード曲線を作成し、同地震ハザード曲線から任意の大きさの地震が発生する確率、即ち年超過確率を求める。
【0028】
続く「損傷度解析」の工程で、任意のIs値を有する建物が地震の大きさに応じて受ける建物の損傷レベルの確率が算定される(ステップB22)。因みに、損傷レベルは、建物の被害状況によって、倒壊、大破、中破、小破の4段階で評価する。要するに、先に算定した「現状Is値」をもつ対象建物が4区分の各損傷レベル以上の損傷を受け得る確率と地震の大きさとの関係を取りまとめた損傷度曲線を作成し、同損傷度曲線から建物が受け得る各損傷レベルの確率を求める。
【0029】
次に「破壊確率の算定」で、上記「地震ハザード解析」及び「損傷度解析」から、対象建物が各損傷レベルを1年間に受け得る確率、即ち破壊確率を算定する(ステップB23)。つまり、「地震ハザード解析」と「損傷度解析」の結果を用いて地震荷重の大きさを積分し、地震応答が各損傷レベルを1年間に超過する頻度を求める。
【0030】
更に「被害関数」で、対象建物がある各損傷レベルの被害を受けたときに、新築の状態に戻すために掛かる復旧費用を算定する(ステップB24)。本実施例では、阪神大震災のデータを基に4つの各損傷レベル毎に総建替工事費(再調達価格)に対する復旧費用の割合(被害率)は、図5に示す被害関数として設定した。
【0031】
最後に「リスクカーブ解析」で、上記4つの処理工程の結果から対象建物の供用期間に応じた予想損失率が算定される(ステップB25)。要するに、縦軸に年地震発生確率を、横軸に地震発生による予想損失率をとり、その関係をグラフに表したリスクカーブを作成する。そして、結果として前記リスクカーブの作成過程において算出される再現期間が475年に1度の地震、即ちリスクカーブの縦軸が1/475に対応する横軸の予想損失率が「現状PML値」として求められる。
【0032】
斯くして上記のステップBが終了すると、続く図2のステップCにおいて、上記のようにして算定された「現状Is値」及び「現状PML値」が図4に示すダイアログボックス11上に、出力装置4のモニターを解して出力される。因みに、「現状Is値」は図3のダイアログボックス10の表示欄50にも表示される。
【0033】
前記「現状Is値」及び「現状PML値」が出力表示された図4のダイアログボックス11には、上記「損傷度解析」で算定した再現期間が475年に1度の確率で起こり得る最大の地震により被る建物の各損傷レベルの確率が出力表示される。建物が受ける各損傷レベルの確率を表やグラフ等で対比し表示させることで、より視覚的に対象建物の耐震性能を把握し易くしている。
斯くして、建物の耐震性能評価方法に係る一連の処理が終了となる。
【0034】
以上に説明し建物の耐震性能評価方法によれば、汎用のコンピュータ1を用いて、熟練を要した専門技術者で無くとも、誰でも簡便且つ速やかに耐震性能を定量的に算定できる。その結果、早急に所有する建物のPML値を知り得たいとの顧客ニーズに即応することができ、人件費等の面でコスト削減する事もできるのである。
【0035】
次に、図面を参照して、請求項1〜に記載した発明に係る建物の耐震性能評価値に基く改修費用評価方法の実施形態を説明する。
なお、本発明は、図1〜図5に基づいて説明した上記建物の耐震性能評価方法により求められた耐震性能評価(現状Is値及び現状PML値)に基いて、耐震改修費用の算定等を行う改修費用評価方法である。
【0036】
図6は、本発明に係る建物の耐震性能評価値に基く改修費用評価方法が実施されるコンピュータ8の構成例を示している。
このコンピュータ8は、図1に基づいて説明した上記建物の耐震性能評価方法による現状Is値及び現状PML値の算定に供されるコンピュータ1と同様の装置により構成される、所謂パーソナルコンピュータが好適に使用される。但し、補助記憶装置9が、本発明に係る耐震性能評価値に基く改修費用評価方法を実行するためのプログラムと、Is値算定データベース、PML値算定データベース、改修費用算定データべースで構成されるデータベース群とを記憶格納する点で異なる。
【0037】
前記データベース群のIs値算定データベース及びPML値算定データベースは、上記のコンピュータ1と同一の情報を蓄積する。また、改修費用算定データべースは、建物規模に応じた耐震性能値の引き上げに伴う必要補強量の一覧データ(以下、改修一覧データと云う。)を蓄積する。この改修一覧データは、過去に行った耐震改修のデータから求められたものである。
【0038】
図7は、図6に示したコンピュータ8にて実施される請求項1〜記載した建物の耐震性能評価値に基く改修費用評価方法の流れ図を示している。以下、図7の流れ図に沿って処理内容を説明する。但し、図2の流れ図に基づいて説明した上記建物の耐震性能評価方法のステップの構成が共通する部分の説明は省略する。
【0039】
先ず、図7に示すステップT〜ステップVでコンピュータ8が行う「現状Is値」及び「現状PML値」の算定は、上記建物の耐震性能評価方法を説明した図2の流れ図のステップA〜ステップCとそれぞれ同様に実施されるため、その説明は省略する。
【0040】
無論、対象建物の各損傷レベルの確率は、上記建物の耐震性能評価方法と同様の手法により、コンピュータ8がステップT〜ステップV迄において行う「損傷度解析」で算定され、ダイアログボックス11上に表示される。
【0041】
次にステップWにおいて、図8に示すダイアログボックス12が出力装置のモニター上に表示され、オペレータにより前記ダイアログボックス12内の耐震改修目標値欄60へ目標耐震性能評価値である「目標Is値」が任意に入力設定される。更に、ダイアログボックス12に算定情報である対象建物の基準階面積及び坪単価、並びに耐震改修の不足水平力1トン(9.8kN)あたりの改修単価及び免震改修の3.3mあたりの改修単価がオペレーターにより入力設定される。その後、オペレータによりダイアログボックス12上の改修費用計算ボタン55が押される。なお、ダイアログボックス12上の表示欄53、54に示される対象建物の地上階数、地下階数の数値は、前記ステップTで入力された建物環境データからコンピュータ8が抽出し表示する。
【0042】
続くステップXでは、コンピュータ8が対象建物の改修工事前後における被災時の予測被害額、及び改修費用を算定する。
改修工事前、即ち現状における対象建物の前記予測被害額は、ステップUで現状対象建物の「現状PML値」を算定した際のデータを援用し算定される。
【0043】
改修工事後における対象建物の前記予測被害額は、耐震改修を行う場合と免震改修を行う場合とで各々算定される。その算定手法は次の通りである。
耐震改修を行った場合、即ち耐震改修後の予測被害額は、先に入力された「目標Is値」を用いてステップUと同様の手法によりリスクカーブ解析を行って供用年数に応じた予想損失率を算定し、同予想損失率と総費用とから当該予測被害額が算定される。
【0044】
免震改修を行った場合、即ち免震改修後の予測被害額も、先に入力された「目標Is値」を用いてステップUと同様の手法によりリスクカーブ解析を行って供用年数に応じた予想損失率を算定し、同予想損失率と総費用とから当該予測被害額が算定される。
【0045】
なお、前記総費用は、対象建物の総建替工事費(再調達価格)であり、基準階面積及び坪単価が入力されるとコンピュータ8が自動的に算定し、前記ダイアログボックス12上にも表示される。
上記改修費用の算定においては、やはり耐震改修を行う場合の耐震改修費用と、免震改修を行う場合の免震改修費用とが各々算定される。
【0046】
前記耐震改修費用は、コンピュータ8により次のとおり算定される。先ず、上記ステップT及びステップWでオペレータにより入力された対象建物の情報を基に大凡の建物規模を算定する。続いて、算定された建物規模と改修費用算定データベース内の改修一覧データとを照合し、目標耐震性能値である「目標Is値」を達成するために要する対象建物の必要補強量を割り出して、当該必要補強量と耐震改修の不足水平力1トン(9.8kN)あたりの改修単価とから算定する。
【0047】
一方、前記免震改修費用は、コンピュータ8がステップT及びステップWでオペレータにより入力された対象建物の情報を基に対象建物の全総面積と免震改修の3.3mあたりの改修単価とから算定する。
【0048】
次にステップYにおいて、前記被災時の予測被害額、及び改修費用をモニター等の出力表示手段に出力する。
前記被災時の予測被害額及び改修費用は、図8に示すように、ダイアログボックス12上に数値で表示される。併せて、前記予測被害額の算定処理に伴い算定される改修前後におけるPML値も前記ダイアログボックス12上に併記して表示される。
【0049】
また、前記被災時の予測被害額及び改修費用は、前記ダイアログボックス12上の総コスト比ボタン57を押すことで、図9に示すように、より視覚的に把握し易いグラフ13でも表示される。
