JP3764833B2 - Magnetic recording medium and magnetic storage device - Google Patents

Magnetic recording medium and magnetic storage device Download PDF

Info

Publication number
JP3764833B2
JP3764833B2 JP28242499A JP28242499A JP3764833B2 JP 3764833 B2 JP3764833 B2 JP 3764833B2 JP 28242499 A JP28242499 A JP 28242499A JP 28242499 A JP28242499 A JP 28242499A JP 3764833 B2 JP3764833 B2 JP 3764833B2
Authority
JP
Japan
Prior art keywords
magnetic
underlayer
alloy
layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28242499A
Other languages
Japanese (ja)
Other versions
JP2001101651A5 (en
JP2001101651A (en
Inventor
哲也 神邊
好範 本田
俊典 大野
四男 屋久
成彦 藤巻
宏之 片岡
悟 松沼
由夫 高橋
Original Assignee
株式会社日立グローバルストレージテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立グローバルストレージテクノロジーズ filed Critical 株式会社日立グローバルストレージテクノロジーズ
Priority to JP28242499A priority Critical patent/JP3764833B2/en
Publication of JP2001101651A publication Critical patent/JP2001101651A/en
Publication of JP2001101651A5 publication Critical patent/JP2001101651A5/ja
Application granted granted Critical
Publication of JP3764833B2 publication Critical patent/JP3764833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、1平方インチ当たり20ギガビット以上の記録密度を有する磁気記憶装置と、これを実現するための低ノイズ、高分解能で、かつ熱磁気緩和による再生出力の減衰が抑制された高い安定性を有す薄膜磁気記録媒体に関するものである。
【0002】
【従来の技術】
面内磁気記録媒体の高密度記録化には、保磁力の向上と媒体ノイズの低減が不可欠である。高保磁力化のためには、磁性層の磁化容易軸であるc軸の面内配向成分を向上させる必要がある。NiP/Al基板を用いた媒体では、基板上に形成されたCr、またはこれにTi, Mo, V等を添加したCr合金下地層が(100)面を基板面に平行にした配向(以下、(100)配向と略す)をとるため、磁性層はエピタキシャル成長により、c軸を膜面内に向けた(11.0)配向をとる。このため磁化容易軸を膜面内方向へ配向させることが可能であった。しかし、ガラス基板を用いた場合、Cr合金下地層がより安定な(110)配向をとるため、磁化容易軸を面内配向させることができない。これを解決するために基板とCr合金下地層の間に更にシード層と呼ばれる新たな層を形成することによって該下地層に(100)配向をとらせる技術が提案されている。このようなシード層材料としてはTa(特開平4-188427)やMgO(J. Appl. Phys. 67, 3638 (1995))等が開示されている。また、上記手法とは別に、磁化容易軸を面内配向させる手法として、B2構造のNiAl合金シード層の導入が提案されている(IEEE Trans. Magn. vol. 30, 3099 (1992))。該シード層上ではCr合金下地は(211)配向をとるため、磁性層にエピタキシャル成長により(10.0)配向をとらせることが可能となる。(10.0)配向も(11.0)配向と同様、c軸が膜面内方向を向くため強い面内異方性により、高い保磁力が得られる。このようなB2構造のシード層材料としてはNiAlの他、CoTi(J. Appl. Phys. 85, 4298 (1999))が報告されている。
【0003】
一方、媒体ノイズの低減には磁性結晶粒の微細化、磁性粒子間相互作用の低減が不可欠である。酸化物等の非磁性マトリクス中に磁性結晶粒が分散したグラニュラー型磁気記録媒体(Appl. Phys. Lett. 52, 512 (1998))は、磁性粒径が微細であると同時に、酸化物相によって粒子間交換相互作用が低減されているため、優れた低ノイズ特性を示す。但し、グラニュラー媒体は通常の成膜では、磁性結晶が微細になりすぎて高い保磁力が得られず、また、熱揺らぎの影響も強くうけるため、記録信号の経時的な減衰が著しく、高い信頼性が得られない。これを改善するための手法として、成膜後の真空熱処理(特開平7-98835)や、高周波バイアス印加(特開平8-45073)、より磁気異方性定数の高いCo磁性合金の導入等(特開平7-311929)が提案されている。
【0004】
しかし、グラニュラー媒体は磁化容易軸がほぼ3次元ランダム的に配向しているため、上記手法で磁性粒径を肥大化させても、1平方インチ当たり20ギガビット以上の高密度記録に対して十分な保磁力、及び保磁力角形比が得られない。これは、磁性層が酸化物、窒化物を含有するため、下地層表面が酸化、窒化され、磁性層のエピタキシャル成長が阻害されるためである。これに対し、特開平9-81936では、下地層上に酸化物や窒化物を含有しない第一の磁性層を形成した後、酸化物や窒化物を含有する第二の磁性層を形成することによって、該第二の磁性層をエピタキシャル成長させ、高保磁力媒体が得られることが開示されている。しかし、グラニュラー構造をとらない第一の磁性層も記録層として作用するため、十分な低ノイズ効果が得られない。また、特開平10-302242にはTiやNiAl等のシード層とCrを主成分とした下地層の導入により、酸化物、窒化物を含有する磁性層の磁化容易軸を膜面内方向に配向させ、高い保磁力が得られることが開示されている。しかし、保磁力は高々3000エルステッド以下であり、400kFCI以上の高い線記録密度に対しては十分でない。
【0005】
【発明が解決しようとする課題】
上述のように、グラニュラー構造の媒体は低ノイズではあるが、高記録密度化を実現するには、更に保磁力、及び保磁力角形比を向上させ、熱擾乱に対する十分な安定性を得る必要である。
【0006】
本発明の目的はグラニュラー媒体において、磁性層をエピタキシャル成長させることにより、磁化容易軸を面内配向させ、高保磁力化、高保磁力角形比化を図るものである。これにより、高密度記録に必要な良好な磁気特性と、熱磁気緩和に対する十分な安定性を有す磁気記録媒体を提供することができる。更に高感度な磁気ヘッドと組み合わせ、条件を最適化することにより、1平方インチ当たり20ギガビット以上の記録密度を持った信頼性の高い磁気記憶装置を提供することができる。
【0007】
【課題を解決するための手段】
上記目的は、磁性層がhcp構造を有すCoを主成分とした合金と、3mol%以上、50mol%以下の酸化物、または窒化物から構成され、該Co合金が該酸化物、または窒化物によって分断された柱状構造をとり、磁化容易軸が実質的に基板面と略平行方向に配向していることを特徴とする磁気記録媒体と、これを記録方向に駆動する駆動部と、記録部と再生部から成る磁気ヘッドと、上記磁気ヘッドを上記磁気記録媒体に対して相対運動させる手段と、上記磁気ヘッドへの信号入力と該磁気ヘッドからの出力信号再生を行うための記録再生信号処理手段を有する磁気記憶装置において前記磁気ヘッドの再生部が磁気抵抗効果型磁気ヘッドで構成される磁気記憶装置により達成される。
図1に本発明媒体の層構成と磁性層の模式的構造を示す。基板上10に第一の下地層11(以下、シード層と略す)、第二の下地層12(以下、下地層と略す)、第三の下地層13(以下、中間層と略す)を介して磁性層14が形成されている。尚、同図では保護膜と潤滑膜は省略してある。磁性層はコラム構造を有すCo合金結晶からなる磁性相15と酸化物、または窒化物からなる非磁性マトリックス相16からなり、該Co合金結晶は概ね1〜3nm幅の非磁性マトリックス相によって分離されている。更に、前記Co合金結晶は中間層上にエピタキシャル成長しており、 (11.0)配向、または(10.0)配向をとっている。このため、磁化容易軸であるc軸は膜面内方向に配向している。
【0008】
磁性層の(11.0)配向は、シード層としてMgO, NiP, Ta, CoCrZr, NiTa, NiNb合金等を形成し、下地層としてCrを主成分としたbcc構造の合金を形成し、中間層としてCoを主成分としたhcp構造の非磁性合金等を用いることによって実現される。上記シード層上ではCr合金下地層が(100)配向をとるため、該下地層上に形成されたhcp構造の中間層はエピタキシャル成長して(11.0)配向をとる。該中間層の主成分であるCoの酸化物生成自由エネルギーはCrよりも高いため、中間層表面でのCo合金の酸化物生成が抑制される。このため、該中間層上に、Coを主成分として酸化物、または窒化物を含有した磁性層を形成した場合、該磁性層初期層におけるCo合金の酸化物層の形成が抑制され、Co合金はエピタキシャル成長により、(11.0)配向をとる。更に該磁性層形成時に適度な直流、または交流バイアスを印加することにより、磁化容易軸を面内方向に配向させた柱状構造のCo磁性合金が、酸化物、または窒化物によって分断された構造を有す磁性層を得ることができる。
【0009】
シード層材料としては、Cr、又はCr合金下地層を(100)配向化させることができれば、特に制限しない。また、下地層材料としては、Cr 、またはこれにTi, Mo, V, W, Mn等を添加して格子定数を増加させたbcc構造のCr合金を用いてもよい。また、基板には結晶化ガラス、強化ガラス、カーボン、NiPメッキを施したAl-Mg合金等を用いることができる。
【0010】
中間層材料としては、Coを主成分とし、非磁性化のためにCr, V, Mnから選ばれた少なくとも一つの元素を25at%以上、50at%以下含有する合金等が用いられる。25at%未満では非磁性化が不十分であり、50at%を上回るとhcp構造が崩れるため好ましくない。更に、格子定数制御等を目的としてW, Mo, Ta, Pt, Ti, Nb, Al, Cu, Ru, Pdから選ばれた少なくとも一つの元素を20at%以下含有していてもよい。20at%を上回るとhcp構造が崩れるため好ましくない。該中間層は非磁性であることが望ましいが、残留飽和磁束密度Brと膜厚tの積Br・tが、磁性層のBr・tの20%以下であれば、弱い磁化をもっていても実用上問題はないことが予備検討の結果、確認された。
【0011】
また、酸素との親和性の低いAgを中間層として用いてもよい。Agのa軸長aAgと、Crのa軸長aCrを用いて(aAg-√2aCr)/√2aCr×100(%)と定義した格子ミスフィットは2%以下であるため、(100)配向したCr合金下地層上に形成されたAg中間層はエピタキシャル成長により(100)配向をとる。よって、その上に形成されたCo磁性合金もエピタキシャル成長により(11.0)配向をとり、hcp構造のCo合金中間層を用いた場合と同様、Co磁性合金の磁化容易軸を面内配向させることができる。上記Ag中間層は、格子ミスフィットが5%以下で、かつfcc構造をとっていれば、他の元素を含有したAg合金中間層でもよい。
【0012】
更に中間層として、AlCo, NiAl, CoTi, CuPd, MnV, NiTiから選ばれた少なくとも一つのB2構造の金属間化合物を用いることもできる。これらの金属間化合物のa軸長と、Crのa軸長aCrとの格子ミスフィットはいずれも5%以下であるため、(100)配向したCr合金下地層上に形成された該金属間化合物はエピタキシャル成長により(100)配向をとる。該金属間化合物は、イオン結合性結晶であるため、酸素と結合しにくく、表面での酸化物生成が抑制される。よって、該金属間化合物上に形成された磁性層中のCo磁性合金もエピタキシャル成長により(11.0)配向をとり、磁化容易軸を面内配向させることができる。該磁性層をバイアス印加しながら形成することによって、磁化容易軸を面内方向に配向させた柱状構造のCo磁性合金と、酸化物、または窒化物の粒界相からなる磁性層を実現することができる。
【0013】
一方、磁化容易軸の面内配向化はCo磁性合金に(10.0)配向をとらせることによっても実現できる。磁性層の(10.0)配向は、シード層としてB2構造のNiAl, CoTi, CoAl, NiTi, MnV合金等合金等を形成し、下地層としてCrを主成分としたbcc構造の合金を形成し、中間層としてCoを主成分としたhcp構造の非磁性合金等を用いることによって実現される。シード層としては上記B2構造の合金等の他に、例えば、L21構造、C11b構造を有する材料を使用しても良い。これらのシード層上に形成されたCr、またはCr合金下地層は(211)配向をとるため、該下地層上に上述のhcp構造のCo合金中間層を形成した場合、各中間層はエピタキシャル成長により、それぞれ(10.0)配向をとる。該中間層上に、バイアス印加の下で磁性層を形成することにより、酸化物、または窒化物の粒界相によって分離され、かつ磁化容易軸を面内方向に配向させた柱状構造のCo磁性合金からなる磁性層を実現することができる。
【0014】
磁性層中のCo合金結晶が上記いずれの配向をとった場合でも、強い面内磁気異方性による高い保磁力と保磁力角形比が得られる。更に、いずれの場合も磁性層が磁気的孤立度の高い微細な磁性粒径から構成されるため、低ノイズな磁気記録媒体が得られる。また、磁性層中の全てのCo合金結晶が面内配向している必要はない。磁性層中のCo合金が主として(11.0)配向した場合は、X線回折プロファイルに於ける磁性層の(11.0)面からの回折ピーク強度が、磁性層の他のいかなる面からの回折ピークの強度に対しても2倍以上であれば、上記効果を得ることができる。また、磁性層中のCo合金が主として(10.0)配向した場合は、磁性層の(10.0)面からの回折ピーク強度が、磁性層の他のいかなる面からの回折ピークの強度よりも大きければ、上記効果を得ることができる。また、磁性層形成時のバイアス印加は、磁性結晶粒の極度の微細化を抑制すると同時に、非磁性マトリクッスによる磁性結晶の分断を促進するためのものであり、直流バイアス、交流バイアスのいずれであってもよい。hcp構造をとる合金であれば、Co磁性合金の組成は特に限定しないが、高保磁力を得るためPtを含有することが望ましい。
【0015】
非磁性マトリックス材料としては、SiO2, TiO2, ZrO2, Al2O3, Y2O3から選ばれた酸化物、またはSi3N4, TiN, ZrNから選ばれた窒化物が好ましい。これらは酸素、または窒素との親和性が強いため、Coの酸化、または窒化が抑制されるためである。該非磁性マトリックス材料の濃度は、磁性層を構成する全元素に対して3mol%以上、50mol%以下が望ましい。3mol%未満では磁性結晶粒間の交換相互作用を十分に低減できず、また、50mol%を上回ると磁性結晶粒が微細になりすぎ、好ましくない。磁性結晶粒の平均粒径が4nm未満では熱揺らぎの影響が顕著となり、10nmを上回ると十分な低ノイズ特性が得られなくなるため、平均粒径は4nm以上、10nm以下であることが好ましい。ここで結晶粒径は、結晶粒と同一面積の真円の直径と定義し、平面TEM像を用いて計測した100〜200個程度の結晶粒径の算術平均を平均粒径とする。
【0016】
媒体の磁気特性としては、膜面内方向に磁界を印加して測定した保磁力を3500エルステッド以上とし、残留磁束密度Brと膜厚 t の積Br×tを30ガウス・ミクロン以上、70ガウス・ミクロン以下とすると、1平方インチ当たり20ギガビット以上の記録密度領域において、良好な記録再生特性が得られるので好ましい。円周方向の保磁力が3500エルステッドよりも小さくなると、高記録密度(450kFCI以上)での出力が小さくなり好ましくない。また、Br×tが70ガウス・ミクロンより大きくなると分解能が低下し、30ガウス・ミクロンよりも小さくなると再生出力が小さくなり好ましくない。更に膜面内方向に磁界を印加して測定した保磁力を、垂直方向の保磁力の10倍以上とすることにより、良好な重ね書き特性が得られる。
【0017】
磁性層上に保護膜として膜厚3〜15nmのカーボンを形成し、パーフルオロアルキルポリエーテル系の潤滑層を2〜3nm設けることにより、高い信頼性が得られる。保護膜として窒素、水素等を添加したカーボンを用いることにより、耐摺動性、耐食性を向上させることが出来る。
【0018】
上記磁気記録装置で用いている磁気ヘッドの磁気抵抗センサ部は、互いの磁化方向が外部磁界によって相対的に変化することによって大きな抵抗変化を生じる複数の導電性磁性層と、その導電性磁性層の間に配置された導電性非磁性層によって構成されたスピン・バルブ効果を利用したものとする。該抵抗センサ部を挟む2枚のシールド層の間隔(シールド間隔)は0.15μm以下が好ましい。これは、シールド間隔が0.15μm以上になると分解能が低下し、信号の位相ジッターが大きくなってしまうためである。
【0019】
【発明の実施の形態】
<実施例1>
結晶化ガラス基板上にNi-37.5at%Ta合金シード層を70nm形成したのち、ランプヒーター加熱により150℃まで加熱し、更にCr-25at%Ti合金下地層を30nm、Co-34at%Cr中間層を30nm、(Co-25at%Pt)-(Al2O3)7mol%合金磁性層を14nm、カーボン保護膜を8nm、真空中で連続的に形成した。磁性層以外の層の成膜は、全てDCスパッタにより5mArのガス雰囲気中で行い、磁性層の成膜のみ、RFスパッタにより30mTorrのガス雰囲気中で行った。更に磁成層形成時に異なるDCバイアスを印加した媒体を作製した。DCバイアスは0Vから-300Vの範囲で変化させた。また、比較例として中間層を形成しない媒体を上記と同一条件で作製した。
【0020】
図2にCoCr中間層を形成した本実施例媒体と、該中間層を形成しない比較例媒体について、保磁力と磁性層形成時に印加した直流バイアス電圧との関係を示す。中間層を形成した媒体の場合、DCバイアスは-150V印加した場合に保磁力が最も高い媒体が得られた。比較例媒体では最大2.2kOe程度の保磁力しか得られていないのに対し、中間層を設けた実施例媒体では4kOe以上の高い保磁力が得られている。また、比較例媒体の保磁力角形比が0.58であったのに対し、実施例媒体では0.81であった。以上、中間層導入により、面内磁気異方性が向上し、高保磁力、高保磁力角形比が実現できることが分かった。
【0021】
<実施例2>
結晶化ガラス基板上にNi-40at%Ta合金シード層を60nm形成したのち、ランプヒーター加熱により150℃まで加熱し、更にCr-25at%Ti合金下地層を50nm、表1に示した種々の中間層を10nm、(Co-25at%Pt)-(Al2O3)12mol%合金磁性層を14nm、カーボン保護膜を8nm、真空中で連続的に形成した。
【0022】
【表1】

Figure 0003764833
【0023】
磁性層以外の層の成膜は、全てDCスパッタにより5mArのガス雰囲気中で行い、磁性層の成膜のみ、RFスパッタにより30mTorrのガス雰囲気中で行った。更に磁成層形成時に-150VのDCバイアスを印加した。また、比較例として中間層を形成しない媒体を上記と同一条件で作製した。