【0050】
因みに、対象建物の改修前後における地震リスクをリスクカーブにより把握できるよう、前記ダイアログボックス12上のリスクカーブボタン58を押すと、現状及び耐震改修後並びに免震改修後の対象建物に係るリスクカーブを表示することもできる。
【0051】
なお、本実施例では再現期間が1、5、72、475年に1度の確率で起こり得る地震により被る予測被害額をダイアログボックス12上に表示する。無論、表示する予測被害額は、これら再現期間のものに限定されない。
【0052】
その後、ステップZにおいて、先にステップWで入力設定した「目標Is値」と異なる目標Is値での改修費用評価を更に行う場合は、ステップWに戻って異なる「目標Is値」をダイアログボックス12上で再度入力設定しステップX及びステップYの処理を行う。一方、終了する場合は終了ステップへ進み、本発明による建物の耐震性能評価値に基く改修費用評価方法に係る一連の処理が終了となる。
【0053】
以上に説明したように、請求項1〜に記載した発明に係る建物の耐震性能評価値に基く改修費用評価方法によれば、汎用のコンピュータ8を用いて、熟練を要した専門技術者でなくとも、誰でも簡便且つ速やかに耐震性能を定量的に算定できる。その結果、早急に所有する建物のPML値を知り得たいとの顧客ニーズに即応することができ、人件費等の面でコスト削減する事もできるのである。
【0054】
更に、目標とする改修後の耐震性能に応じた建物の改修費及び被災時の被害額を費用対効果として定量的に且つ明確に把握できる他、投資効果等を即座に知り得ることを望む顧客ニーズにも即応できるのである。
【0055】
以上には本発明の好適な実施形態を説明したが、本発明の実施形態以外にも、本発明の要旨を逸脱することなく、当業者が通常行う種々の応用、変更による実施も可能であることを付言する。例えば、改修費用の算定にあたり、対象建物の目標とする耐震性能値をIs値では無く、PML値で入力し当該改修費用の算定が行えるよう変更しても良い。また、図3と図4に示した各々のダイアログボックス10、11を一つのダイアログボックスにまとめた構成でも良い。
【0056】
【本発明が奏する効果】
請求項1〜に記載した発明に係る建物の耐震性能評価値に基く改修費用評価方法によれば、コンピュータを用いて、熟練を要した専門技術者でなくとも、簡便且つ速やかに耐震性能を定量的に算定でき、早急に所有する建物のPML値を知り得たいとの顧客ニーズに即応することができる上に、人件費等の面でコスト削減にも寄与する。
【0057】
また、本発明に係る建物の耐震性能評価値に基く改修費用評価方法によれば、コンピュータを用いて、目標とする改修後の耐震性能に応じた建物の改修費及び被災時の被害額を費用対効果として定量的に且つ明確に把握できる上に、投資効果等を即座に知り得ることを望む顧客ニーズにも即応できるのである。
【図面の簡単な説明】
【図1】物の耐震性能評価方法を実現するためコンピュータの構成例を示すブロック図である。
【図2】物の耐震性能評価方法を実現するためにコンピュータ上で実行される全体的な処理動作を示す流れ図である。
【図3】 評価対象建物に係る構造情報の入力画面を示す図である。
【図4】 評価対象建物に係る現状PML値の算定、表示画面を示す図である。
【図5】 評価対象建物の各損傷レベルに応じた被害率を示す表である。
【図6】 本発明に係る建物の耐震性能評価値に基く改修費用評価方法を実現するためコンピュータの構成例を示すブロック図である。
【図7】 本発明に係る建物の耐震性能評価値に基く改修費用評価方法を実現するためにコンピュータ上で実行される全体的な処理動作を示す流れ図である。
【図8】 評価対象建物に係る改修費用の算定、表示画面を示す図である。
【図9】 改修工事の投資効果を示すグラフ画面を示す図である。
【符号の説明】
1、8 コンピュータ
4 出力装置(出力表示手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a building seismic performance evaluation method that quickly calculates and evaluates the seismic performance of an existing building using a computer, and the repair cost of the existing building based on the seismic performance evaluation value obtained by the seismic performance evaluation method of the building. It belongs to the technical field of the evaluation method of repair costs to be evaluated.
[0002]
[Prior art]
Currently, when renovation work is performed to improve the earthquake resistance of existing buildings, a specialist engineer goes directly to the building for earthquake resistance diagnosis and uses the seismic performance index (hereinafter referred to as the Is value) as an index of seismic performance. After calculating and evaluating the seismic performance of each building, a renovation plan is formulated. Therefore, the evaluation of seismic performance requires a period of several days to several weeks.
[0003]
In the construction industry, the seismic performance of a building has been conventionally evaluated based on the above Is value based on domestic seismic diagnostic criteria.
On the other hand, in the financial / insurance industry, the probable maximum loss rate (Probable Maximum Loss) has been devised as an index used to set earthquake insurance premiums and to estimate the asset value of real estate accompanying securitization. Is used as a global standard index for evaluating seismic performance.
[0004]
Recently, the number of building owners who want to improve the asset value of buildings through seismic retrofits has increased, so the PML value, which is convenient to respond to asset values in order to meet customer needs in the construction industry, has the seismic performance of buildings. It is being adopted as a new index indicating the evaluation of
[0005]