【0024】
本実施例媒体の磁性層の平面TEM観察を行ったところ、全ての媒体に於いて、粒径3〜10nm程度の結晶粒が、幅2〜3nmの粒界相によって分断されたグラニュラー構造が確認された。また、いずれの磁性層でも、70〜90%以上の結晶粒に格子縞が観察され、電子線回折測定によって得られた回折像には(10.0), (00.2), (10.1)面からの3本の回折リングのみが観察された。よって、磁性層は(11.0)配向していると考えられる。また、断面TEM観察を行ったところ、全ての実施例媒体に於いて、磁性層中の結晶は初期層から表面まで連続的に成長したコラム構造をとっていることが確認された。尚、中間層を形成していない比較例媒体でもグラニュラー構造は確認されたが、配向はほぼ3次元ランダムで、磁性層中の結晶粒の形状はほぼ球状であった。表1に示した様に本実施例媒体は全て3.5kOe以上の高い保磁力と、0.7以上の保磁力角形比S*を示した。また、記録密度450kFCIで記録した信号の、記録直後の再生出力E0と96時間後の再生出力E96hを用いて(E0-E96h)/E0×100(%)と定義した再生出力の減衰率も2%以下と低く、熱的安定性にも優れていることがわかった。特にCoCr中間層を用いた媒体で規格化媒体ノイズが低く、CoMn中間層、CoV中間層を用いた媒体でそれぞれ保磁力、及び保磁力角形比S*が高かった。ここで、規格化媒体ノイズとは、記録密度450kFCIで記録したときの媒体ノイズを孤立再生波の出力とトラック幅で規格化した値である。一方、比較例媒体では、保磁力が低いため上記線記録密度で記録した場合、ほぼ交流消磁状態となってしまった。また、上記中間層に第三元素を添加した三元系中間層を用いた実施例媒体では、全体的に保磁力が高く、再生出力の減衰率も二元系中間層を用いた媒体よりも低く、より良好な耐熱揺らぎ特性を有していることがわかった。
【0025】
<実施例3>
Al基板上に10nmのTaシード層、50nmのCr-10at%Mo下地層、30nmのCo-30at%V-8at%W中間層、16nmの磁性層、8nmのカーボン保護膜を真空中で連続的に形成した。磁性層には、表2に示した種々の材料を用いた。
【0026】
【表2】
Figure 0003764833
【0027】
実施例2と同様、磁性層のみ-150VのDCバイアスを印加しながらRFスパッタで成膜し、他の層は全てDCスパッタで成膜した。
【0028】
実施例1と同様、本実施例媒体も磁性層組成に依らず磁性結晶はコラム構造をとっており、幅2〜3nmの粒界相で分断されたグラニュラー構造であった。また、X線回折プロファイルに於ける磁性層からの回折ピークは、(11.0)ピークのみであった。表2に示した通り、非磁性マトリックス材料にSiO2を用いた媒体で特に低い媒体ノイズが得られている。また、TiO2, ZrO2を用いた媒体では高い保磁力、及び高い保磁力角形比S*がそれぞれ得られた。更に非磁性マトリックス材料に窒化物を用いた媒体では、酸化物を用いた場合よりも重ね書き特性が良好であった。
【0029】
これらの媒体に潤滑財を塗布したのち、磁気ヘッドと共に図3(a), (b)に示した磁気記憶装置に組み込んだ。図3(a)は磁気記憶装置を上面から見た模式図、図3 (b)は図3(a)をAからAに沿って見た断面図である。この装置は磁気ヘッド21、及びその駆動部22と、該磁気ヘッドの記録再生信号処理手段23と磁気記録媒体24とこれを回転させる駆動部25とからなる周知の構造を持つ磁気記憶装置である。上記磁気ヘッドの構造を図4に示す。この磁気ヘッドは基体31上に形成された記録用の電磁誘導型磁気ヘッドと再生用のスピンバルブ型磁気ヘッドを併せ持つ複合型ヘッドである。前記記録用ヘッドはコイル32を挟む上部記録磁極33と下部記録磁極兼上部シールド層34からなり、記録磁極間のギャップ層厚は0.30μmとした。また、コイルには厚さ3μmのCuを用いた。前記再生用ヘッドは磁気抵抗センサ35とその両端の電極パタン36からなり、磁気抵抗センサは共に1μm厚の下部記録磁極兼上部シールド層と下部シールド層37で挟まれ、該シールド層間距離は0.15μmである。尚、図4では記録磁極間のギャップ層、及びシールド層と磁気抵抗センサとのギャップ層は省略してある。
【0030】
図5に磁気抵抗センサの断面構造を示す。該センサの信号検出領域41は、酸化Alのギャップ層42上に、厚さ5nmのTaバッファ層43、7nmの第一の磁性層44、1.5nmのCu中間層45、3nmの第二の磁性層46、10nmのFe-50at%Mn反強磁性合金層47が順次形成された構造である。前記第一の磁性層にはNi-20at%Fe合金を使用し、第二の磁性層にはCoを使用した。反強磁性層からの交換磁界により、第二の磁性層の磁化は一方向に固定されている。これに対し、第二の磁性層と非磁性層を介して接する第一の磁性層の磁化の方向は、磁気記録媒体からの漏洩磁界により変化するため、抵抗変化が生じる。再生用ヘッドには、このような二つの磁性層の磁化の相対的方向の変化に伴う抵抗変化を利用したスピンバルブ型磁気ヘッドを使用した。信号検出領域の両端にはテーパー形状に加工されたテーパー部48がある。テーパー部は、磁気抵抗強磁性層を単磁区化するための永久磁石層49と、その上に形成された信号を取り出すための一対の電極50からなる。永久磁石層は保磁力が大きく、磁化方向が容易に変化しないことが必要であり、CoCr、CoCrPt合金等が用いられる。
【0031】
上記装置について、線記録密度430kBPI、トラック密度48kTPIの条件で記録再生特性を行ったところ、装置S/N1.8と高い値が得られた。また、磁気ヘッドへの入力信号を16-17符号変調処理して出力信号に最尤復号処理を施すことにより、1平方インチ当たり20ギガビットの情報を記録再生することができた。また、媒体の内周から外周までのヘッドシーク試験5万回後のビットエラー数は10ビット/面以下であり、平均故障間隔で30万時間以上が達成出来た。
【0032】
<実施例4>
ガラス基板上にNi-50at%Alシード層を100nm形成し、150℃まで加熱したのち、Cr-30at%V合金下地層を50nm、表3に示した種々の中間層を30nm、(Co-25at%Pt)-(SiO2)20mol%磁性層を18nm、カーボン保護膜を10nm、真空中で連続的に形成した。
【0033】
【表3】
Figure 0003764833
【0034】
磁性層成膜時にのみ基板に100WのRFバイアスを印加した。比較例媒体として、中間層を形成しない媒体を上記と同一の膜構成、及びプロセス条件で作製した。
【0035】
TEM観察の結果、各媒体は粒径6〜10nmの結晶粒が幅2〜3nmの粒界相で分離されたグラニュラー構造をとっていることが確認された。また、X線回折プロファイルには、磁性層からは(10.0)ピークの他、弱い(00.2)ピークも確認されたが、該(00.2)ピーク強度は(10.0)ピーク強度の50%以下であった。本実施例媒体は、表3に示したように3.5kOe以上の高い保磁力と0.7以上の高いS*を示した。特にCoCrW, CoVTi, CoVNb中間層を用いた媒体で保磁力が高く、CoMnTa, CoVRu, CoVPd中間層を用いた媒体で高いS*が得られた。また、CoCrMo, CoVAl中間層を用いた媒体で低ノイズであり、CoMnPt, CoVCu中間層を用いた媒体で良好な重ね書き特性が得られた。一方、比較例媒体では磁性結晶粒の配向がほぼ3次元ランダムとなり、保磁力、S*とも実施例媒体を大幅に下回った。
【0036】
本実施例媒体に潤滑剤を塗布した後、実施例3で述べた装置に組み込み、線記録密度430kBPI、トラック密度48kTPIの条件で記録再生特性を行ったところ、装置S/N1.8と高い値が得られた。また、磁気ヘッドへの入力信号を16-17符号変調処理して出力信号に最尤復号処理を施すことにより、再生時のビット誤り率が1×10-9以下となり、1平方インチ当たり20ギガビットの情報を記録再生することができた。また、コンタクト・スタート・ストップ試験(CSS試験)を行ったところ、3万回のCSSを行っても摩擦係数は0.2以下であった。
【0037】
<実施例5>
ガラス基板上にMgOシード層を100nm形成した後、Cr-30at%Mo下地層を100nm、中間膜として表4に示したB2構造を有す種々の合金、或いはAgを30nm、(Co-8at%Cr-22at%Pt)-(TiO2)16mol%磁性層、カーボン保護膜を形成した。
【0038】
【表4】
Figure 0003764833
【0039】
シード層の成膜はRFスパッタにて10mTorrのArガス雰囲気中で行い、下地層、中間層、及びカーボン保護膜はDCスパッタにより10mTorrのArガス雰囲気中で形成した。磁性層は、DCスパッタによりCoCrPtTi合金ターゲットを、Ar+30%O2混合ガス雰囲気中で成膜することによって形成した。磁性層形成時にのみ、基板に120WのRFバイアスを印加した。
【0040】
本実施例媒体でも、hcp-Co合金中間層を用いた媒体と同様、磁性層はグラニュラー構造をとっており、磁性結晶粒はコラム構造であることが確認された。磁性結晶粒の平均粒径は7.2nmであった。また、X線回折測定の結果、CrMo下地層は(100)配向、該下地層上に形成されたB2構造の中間層、及びAg中間層はともに(100)配向、磁性層は(11.0)配向していることが確認された。本実施例媒体の磁気特性、記録再生特性を表4に示す。いずれの媒体も3.5kOe以上の高い保磁力と0.7以上の高いS*を示した。また、実施例1で定義した再生出力の減衰率も1%以下と、優れた耐熱揺らぎ特性を示した。
【0041】
本実施例媒体に潤滑剤を塗布した後、実施例2で述べた装置に組み込み、 線記録密度480kBPI、トラック密度43.5kTPIの条件で記録再生特性を行ったところ、装置S/N1.6と高い値が得られた。また、磁気ヘッドへの入力信号を8-9符号変調処理して出力信号に最尤復号処理を施すことにより、1平方インチ当たり20ギガビットの情報を記録再生することができた。また、媒体の内周から外周までのヘッドシーク試験5万回後のビットエラー数は10ビット/面以下であり、平均故障間隔で30万時間以上が達成出来た。
【0042】
【発明の効果】
本発明の磁気記録媒体は、高保磁力化、及びノイズ低減効果を持つ。本発明の磁気記録媒体とスピンバルブ型磁気ヘッドを用いることにより、一平方インチ当たり20ギガビット以上の記録密度を有し、かつ平均故障回数が30万時間以上の磁気記憶装置の実現が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例の磁気記録媒体の断面構造の一例を示す模式図である。
【図2】本発明の一実施例の磁気記録媒体、及び比較例媒体の保磁力のバイアス電圧依存性を示す図である。
【図3】図3(a)は、本発明の一実施例の磁気記憶装置の平面模式図である。図3(b)は、図3(a)のA-A' 断面図である。
【図4】本発明の磁気記憶装置における、磁気ヘッドの断面構造の一例を示す斜視図である。
【図5】本発明の磁気記憶装置における、磁気ヘッドの磁気抵抗センサ部の断面構造の一例を示す模式図である。
【符号の説明】
10..基板
11...シード層
12...下地層
13...中間層
14...磁性層
15...磁性相
16...非磁性マトリックス相
21...磁気ヘッド
22...磁気ヘッド駆動部
23...記録再生信号処理系
24...気記録媒体
25...磁気記録媒体駆動部
31...基体
32...コイル
33...上部記録磁極
34...下部記録磁極兼上部シールド層
35...磁気抵抗センサ
36...導体層
37...下部シールド層
41...信号検出領域
42...シールド層と磁気抵抗センサの間のギャップ層
43...バッファ層
44...第一の磁性層
45...中間層
46...第二の磁性層
47...反強磁性層
48...テーパー部
49...永久磁石層
50...電極。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a magnetic storage device having a recording density of 20 gigabits or more per square inch, low noise and high resolution for realizing this, and high stability with suppressed reproduction output attenuation due to thermal magnetic relaxation. The present invention relates to a thin film magnetic recording medium having
[0002]
[Prior art]
In order to increase the recording density of the in-plane magnetic recording medium, it is essential to improve the coercive force and reduce the medium noise. In order to increase the coercive force, it is necessary to improve the in-plane orientation component of the c axis, which is the easy axis of magnetization of the magnetic layer. In a medium using a NiP / Al substrate, Cr formed on the substrate, or a Cr alloy underlayer added with Ti, Mo, V, etc. is oriented with the (100) plane parallel to the substrate surface (hereinafter referred to as (Abbreviated as (100) orientation), the magnetic layer has an (11.0) orientation with the c-axis in the film plane by epitaxial growth. For this reason, it was possible to orient the easy axis of magnetization in the in-plane direction of the film. However, when a glass substrate is used, the easy axis of magnetization cannot be aligned in-plane because the Cr alloy underlayer has a more stable (110) orientation. In order to solve this problem, a technique has been proposed in which a new layer called a seed layer is formed between the substrate and the Cr alloy underlayer so that the underlayer has a (100) orientation. Examples of such seed layer materials include Ta (Japanese Patent Laid-Open No. 4-188427) and MgO (J. Appl. Phys. 67, 3638 (1995)). In addition to the above method, B 2 The introduction of NiAl alloy seed layers with a structure has been proposed (IEEE Trans. Magn. Vol. 30, 3099 (1992)). On the seed layer, the Cr alloy base has a (211) orientation, so that the magnetic layer can have a (10.0) orientation by epitaxial growth. Similarly to the (11.0) orientation, the (10.0) orientation has a high coercive force due to the strong in-plane anisotropy because the c-axis is oriented in the in-plane direction of the film. B like this 2 In addition to NiAl, CoTi (J. Appl. Phys. 85, 4298 (1999)) has been reported as a seed layer material for the structure.
[0003]
On the other hand, miniaturization of magnetic crystal grains and reduction of interaction between magnetic particles are indispensable for reducing medium noise. Granular magnetic recording media (Appl. Phys. Lett. 52, 512 (1998)), in which magnetic crystal grains are dispersed in a non-magnetic matrix such as oxide, have a fine magnetic grain size and at the same time, depending on the oxide phase. Since the interparticle exchange interaction is reduced, it exhibits excellent low noise characteristics. However, in the case of a normal granular film, since the magnetic crystal becomes too fine to obtain a high coercive force and is also strongly affected by thermal fluctuations, the recording signal is significantly attenuated over time and has high reliability. Sex cannot be obtained. Methods for improving this include vacuum heat treatment after film formation (Japanese Patent Laid-Open No. 7-98835), application of a high frequency bias (Japanese Patent Laid-Open No. 8-45073), introduction of a Co magnetic alloy having a higher magnetic anisotropy constant, etc. Japanese Patent Laid-Open No. 7-311929) has been proposed.
[0004]