The above PML value is the ratio (%) of the total rebuilding cost (repurchase price) of repair work that restores the building damaged by the largest earthquake that can occur once in 475 to the state before the disaster. Is shown. This PML value is calculated from an index (for example, Is value) that indicates the vulnerability of a building, past earthquake history data, etc., and represents a value that does not exceed 90% of the loss for the largest earthquake that can occur once every 475 years. Show.
Since the calculation of the PML value is based on the Is value, a period of several days to several weeks is required by a professional engineer in the same manner as the Is value calculation work.
[0006]
[Problems to be solved by the invention]
As described above, the calculation work of the PML value and the Is value is carried out by a specialist engineer with time and effort, and there is a problem that cannot be immediately met with the customer's needs to know the PML value of the building owned immediately. There is a problem in that the calculation work increases labor costs.
[0007]
In addition, since the PML value and the Is value are merely index values, how much cost-effectiveness, that is, the investment effect, can be achieved by how much renovation should be performed when considering the effectiveness of the renovation of the building in terms of cost. Whether it can be obtained cannot be immediately examined and evaluated, and there is a problem that it is not possible to immediately respond to the customer needs that would like to be able to immediately know the investment effect and the like.
[0008]
The object of the present invention is to enable simple and quick calculation of seismic performance based on the Is value and PML value using a computer, even if you are not a specialist engineer. The purpose is to provide a method for evaluating seismic performance of buildings and a method for evaluating repair costs based on the seismic performance evaluation values.
[0009]
The next object of the present invention is to use a computer to quantitatively and clearly grasp the cost of repairing a building and the amount of damage at the time of the disaster according to the target seismic performance after the repair. The purpose is to provide a repair cost evaluation method based on the seismic performance evaluation value of a building that can respond to customer needs.
[0010]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems , a repair cost evaluation method based on the seismic performance evaluation value of the building according to the invention described in claim 1 is:
A method for calculating the cost of earthquake-proof repair of existing buildings and evaluating the investment effect of earthquake-proof repair ,
A step of prompting the input of building environment data comprising structural information, geographical information, and ground information of the building to be evaluated;
Based on the input of the building environment data, the computer refers to the basic data composed of the Is value calculation database and the PML value calculation database, and evaluates the current seismic performance evaluation values (current Is value and current PML value) of the building to be evaluated. ) To calculate:
Current Is value calculation: Based on the structural information of the building environment data, the computer stores the Is value calculation table stored in the database for Is value calculation, that is, based on the seismic diagnosis data of buildings that have been subjected to seismic diagnosis in the past. In addition, the calculation is performed using the data that summarizes the relationship between each input item information of the structural information and the Is value as numerical data.
Calculation of current PML value: A computer refers to the basic data of the PML value calculation database, and calculates and processes each process of earthquake hazard analysis, damage degree analysis, failure probability calculation, damage function, risk curve analysis in series. To do.
The computer prompting for input of target seismic performance evaluation value (target Is value) and calculation information such as a standard floor area, a unit price, a unit price of renovation, etc. of the target building necessary for calculating the repair cost of the target building; ,
Data when the computer calculates the current PML value for predicted damage amount and repair cost before and after repair work of the evaluation target building, and the input target seismic performance evaluation value of the target building, building environment data Calculating based on the calculation information;
The method includes a step of outputting the predicted damage amount at the time of disaster before and after the repair work of the building to be evaluated calculated by the computer and the repair cost to output display means such as a monitor.
[0013]
The invention according to claim 2 is a repair cost evaluation method based on the seismic performance evaluation value of the building according to claim 1,
Estimated damage amounts are calculated separately for seismic retrofits and seismic isolation repairs , and predicted damages for seismic isolation repairs are the same as for the above seismic retrofits. After calculating the current Is value and the current PML value, the input of the target Is value is prompted, the predicted damage amount at the time of the disaster and the repair cost are calculated, and output to the output display means.
[0014]
The invention according to claim 3 is a repair cost evaluation method based on the earthquake resistance evaluation value of the building according to claim 1 or 2 ,
The calculation of seismic retrofit cost is based on the target Is value based on the scale of the building and the repair list data in the repair cost calculation database based on the target seismic performance evaluation value, building environment data, and calculation information of the target building. Calculate the insufficient horizontal force required to achieve this, and calculate from this insufficient horizontal force and the repair unit price per ton of insufficient horizontal force,
The calculation of seismic isolation repair costs is characterized in that the computer calculates the target building's total seismic performance evaluation value, building environment data, and calculation information from the total area of the target building and the unit cost of base isolation repair. .
[0015]
Embodiments and Examples of the Invention
Hereinafter, with reference to drawings, the Example of the repair cost evaluation method based on the seismic performance evaluation value of the building based on the invention as described in Claims 1-3 is demonstrated.
First, FIG. 1 shows a configuration example of a computer 1 that implements a method for evaluating seismic performance of a building.
[0016]
The computer 1 includes an arithmetic / control device 2 mainly composed of a CPU, an auxiliary storage device 5 composed of a readable / writable storage medium and a drive device such as a hard disk drive and a magneto-optical disk drive, a monitor as an output display means, A so-called personal computer including an output device 4 such as a printer and an input device 3 such as a keyboard and a mouse is preferably used.
[0017]
Said auxiliary storage device 5 is not only stores storing a program for executing the seismic performance evaluation method of building, store stores a database group deployed various basic data by item.
The database group includes an Is value calculation database and a PML value calculation database.
[0018]
The Is value calculation database stores and stores various basic data necessary for calculating the current Is value such as an Is value calculation table.
The PML value calculation database stores and stores various basic data necessary for calculating PML values, such as nationwide earthquake data and nationwide ground property data.
[0019]
Next, FIG. 2 is implemented in the computer 1 shown in FIG. 1 shows a flow diagram of the seismic performance evaluation method of building. The processing contents will be described below with reference to the flowchart of FIG.
[0020]
First, as step A, building environment data including “structure information”, “geographic information”, and “ground information” of an evaluation target building (hereinafter simply referred to as a target building) is input and set by the operator. .
[0021]
The “structure information” is composed of seven input items such as structure type, construction year, number of floors, usage, wall quantity, wall layout, and presence / absence of pilotity. These items are input and set by selecting the corresponding conditions using the input device 3 such as a mouse on the dialog box 10 of FIG. 3 displayed on the monitor of the output device 4.
[0022]
The “geographic information” is input / set by selecting the construction location of the target building from the point list 51 using the input device 3 such as a mouse on the dialog box 11 shown in FIG . The selected point is displayed in conjunction with the display column 52, and at the same time, the longitude / latitude of the point is automatically displayed directly under the display column 52.
[0023]
The “ground information” is input by selecting a radio box having a condition corresponding to the ground condition item on the dialog box 11 shown in FIG. 4 displayed on the monitor of the output device 4 by using the input device 3 such as a mouse. Set.
Thereafter, the calculation button 56 on the dialog box 11 is pressed by the operator.
[0024]
In the subsequent step B of FIG. 2, after the input / setting in the step A is completed, the computer 1 refers to the basic data of the database based on the building environment data and is the current seismic performance evaluation value of the target building. “Current Is value” and “Current PML value” are calculated.
[0025]
The "current Is value", based on the seven information input items of the computer 1 is input "structure information", is calculated using the Is value calculation table for storing stored in Is Nesan Teide database. The Is value calculation table is based on the seismic diagnosis data of buildings that have been subjected to seismic diagnosis in the past, and the relation between the information of the seven input items of the “structure information” and the Is value as numerical data. It is.
[0026]
Meanwhile, when the calculation of "current PML value", the computer 1 refers to the basic data of PML Nesan Teide database database, i) seismic hazard analysis, ii) degree of damage analysis, iii) the calculation of fracture probability, iv ) Damage function, v) Risk curve analysis steps are processed in series, and finally the “current PML value” is calculated.
[0027]
The details of the process are as follows: First, in the process of “Earthquake Hazard Analysis”, the annual excess probability of an earthquake that can occur at the construction site in the future based on basic data such as earthquake data that occurred in the past at the construction site of the target building Is calculated (step B21). In short, an earthquake hazard curve representing the relationship between the magnitude of an earthquake that can occur at a building construction site, that is, the maximum acceleration (PME) and its frequency (annual excess probability), is created, and an arbitrary magnitude can be derived from the earthquake hazard curve. The probability that an earthquake will occur, that is, the annual excess probability is obtained.