However, since the easy axis of the granular medium is almost three-dimensionally oriented, the granular medium is sufficient for high-density recording of 20 gigabits or more per square inch even if the magnetic particle diameter is enlarged by the above method. The coercive force and the coercive force squareness ratio cannot be obtained. This is because the magnetic layer contains an oxide and a nitride, so that the surface of the underlayer is oxidized and nitrided, thereby inhibiting the epitaxial growth of the magnetic layer. On the other hand, in JP-A-9-81936, after forming a first magnetic layer containing no oxide or nitride on the underlayer, a second magnetic layer containing oxide or nitride is formed. Discloses that a high coercive force medium can be obtained by epitaxially growing the second magnetic layer. However, since the first magnetic layer that does not have a granular structure also acts as a recording layer, a sufficiently low noise effect cannot be obtained. In addition, in Japanese Patent Laid-Open No. 10-302242, by introducing a seed layer such as Ti or NiAl and an underlayer composed mainly of Cr, the easy axis of magnetization of the magnetic layer containing oxide or nitride is oriented in the in-plane direction. It is disclosed that a high coercive force can be obtained. However, the coercive force is at most 3000 Oersted, which is not sufficient for a high linear recording density of 400 kFCI or more.
[0005]
[Problems to be solved by the invention]
As described above, although the medium having a granular structure has low noise, in order to achieve a high recording density, it is necessary to further improve the coercive force and coercive force squareness ratio to obtain sufficient stability against thermal disturbance. is there.
[0006]
An object of the present invention is to achieve a high coercivity and a high coercivity squareness ratio by epitaxially growing a magnetic layer in a granular medium so that the easy axis of magnetization is oriented in-plane. Thereby, it is possible to provide a magnetic recording medium having good magnetic characteristics necessary for high-density recording and sufficient stability against thermal magnetic relaxation. Further, by combining with a highly sensitive magnetic head and optimizing the conditions, a highly reliable magnetic storage device having a recording density of 20 gigabits per square inch or more can be provided.
[0007]
[Means for Solving the Problems]
The above-mentioned object is that the magnetic layer is composed of an alloy mainly composed of Co having an hcp structure and an oxide or nitride of 3 mol% or more and 50 mol% or less, and the Co alloy is the oxide or nitride. A magnetic recording medium that has a columnar structure divided by the structure and has an easy axis of magnetization substantially oriented in a direction substantially parallel to the substrate surface, a drive unit that drives the recording medium in the recording direction, and a recording unit And a magnetic head comprising a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, and recording / reproducing signal processing for performing signal input to the magnetic head and reproduction of an output signal from the magnetic head In the magnetic storage device having the means, the reproducing unit of the magnetic head is achieved by a magnetic storage device including a magnetoresistive effect type magnetic head.
FIG. 1 shows a layer structure of the medium of the present invention and a schematic structure of the magnetic layer. A first underlayer 11 (hereinafter abbreviated as a seed layer), a second underlayer 12 (hereinafter abbreviated as an underlayer), and a third underlayer 13 (hereinafter abbreviated as an intermediate layer) on a substrate 10 Thus, the magnetic layer 14 is formed. In the figure, the protective film and the lubricating film are omitted. The magnetic layer is composed of a magnetic phase 15 made of a Co alloy crystal having a column structure and a nonmagnetic matrix phase 16 made of an oxide or nitride, and the Co alloy crystal is separated by a nonmagnetic matrix phase having a width of about 1 to 3 nm. Has been. Further, the Co alloy crystal is epitaxially grown on the intermediate layer and has a (11.0) orientation or a (10.0) orientation. For this reason, the c-axis, which is the easy axis of magnetization, is oriented in the in-plane direction of the film.