[0028]
In the subsequent “damage analysis” step, the probability of the damage level of the building that the building having an arbitrary Is value receives according to the magnitude of the earthquake is calculated (step B22). Incidentally, the damage level is evaluated in four stages according to the damage status of the building: collapse, major damage, medium damage, and minor damage. In short, a damage degree curve that summarizes the relationship between the probability that the target building with the “current Is value” calculated above can be damaged at four or more levels of damage and the magnitude of the earthquake is created. The probability of each damage level that can be received by the building is determined.
[0029]
Next, in “calculation of failure probability”, the probability that the target building can receive each damage level in one year, that is, the failure probability is calculated from the “earthquake hazard analysis” and “damage degree analysis” (step B23). In other words, the magnitude of the seismic load is integrated using the results of “earthquake hazard analysis” and “damage degree analysis” to determine the frequency at which the seismic response exceeds each damage level in one year.
[0030]
Further, the “damage function” calculates the restoration cost required to return to the new construction when the target building is damaged at each damage level (step B24). In this example, the ratio of recovery cost (damage rate) to the total rebuilding cost (re-purchasing price) for each of the four damage levels based on the data of the Great Hanshin Earthquake was set as the damage function shown in FIG.
[0031]
Finally, in “risk curve analysis”, an expected loss rate corresponding to the in-service period of the target building is calculated from the results of the above four processing steps (step B25). In short, the yearly earthquake occurrence probability is plotted on the vertical axis, and the expected loss rate due to earthquake occurrence is plotted on the horizontal axis, and a risk curve is created that shows the relationship in a graph. As a result, an earthquake whose recurring period calculated in the process of creating the risk curve is an earthquake once in 475, that is, the predicted loss rate on the horizontal axis corresponding to the vertical axis of the risk curve being 1/475 is the “current PML value”. As required.
[0032]
Thus, when the above step B is completed, the “current Is value” and the “current PML value” calculated as described above are output on the dialog box 11 shown in FIG. The signal is output through the monitor of the device 4. Incidentally, the “current Is value” is also displayed in the display field 50 of the dialog box 10 of FIG.
[0033]
In the dialog box 11 of FIG. 4 in which the “current Is value” and the “current PML value” are output and displayed, the reproduction period calculated in the “damage degree analysis” is the maximum that can occur with a probability of once in 475 years. probability of each damage level of the building incurred by the earthquake Ru is output display. By comparing and displaying the probability of each damage level that the building receives in a table or graph, it is easier to visually grasp the seismic performance of the target building.
Thus, a series of processes related to the method for evaluating seismic performance of buildings is completed.
[0034]
According to the method for evaluating seismic performance of a building described above, anyone can easily and quickly quantitatively calculate seismic performance using a general-purpose computer 1, even if it is not a skilled technician. As a result, it is possible to promptly respond to customer needs for immediately knowing the PML value of the building owned, and it is possible to reduce costs in terms of personnel costs and the like.
[0035]
Next, with reference to the drawings, an embodiment of the repair cost evaluation method based on the seismic performance evaluation value of the building according to the invention described in claims 1 to 3 will be described.
In the present invention, the calculation of seismic retrofitting costs, etc. is based on the seismic performance evaluation (current Is value and current PML value) obtained by the method for evaluating seismic performance of the building described above with reference to FIGS. This is a method for evaluating repair costs.
[0036]
FIG. 6 shows a configuration example of the computer 8 in which the repair cost evaluation method based on the seismic performance evaluation value of the building according to the present invention is implemented.
The computer 8 is constituted by the same device as the computer 1 to be used for calculating the current Is values and current PML value by seismic performance evaluation method of the buildings described with reference to FIG. 1, preferably a so-called personal computer Used for. However, the auxiliary storage device 9 includes a program for executing the repair cost evaluation method based on the seismic performance evaluation value according to the present invention, an Is value calculation database, a PML value calculation database, and a repair cost calculation database. It differs in that it stores and stores the database group.
[0037]
The Is value calculation database and the PML value calculation database of the database group store the same information as the computer 1 described above. In addition, the repair cost calculation database accumulates list data (hereinafter referred to as repair list data) of necessary reinforcement amounts accompanying the increase of the seismic performance value according to the building scale. This repair list data is obtained from data of earthquake-resistant repairs that have been made in the past.
[0038]
FIG. 7 shows a flowchart of a repair cost evaluation method based on the seismic performance evaluation value of the building described in claims 1 to 3, which is executed by the computer 8 shown in FIG. 6. The processing contents will be described below with reference to the flowchart of FIG. However, the description of the part with the same step structure of the method for evaluating seismic performance of the building described above based on the flowchart of FIG. 2 is omitted.
[0039]
First, the calculation of the “current Is value” and the “current PML value” performed by the computer 8 in steps T to V shown in FIG. 7 is performed in steps A to S in the flowchart of FIG. 2 for explaining the method for evaluating seismic performance of the building. Since it is implemented in the same manner as C, the description thereof is omitted.
[0040]
Of course, the probability of each level of injury of the target building, by the same method as seismic performance evaluation method of the buildings, computer 8 is calculated by "degree of damage analysis" performed in up to step T~ step V, the dialog box 11 on that it is displayed on.
[0041]
Next, in step W, the dialog box 12 shown in FIG. 8 is displayed on the monitor of the output device, and the “target Is value”, which is the target seismic performance evaluation value, is input to the seismic retrofit target value column 60 in the dialog box 12 by the operator. Is arbitrarily set. In addition, the standard floor area and unit price of the target building, which is the calculation information in the dialog box 12, and the repair unit price per ton (9.8kN) of horizontal strength that is insufficient for seismic retrofit and renovation per se unit 3.3m 2 The unit price is set by the operator. Thereafter, the operator presses the repair cost calculation button 55 on the dialog box 12. Note that the numerical values of the number of ground floors and the number of basement floors of the target building shown in the display fields 53 and 54 on the dialog box 12 are extracted and displayed by the computer 8 from the building environment data input in step T.
[0042]
In the next step X, the computer 8 calculates the predicted damage amount and the repair cost at the time of the disaster before and after the repair work of the target building.
The predicted damage amount of the target building before the renovation work, that is, the current state is calculated by using the data when the “current PML value” of the current target building is calculated in Step U.
[0043]
The estimated damage amount of the target building after the renovation work is calculated separately for the case of earthquake-resistant renovation and the case of seismic isolation renovation. The calculation method is as follows.
In the case of earthquake-proof repair, that is, the estimated damage after earthquake-proof repair is the estimated loss according to the years of service by performing a risk curve analysis using the “target Is value” input in the same way as in step U. The estimated damage amount is calculated from the estimated loss rate and the total cost.
[0044]
In the case of seismic isolation repair, that is, the estimated damage amount after the seismic isolation repair is also performed according to the years of service by performing a risk curve analysis using the “target Is value” input in the same way as in step U. The expected loss rate is calculated, and the predicted damage amount is calculated from the expected loss rate and the total cost.
[0045]
The total cost is the total rebuilding cost (re-purchasing price) of the target building. When the standard floor area and the unit price are entered, the computer 8 automatically calculates and displays the dialog box 12 as well. Is displayed.
In the calculation of the repair cost, the seismic retrofit cost for the seismic retrofit and the seismic retrofit cost for the seismic retrofit are calculated.
[0046]
The seismic retrofit cost is calculated by the computer 8 as follows. First, an approximate building size is calculated based on the information on the target building input by the operator in Step T and Step W. Subsequently, the calculated building size is checked against the repair list data in the repair cost calculation database, and the necessary reinforcement amount of the target building required to achieve the “target Is value” that is the target seismic performance value is determined. Calculated from the required amount of reinforcement and the unit cost of repair per 1 ton (9.8 kN) of horizontal force shortage of seismic repair.
[0047]
On the other hand, the seismic isolation repair cost is calculated based on the total total area of the target building based on the information of the target building entered by the operator at Step T and Step W by the computer 8 and the repair unit price per 3.3 m 2 of the base isolation repair. Calculate from
[0048]
Next, in step Y, the predicted damage amount and repair cost at the time of the disaster are output to an output display means such as a monitor.
The predicted damage amount and repair cost at the time of the disaster are displayed numerically on a dialog box 12 as shown in FIG. In addition, the PML values before and after the repair calculated in accordance with the calculation process of the predicted damage amount are also displayed on the dialog box 12 together.
[0049]
Further, the predicted damage amount and repair cost at the time of the disaster are also displayed on the graph 13 that is easier to grasp visually as shown in FIG. 9 by pressing the total cost ratio button 57 on the dialog box 12. .
[0050]
By the way, when the risk curve button 58 on the dialog box 12 is pressed so that the earthquake risk before and after the target building renovation can be grasped by the risk curve, the current and the risk curve related to the target building after the seismic renovation and after the seismic isolation renovation are obtained. It can also be displayed.
[0051]
In the present embodiment, the predicted damage amount caused by an earthquake that can occur once every 1, 5, 72, and 475 in the reproduction period is displayed on the dialog box 12. Of course, the predicted damage amount to be displayed is not limited to those for the reproduction period.
[0052]
After that, in step Z, when the repair cost evaluation with a target Is value different from the “target Is value” input and set in step W is further performed, the process returns to step W and a different “target Is value” is entered in the dialog box 12. The input is set again, and the processing of step X and step Y is performed. On the other hand, when it is completed, the process proceeds to an end step, and a series of processes related to the repair cost evaluation method based on the seismic performance evaluation value of the building according to the present invention ends.
[0053]
As described above, according to the repair cost evaluation method based on the seismic performance evaluation value of the building according to the inventions described in claims 1 to 3 , a general-purpose computer 8 is used and a skilled technician is required. Even without this, anyone can easily and quickly calculate the seismic performance quantitatively. As a result, it is possible to promptly respond to customer needs for immediately knowing the PML value of the building owned, and it is possible to reduce costs in terms of personnel costs and the like.
[0054]
In addition, customers who want to be able to know the cost and effectiveness of building renovation costs according to the target seismic performance after refurbishment and the amount of damage at the time of damage, as well as being able to immediately know the investment effects, etc. It can respond to your needs immediately.
[0055]
The preferred embodiments of the present invention have been described above. However, other than the embodiments of the present invention, various applications and modifications usually performed by those skilled in the art are possible without departing from the spirit of the present invention. I will add that. For example, when calculating the repair cost, the target earthquake resistance value of the target building may be input as a PML value instead of the Is value so that the repair cost can be calculated. Alternatively, the dialog boxes 10 and 11 shown in FIGS. 3 and 4 may be combined into one dialog box.
[0056]
[Effects of the present invention]
According to the repair cost evaluation method based on the seismic performance evaluation value of the building according to the first to third aspects of the invention, the computer can be used to easily and quickly provide the seismic performance without using a skilled technician. It can be calculated quantitatively, can respond immediately to customer needs to know the PML value of the building it owns as soon as possible, and contributes to cost reductions in terms of personnel costs.
[0057]
Further, according to the repair cost evaluation method based on the seismic performance evaluation value of the building according to the present invention , the repair cost of the building according to the target post-repair seismic performance and the amount of damage at the time of the damage are expensed using a computer. In addition to being able to grasp quantitatively and clearly as a counter-effect, it is also possible to immediately respond to customer needs that would like to immediately know the investment effect.