[0008]
The (11.0) orientation of the magnetic layer is such that MgO, NiP, Ta, CoCrZr, NiTa, NiNb alloy, etc. are formed as the seed layer, an alloy of bcc structure mainly composed of Cr is formed as the underlayer, and Co is formed as the intermediate layer. This is realized by using a non-magnetic alloy having an hcp structure mainly composed of bismuth. Since the Cr alloy underlayer has the (100) orientation on the seed layer, the intermediate layer of the hcp structure formed on the underlayer is epitaxially grown to have the (11.0) orientation. Since the free oxide formation energy of Co, which is the main component of the intermediate layer, is higher than that of Cr, the formation of Co alloy oxide on the intermediate layer surface is suppressed. Therefore, when a magnetic layer containing Co as a main component and containing an oxide or nitride is formed on the intermediate layer, formation of an oxide layer of a Co alloy in the initial layer of the magnetic layer is suppressed. Takes (11.0) orientation by epitaxial growth. Furthermore, by applying an appropriate direct current or alternating current bias when forming the magnetic layer, a Co magnetic alloy having a columnar structure in which the axis of easy magnetization is oriented in the in-plane direction is divided by an oxide or a nitride. A magnetic layer can be obtained.
[0009]
The seed layer material is not particularly limited as long as the Cr or Cr alloy underlayer can be (100) oriented. As the underlayer material, Cr or a bcc structure Cr alloy in which Ti, Mo, V, W, Mn or the like is added to increase the lattice constant may be used. The substrate can be made of crystallized glass, tempered glass, carbon, Ni-Pg Al-Mg alloy, or the like.
[0010]
As the intermediate layer material, an alloy containing Co as a main component and containing at least one element selected from Cr, V, and Mn for demagnetization in an amount of 25 at% to 50 at% is used. If it is less than 25 at%, demagnetization is insufficient, and if it exceeds 50 at%, the hcp structure is destroyed, which is not preferable. Furthermore, at least one element selected from W, Mo, Ta, Pt, Ti, Nb, Al, Cu, Ru, and Pd may be contained in an amount of 20 at% or less for the purpose of controlling the lattice constant. If it exceeds 20 at%, the hcp structure is destroyed, which is not preferable. The intermediate layer is preferably non-magnetic. However, if the product Br · t of the residual saturation magnetic flux density Br and the film thickness t is 20% or less of Br · t of the magnetic layer, it is practical even if it has weak magnetization. As a result of preliminary examination, it was confirmed that there was no problem.
[0011]
Further, Ag having a low affinity with oxygen may be used as the intermediate layer. The lattice misfit defined as (aAg-√2aCr) / √2aCr × 100 (%) using Ag a-axis length aAg and Cr a-axis length aCr is less than 2%, so it is (100) oriented. The Ag intermediate layer formed on the Cr alloy underlayer takes (100) orientation by epitaxial growth. Therefore, the Co magnetic alloy formed thereon is also (11.0) oriented by epitaxial growth, and the easy axis of magnetization of the Co magnetic alloy can be oriented in the same plane as in the case of using the Co alloy intermediate layer of the hcp structure. . The Ag intermediate layer may be an Ag alloy intermediate layer containing other elements as long as the lattice misfit is 5% or less and has an fcc structure.
[0012]
Further, as an intermediate layer, at least one B selected from AlCo, NiAl, CoTi, CuPd, MnV, NiTi 2 An intermetallic compound having a structure can also be used. Since the lattice misfit between the a-axis length of these intermetallic compounds and the a-axis length aCr of Cr is 5% or less, the intermetallic compound formed on the (100) -oriented Cr alloy underlayer Takes (100) orientation by epitaxial growth. Since the intermetallic compound is an ion-bonding crystal, it is difficult to bond with oxygen, and oxide formation on the surface is suppressed. Therefore, the Co magnetic alloy in the magnetic layer formed on the intermetallic compound can also take (11.0) orientation by epitaxial growth, and the easy magnetization axis can be oriented in the plane. By forming the magnetic layer while applying a bias, a magnetic layer composed of a Co magnetic alloy having a columnar structure with the easy axis oriented in the in-plane direction and a grain boundary phase of oxide or nitride is realized. Can do.
[0013]
On the other hand, in-plane orientation of the easy axis of magnetization can also be realized by making the Co magnetic alloy take (10.0) orientation. The (10.0) orientation of the magnetic layer is 2 Forms alloys such as NiAl, CoTi, CoAl, NiTi, MnV alloys, etc., forms bcc alloy mainly composed of Cr as the underlayer, and non-magnetic hcp structure mainly composed of Co as the intermediate layer This is realized by using an alloy or the like. B as the seed layer 2 In addition to structural alloys etc., for example, L twenty one Structure, C 11b A material having a structure may be used. Since the Cr or Cr alloy underlayer formed on these seed layers has a (211) orientation, when the Co alloy intermediate layer having the above-described hcp structure is formed on the underlayer, each intermediate layer is formed by epitaxial growth. , Each takes (10.0) orientation. By forming a magnetic layer on the intermediate layer under a bias application, it is separated by an oxide or nitride grain boundary phase and has a columnar structure of Co magnetism in which the easy axis of magnetization is oriented in the in-plane direction. A magnetic layer made of an alloy can be realized.
[0014]
Regardless of the orientation of the Co alloy crystal in the magnetic layer, a high coercivity and coercivity squareness ratio due to strong in-plane magnetic anisotropy can be obtained. Further, in any case, since the magnetic layer is composed of a fine magnetic particle size with high magnetic isolation, a low noise magnetic recording medium can be obtained. Further, it is not necessary that all Co alloy crystals in the magnetic layer are in-plane oriented. When the Co alloy in the magnetic layer is mainly (11.0) oriented, the diffraction peak intensity from the (11.0) plane of the magnetic layer in the X-ray diffraction profile is the intensity of the diffraction peak from any other surface of the magnetic layer. In contrast, the above-described effects can be obtained if the ratio is twice or more. Further, when the Co alloy in the magnetic layer is mainly (10.0) oriented, if the diffraction peak intensity from the (10.0) plane of the magnetic layer is greater than the intensity of the diffraction peak from any other plane of the magnetic layer, The above effects can be obtained. In addition, the bias application during the formation of the magnetic layer is intended to suppress the extreme miniaturization of the magnetic crystal grains and at the same time promote the fragmentation of the magnetic crystal by the nonmagnetic matrix, and can be either a DC bias or an AC bias. May be. As long as the alloy has an hcp structure, the composition of the Co magnetic alloy is not particularly limited, but it is desirable to contain Pt in order to obtain a high coercive force.
[0015]
As the nonmagnetic matrix material, an oxide selected from SiO2, TiO2, ZrO2, Al2O3, and Y2O3, or a nitride selected from Si3N4, TiN, and ZrN is preferable. This is because the affinity with oxygen or nitrogen is strong, so that oxidation or nitridation of Co is suppressed. The concentration of the nonmagnetic matrix material is desirably 3 mol% or more and 50 mol% or less with respect to all elements constituting the magnetic layer. If it is less than 3 mol%, the exchange interaction between magnetic crystal grains cannot be sufficiently reduced, and if it exceeds 50 mol%, the magnetic crystal grains become too fine, which is not preferable. If the average grain size of the magnetic crystal grains is less than 4 nm, the influence of thermal fluctuation becomes significant, and if it exceeds 10 nm, sufficient low noise characteristics cannot be obtained. Therefore, the average grain size is preferably 4 nm or more and 10 nm or less. Here, the crystal grain size is defined as the diameter of a perfect circle having the same area as the crystal grain, and the arithmetic average of about 100 to 200 crystal grain sizes measured using a planar TEM image is defined as the average grain size.