[Brief description of the drawings]
1 is a block diagram showing a configuration example of a computer for realizing the seismic performance evaluation method of building.
2 is a flow diagram illustrating the overall processing operations performed on a computer to realize the seismic performance evaluation method of building.
FIG. 3 is a diagram showing an input screen for structure information relating to a building to be evaluated.
FIG. 4 is a diagram showing a screen for calculating and displaying a current PML value relating to a building to be evaluated.
FIG. 5 is a table showing a damage rate according to each damage level of a building to be evaluated.
FIG. 6 is a block diagram showing a configuration example of a computer for realizing a repair cost evaluation method based on a seismic performance evaluation value of a building according to the present invention.
FIG. 7 is a flowchart showing an overall processing operation executed on a computer in order to realize a repair cost evaluation method based on a seismic performance evaluation value of a building according to the present invention.
FIG. 8 is a diagram showing a calculation and display screen for repair costs related to a building to be evaluated.
FIG. 9 is a diagram showing a graph screen showing the investment effect of the renovation work.
[Explanation of symbols]
1, 8 Computer 4 Output device (output display means)

Claims (3)

既存建物の耐震改修費用を算定し、耐震改修への投資効果を評価する方法であって、
コンピュータが、評価対象建物の構造情報、地理情報、地盤情報から成る建物環境データの入力を促すステップと、
前記コンピュータが前記建物環境データの入力に基づいてIs値算定データベース及びPML値算定データベースとから構成される基礎データを参照して前記評価対象建物の現状耐震性能評価値(現状Is値及び現状PML値)を次のように算定するステップと、
現状Is値の算定:コンピュータが、前記建物環境データの構造情報を基に、Is値算定 用データベースに格納するIs値算定表、即ち、過去に耐震診断を行 った建物の耐震診断データを基に、前記構造情報の各入力項目情報と Is値との関係を数値データとして取りまとめたもの、を用いて算定 する。
現状PML値の算定:コンピュータが、PML値算定データベースの基礎データを参照し 、地震ハザード解析、損傷度解析、破壊確率の算定、被害関数、リス クカーブの解析の各工程を一連に処理して算定する。
前記コンピュータが、目標耐震性能評価値(目標Is値)、及び前記評価対象建物の改修費用の算定に必要な対象建物の基準階面積、坪単価、改修単価等の算定情報の入力を促すステップと、
前記コンピュータが前記評価対象建物の改修工事前後における被災時の予測被害額、及び改修費用を前記現状PML値を算定した際のデータ及び前記入力された対象建物の目標耐震性能評価値、建物環境データ、算定情報を基に算定するステップと、
前記コンピュータが算定した評価対象建物の改修工事前後における被災時の予測被害額、及び改修費用をモニター等の出力表示手段に出力するステップとから成ることを特徴とする、建物の耐震性能評価値に基く改修費用評価方法。
A method for calculating the cost of earthquake-proof repair of existing buildings and evaluating the investment effect of earthquake-proof repair,
A step of prompting the input of building environment data comprising structural information, geographical information, and ground information of the building to be evaluated;
Based on the input of the building environment data, the computer refers to the basic data composed of the Is value calculation database and the PML value calculation database, and evaluates the current seismic performance evaluation values (current Is value and current PML value) of the building to be evaluated. ) To calculate:
Current Is value calculation: Based on the structural information of the building environment data, the computer stores the Is value calculation table stored in the database for Is value calculation, that is, based on the seismic diagnosis data of buildings that have been subjected to seismic diagnosis in the past. In addition, the calculation is performed using the data that summarizes the relationship between each input item information of the structural information and the Is value as numerical data.
Calculation of current PML value: A computer refers to the basic data of the PML value calculation database, and calculates and processes each process of earthquake hazard analysis, damage degree analysis, failure probability calculation, damage function, risk curve analysis in series. To do.
The computer prompting for input of target seismic performance evaluation value (target Is value) and calculation information such as a standard floor area, a unit price, a unit price of renovation, etc. of the target building necessary for calculating the repair cost of the target building; ,
Data when the computer calculates the current PML value for predicted damage amount and repair cost before and after repair work of the evaluation target building, and the input target seismic performance evaluation value of the target building, building environment data Calculating based on the calculation information;
The estimated damage amount at the time of disaster before and after the renovation of the building to be evaluated calculated by the computer, and the step of outputting the renovation cost to an output display means such as a monitor. Based on the repair cost evaluation method.
予想被害額は、耐震改修を行う場合と、免震改修を行う場合とに分けて各々算定すること、そして、免震改修を行う場合の予測被害額は、上記耐震改修を行う場合と同様に現状Is値及び現状PML値を算定した上で、目標Is値の入力を促し、被災時の予測被害額、及び改修費用を算定し、出力表示手段に出力することを特徴とする、請求項1に記載した建物の耐震性能評価値に基く改修費用評価方法。 Estimated damage amounts are calculated separately for seismic retrofits and seismic isolation repairs , and predicted damages for seismic isolation repairs are the same as for the above seismic retrofits. The present invention calculates the current Is value and the current PML value, prompts the input of the target Is value, calculates the predicted damage amount and repair cost at the time of the disaster, and outputs them to the output display means. Repair cost evaluation method based on the seismic performance evaluation value of the building described in 1. 耐震改修費用の算定は、コンピュータが、対象建物の目標耐震性能評価値、建物環境データ、算定情報を基に、前記建物規模と改修費用算定データベース内の改修一覧データとを照合し、目標Is値を達成するために要する不足水平力を割り出し、この不足水平力と不足水平力1トンあたりの改修単価とから算定し、
免震改修費用の算定は、コンピュータが、対象建物の目標耐震性能評価値、建物環境データ、算定情報を基に対象建物の総面積と免震改修の改修単価とから算定することを特徴とする、請求項1又はに記載した建物の耐震性能評価値に基く改修費用評価方法。
The calculation of seismic retrofit cost is based on the target Is value based on the scale of the building and the repair list data in the repair cost calculation database based on the target seismic performance evaluation value, building environment data, and calculation information of the target building. Calculate the insufficient horizontal force required to achieve this, and calculate from this insufficient horizontal force and the repair unit price per ton of insufficient horizontal force,
The calculation of seismic isolation repair costs is characterized in that the computer calculates the target building's total seismic performance evaluation value, building environment data, and calculation information from the total area of the target building and the unit cost of base isolation repair. The repair cost evaluation method based on the seismic performance evaluation value of the building described in claim 1 or 2 .