[0016]
The magnetic properties of the medium are as follows: the coercive force measured by applying a magnetic field in the in-plane direction of the film is 3500 oersted or more, and the product Br × t of residual magnetic flux density Br and film thickness t is 30 gauss / micron or more, 70 gauss / If it is less than micron, it is preferable because good recording / reproducing characteristics can be obtained in a recording density region of 20 gigabits per square inch or more. If the coercive force in the circumferential direction is smaller than 3500 oersted, the output at a high recording density (450 kFCI or more) becomes small, which is not preferable. Further, when Br × t is larger than 70 gauss / micron, the resolution is lowered, and when it is smaller than 30 gauss / micron, the reproduction output is undesirably reduced. Furthermore, when the coercivity measured by applying a magnetic field in the in-plane direction is 10 times or more of the coercivity in the vertical direction, good overwriting characteristics can be obtained.
[0017]
High reliability can be obtained by forming carbon with a film thickness of 3 to 15 nm as a protective film on the magnetic layer and providing a perfluoroalkyl polyether-based lubricating layer with a thickness of 2 to 3 nm. By using carbon to which nitrogen, hydrogen, or the like is added as the protective film, sliding resistance and corrosion resistance can be improved.
[0018]
The magnetoresistive sensor portion of the magnetic head used in the magnetic recording apparatus includes a plurality of conductive magnetic layers that cause a large resistance change due to relative changes in the magnetization directions of each other by an external magnetic field, and the conductive magnetic layers. It is assumed that the spin valve effect formed by the conductive nonmagnetic layer disposed between the two is utilized. The distance between the two shield layers sandwiching the resistance sensor portion (shield distance) is preferably 0.15 μm or less. This is because when the shield interval is 0.15 μm or more, the resolution is lowered and the phase jitter of the signal is increased.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1>
After forming a Ni-37.5at% Ta alloy seed layer to 70nm on a crystallized glass substrate, it is heated to 150 ° C by lamp heater heating, and further Cr-25at% Ti alloy underlayer is 30nm, Co-34at% Cr intermediate layer 30 nm, (Co-25 at% Pt)-(Al 2 O 3) 7 mol% alloy magnetic layer 14 nm, carbon protective film 8 nm, continuously formed in vacuum. All layers other than the magnetic layer were formed by DC sputtering in a 5 mAr gas atmosphere, and only the magnetic layer was formed by RF sputtering in a 30 mTorr gas atmosphere. Furthermore, media with different DC bias applied during magnetic layer formation were prepared. The DC bias was changed in the range of 0V to -300V. Further, as a comparative example, a medium on which no intermediate layer was formed was produced under the same conditions as described above.
[0020]
FIG. 2 shows the relationship between the coercive force and the DC bias voltage applied during the formation of the magnetic layer for the medium of the present example in which the CoCr intermediate layer was formed and the comparative example medium in which the intermediate layer was not formed. In the case of the medium on which the intermediate layer was formed, a medium having the highest coercive force was obtained when a DC bias of −150 V was applied. The comparative medium has only a maximum coercive force of about 2.2 kOe, whereas the medium having an intermediate layer has a high coercive force of 4 kOe or more. The coercive force squareness ratio of the comparative example medium was 0.58, whereas that of the example medium was 0.81. As described above, it was found that by introducing the intermediate layer, the in-plane magnetic anisotropy is improved, and a high coercivity and a high coercivity squareness ratio can be realized.
[0021]
<Example 2>
After forming a Ni-40at% Ta alloy seed layer to 60nm on a crystallized glass substrate, it is heated to 150 ° C by lamp heater heating, and a Cr-25at% Ti alloy underlayer is 50nm, various intermediates shown in Table 1 10nm layer, (Co-25at% Pt)-(Al 2 O Three ) A 12 mol% alloy magnetic layer was continuously formed in a vacuum at 14 nm and a carbon protective film at 8 nm.
[0022]
[Table 1]
Figure 0003764833
[0023]
All layers other than the magnetic layer were formed by DC sputtering in a 5 mAr gas atmosphere, and only the magnetic layer was formed by RF sputtering in a 30 mTorr gas atmosphere. Furthermore, a DC bias of −150 V was applied when forming the magnetic layer. Further, as a comparative example, a medium on which no intermediate layer was formed was produced under the same conditions as described above.
[0024]
As a result of planar TEM observation of the magnetic layer of the medium of this example, in all the media, a granular structure in which crystal grains having a grain size of about 3 to 10 nm were separated by a grain boundary phase having a width of 2 to 3 nm was confirmed. It was done. Moreover, in any magnetic layer, lattice fringes are observed in 70 to 90% or more of crystal grains, and diffraction images obtained by electron beam diffraction measurement show three lines from the (10.0), (00.2), and (10.1) planes. Only diffractive rings were observed. Therefore, the magnetic layer is considered to be (11.0) oriented. Further, cross-sectional TEM observation confirmed that in all of the example media, the crystals in the magnetic layer had a column structure continuously grown from the initial layer to the surface. In addition, although the granular structure was confirmed even in the comparative medium in which no intermediate layer was formed, the orientation was almost three-dimensional random, and the shape of the crystal grains in the magnetic layer was almost spherical. As shown in Table 1, all the media of this example exhibited a high coercive force of 3.5 kOe or more and a coercive force squareness ratio S * of 0.7 or more. In addition, the reproduction output attenuation rate defined as (E0-E96h) / E0 × 100 (%) using the reproduction output E0 immediately after recording and the reproduction output E96h after 96 hours of the signal recorded at a recording density of 450 kFCI is 2. It was found that the thermal stability was excellent as well. In particular, the normalized media noise was low in the medium using the CoCr intermediate layer, and the coercive force and the coercive force squareness ratio S * were high in the medium using the CoMn intermediate layer and the CoV intermediate layer, respectively. Here, the normalized medium noise is a value obtained by normalizing the medium noise when recording at a recording density of 450 kFCI with the output of the isolated reproduction wave and the track width. On the other hand, in the comparative example medium, since the coercive force was low, when recording was performed at the above linear recording density, it was almost in an AC demagnetized state. In addition, in the example medium using the ternary intermediate layer in which the third element is added to the intermediate layer, the coercive force is generally high, and the attenuation rate of the reproduction output is also higher than that of the medium using the binary intermediate layer. It was found to have low and better heat-resistant fluctuation characteristics.
[0025]
<Example 3>
10nm Ta seed layer, 50nm Cr-10at% Mo underlayer, 30nm Co-30at% V-8at% W intermediate layer, 16nm magnetic layer, 8nm carbon protective film on Al substrate continuously in vacuum Formed. Various materials shown in Table 2 were used for the magnetic layer.
[0026]
[Table 2]
Figure 0003764833
[0027]
As in Example 2, only the magnetic layer was formed by RF sputtering while applying a DC bias of −150 V, and all other layers were formed by DC sputtering.
[0028]
Similar to Example 1, the medium of this example also had a columnar structure regardless of the magnetic layer composition, and had a granular structure separated by a grain boundary phase having a width of 2 to 3 nm. In addition, the diffraction peak from the magnetic layer in the X-ray diffraction profile was only the (11.0) peak. As shown in Table 2, a particularly low medium noise is obtained with a medium using SiO2 as the nonmagnetic matrix material. TiO 2 , ZrO 2 In the medium using, high coercive force and high coercive force squareness ratio S * were obtained. Furthermore, the medium using nitride as the nonmagnetic matrix material had better overwrite characteristics than when using an oxide.
[0029]
After the lubricant was applied to these media, it was incorporated into the magnetic storage device shown in FIGS. 3 (a) and 3 (b) together with the magnetic head. FIG. 3 (a) is a schematic view of the magnetic memory device as viewed from above, and FIG. 3 (b) is a cross-sectional view of FIG. 3 (a) as viewed from A to A. This device is a magnetic storage device having a known structure comprising a magnetic head 21, a drive unit 22 thereof, a recording / reproduction signal processing means 23 of the magnetic head, a magnetic recording medium 24, and a drive unit 25 for rotating the magnetic recording medium 24. . The structure of the magnetic head is shown in FIG. This magnetic head is a composite head having both a recording electromagnetic induction type magnetic head formed on a substrate 31 and a reproducing spin valve type magnetic head. The recording head comprises an upper recording magnetic pole 33 and a lower recording magnetic pole / upper shield layer 34 sandwiching the coil 32, and the gap layer thickness between the recording magnetic poles was 0.30 μm. Further, Cu having a thickness of 3 μm was used for the coil. The reproducing head comprises a magnetoresistive sensor 35 and electrode patterns 36 at both ends thereof. Both magnetoresistive sensors are sandwiched between a lower recording magnetic pole / upper shield layer 37 and a lower shield layer 37 each having a thickness of 0.15 μm. It is. In FIG. 4, the gap layer between the recording magnetic poles and the gap layer between the shield layer and the magnetoresistive sensor are omitted.
[0030]
FIG. 5 shows a cross-sectional structure of the magnetoresistive sensor. The signal detection region 41 of the sensor has a 5 nm thick Ta buffer layer 43, a 7 nm first magnetic layer 44, a 1.5 nm Cu intermediate layer 45, a 3 nm second magnetic layer on an Al oxide gap layer 42. This is a structure in which a layer 46 and a 10 nm Fe-50 at% Mn antiferromagnetic alloy layer 47 are sequentially formed. Ni-20at% Fe alloy was used for the first magnetic layer, and Co was used for the second magnetic layer. The magnetization of the second magnetic layer is fixed in one direction by the exchange magnetic field from the antiferromagnetic layer. On the other hand, the direction of magnetization of the first magnetic layer that is in contact with the second magnetic layer via the nonmagnetic layer changes due to the leakage magnetic field from the magnetic recording medium, so that a resistance change occurs. As the reproducing head, a spin-valve magnetic head using a change in resistance accompanying a change in the relative direction of magnetization of the two magnetic layers was used. At both ends of the signal detection region, there are tapered portions 48 processed into a tapered shape. The tapered portion is composed of a permanent magnet layer 49 for making the magnetoresistive ferromagnetic layer into a single magnetic domain, and a pair of electrodes 50 for taking out signals formed thereon. The permanent magnet layer needs to have a large coercive force and the magnetization direction does not easily change, and CoCr, CoCrPt alloy or the like is used.
[0031]
When the recording / reproduction characteristics of the above apparatus were measured under the conditions of a linear recording density of 430 kBPI and a track density of 48 kTPI, a high value was obtained, which was the apparatus S / N1.8. In addition, it was possible to record / reproduce 20 gigabits of information per square inch by performing 16-17 code modulation processing on the input signal to the magnetic head and performing maximum likelihood decoding processing on the output signal. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference of the medium was 10 bits / surface or less, and an average failure interval of 300,000 hours or more was achieved.
[0032]
<Example 4>
After forming Ni-50at% Al seed layer to 100nm on glass substrate and heating to 150 ° C, Cr-30at% V alloy underlayer is 50nm, various intermediate layers shown in Table 3 are 30nm, (Co-25at % Pt)-(SiO2) 20 mol% magnetic layer was formed continuously at 18 nm and carbon protective film at 10 nm in vacuum.
[0033]
[Table 3]
Figure 0003764833
[0034]
An RF bias of 100 W was applied to the substrate only when the magnetic layer was formed. As a comparative example medium, a medium on which no intermediate layer was formed was produced with the same film configuration and process conditions as described above.
[0035]
As a result of TEM observation, it was confirmed that each medium had a granular structure in which crystal grains having a grain size of 6 to 10 nm were separated by a grain boundary phase having a width of 2 to 3 nm. Further, in the X-ray diffraction profile, a weak (00.2) peak was confirmed in addition to the (10.0) peak from the magnetic layer, but the (00.2) peak intensity was 50% or less of the (10.0) peak intensity. . As shown in Table 3, this example medium showed a high coercive force of 3.5 kOe or higher and a high S * of 0.7 or higher. In particular, media with CoCrW, CoVTi, and CoVNb intermediate layers have high coercivity, and media with CoMnTa, CoVRu, and CoVPd intermediate layers have high S *. In addition, the medium using the CoCrMo and CoVAl intermediate layer has low noise, and good overwrite characteristics are obtained with the medium using the CoMnPt and CoVCu intermediate layer. On the other hand, in the comparative medium, the orientation of the magnetic crystal grains became almost three-dimensional random, and both the coercive force and S * were significantly lower than those in the working medium.
[0036]
After the lubricant was applied to the medium of this example, it was incorporated into the apparatus described in Example 3, and the recording / reproducing characteristics were performed under the conditions of a linear recording density of 430 kBPI and a track density of 48 kTPI. was gotten. In addition, the input signal to the magnetic head is subjected to 16-17 code modulation processing and the output signal is subjected to maximum likelihood decoding processing, thereby reducing the bit error rate during reproduction to 1 × 10-9 or less and 20 gigabits per square inch It was possible to record and replay information. In addition, when a contact start / stop test (CSS test) was performed, the coefficient of friction was 0.2 or less even after 30,000 CSS tests.
[0037]
<Example 5>
After the MgO seed layer was formed to 100 nm on the glass substrate, the Cr-30at% Mo underlayer was 100 nm and the intermediate film B shown in Table 4 was used. 2 Various alloys having a structure, or 30 nm of Ag, (Co-8 at% Cr-22 at% Pt)-(TiO 2) 16 mol% magnetic layer, and carbon protective film were formed.
[0038]
[Table 4]
Figure 0003764833
[0039]
The seed layer was formed by RF sputtering in an Ar gas atmosphere of 10 mTorr, and the underlayer, intermediate layer, and carbon protective film were formed by DC sputtering in an Ar gas atmosphere of 10 mTorr. The magnetic layer was formed by forming a CoCrPtTi alloy target by DC sputtering in an Ar + 30% O2 mixed gas atmosphere. Only when the magnetic layer was formed, an RF bias of 120 W was applied to the substrate.
[0040]
In this example medium as well, as in the medium using the hcp-Co alloy intermediate layer, it was confirmed that the magnetic layer had a granular structure and the magnetic crystal grains had a column structure. The average grain size of the magnetic crystal grains was 7.2 nm. In addition, as a result of X-ray diffraction measurement, the CrMo underlayer is (100) oriented, B formed on the underlayer 2 It was confirmed that the structure intermediate layer and the Ag intermediate layer were both (100) oriented and the magnetic layer was (11.0) oriented. Table 4 shows the magnetic characteristics and recording / reproduction characteristics of the medium of this example. Both media showed high coercive force of 3.5 kOe or higher and high S * of 0.7 or higher. In addition, the attenuation rate of the reproduction output defined in Example 1 was 1% or less, indicating excellent heat-resistant fluctuation characteristics.
[0041]
After the lubricant was applied to the medium of this