JP2001345708A 2001-11-12 2001-11-12 Renovation cost evaluation method based on building seismic performance evaluation value Expired - Fee Related JP3765007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345708A JP3765007B2 (en) 2001-11-12 2001-11-12 Renovation cost evaluation method based on building seismic performance evaluation value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345708A JP3765007B2 (en) 2001-11-12 2001-11-12 Renovation cost evaluation method based on building seismic performance evaluation value

Publications (2)

Publication Number Publication Date
JP2003147970A JP2003147970A (en) 2003-05-21
JP3765007B2 true JP3765007B2 (en) 2006-04-12

Family

ID=19159005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345708A Expired - Fee Related JP3765007B2 (en) 2001-11-12 2001-11-12 Renovation cost evaluation method based on building seismic performance evaluation value

Country Status (1)

Country Link
JP (1) JP3765007B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595626B2 (en) * 2005-03-30 2010-12-08 東京電力株式会社 Simple seismic diagnosis processing method and apparatus
JP4614165B2 (en) * 2005-05-16 2011-01-19 清水建設株式会社 Structure selection support system and structure selection support method for building
JP4771129B2 (en) * 2005-11-24 2011-09-14 清水建設株式会社 Seismic risk assessment system for production facilities
JP4716899B2 (en) * 2006-02-28 2011-07-06 中国電力株式会社 Seismic improvement proposal device and seismic improvement proposal method
JP4875418B2 (en) * 2006-06-30 2012-02-15 株式会社竹中工務店 Seismic performance evaluation system
JP5002204B2 (en) * 2006-07-07 2012-08-15 ミサワホーム株式会社 Housing shaking virtual display device
JP4916017B2 (en) * 2007-07-03 2012-04-11 鹿島建設株式会社 Seismic performance evaluation program for structures
JP5008084B2 (en) * 2008-05-03 2012-08-22 鹿島建設株式会社 Quantitative seismic performance evaluation program for structures
JP5840513B2 (en) * 2012-01-26 2016-01-06 大和ハウス工業株式会社 Evaluation device / evaluation method / evaluation program for earthquake damage loss of buildings
JP6082191B2 (en) * 2012-06-05 2017-02-15 戸田建設株式会社 Monitoring system
JP6096000B2 (en) * 2013-02-19 2017-03-15 大和ハウス工業株式会社 Method and apparatus for evaluating probability of occurrence of liquefaction during target period
KR101545100B1 (en) * 2014-10-25 2015-08-17 신동열 Method estimating earthquake-proof magnitude for eastablished building and a system thereof
KR101549350B1 (en) * 2014-10-25 2015-09-01 신동열 Method for structure seismic design with estimating earthquake-proof magnitude and a system thereof
US10796394B2 (en) * 2017-05-16 2020-10-06 One Concern, Inc. Estimation of damage prevention with building retrofit

Also Published As

Publication number Publication date
JP2003147970A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3765007B2 (en) Renovation cost evaluation method based on building seismic performance evaluation value
Bahrami et al. Innovation and improvements in project implementation and management; using FMEA technique
US9008979B2 (en) Total energy quantity controlling device and method
JP5973714B2 (en) Emergency response instruction formulation support apparatus and emergency response command formulation support method
JP4817363B2 (en) Risk assessment system
JP4771129B2 (en) Seismic risk assessment system for production facilities
JP5850242B2 (en) Simple disaster prevention diagnosis system, method and program thereof
JP2008009496A (en) Maintenance service operation system and maintenance service operation method
JP4504767B2 (en) Seismic risk assessment system and building selection method
JP4152423B2 (en) Soundness evaluation system based on a score type data sheet that can be used for inspection work
Lin et al. Engineering characterisation of building performance with detailed engineering evaluation (DEE) data from the Canterbury earthquake sequence
CN110832529A (en) Determining risks associated with real estate and reconstruction
JP2008257299A (en) Priority evaluation system
JP2006277643A (en) Rooftop heat reserve rack plan support program
JP4351230B2 (en) Design document data generation system and design document data generation method
JP4385774B2 (en) Seismic loss evaluation system for building under construction, seismic risk evaluation system for building under construction using the system, program for executing these systems, and computer-readable recording medium recording these programs
JP4614165B2 (en) Structure selection support system and structure selection support method for building
Holmes Seismic evaluation of existing buildings: state of the practice
KR20210100348A (en) Method for risk measuring of gas pipeline and system thereof
Wu et al. Performance-based seismic financial risk assessment of reinforced concrete frame structures
KR20210054389A (en) BIM-based Risk Assessment of Structural Occurrence Disaster for Construction Site Safety Management
Au-Yong et al. The Relationship between the Maintenance Management Problems and the Maintenance Performance of High-Rise Residential Buildings
JP2022124541A (en) Construction record data management system
Tulaganov Assessment of seismic vulnerability of buildings and structures by using European standards
JP2010165233A (en) Business continuation prediction system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees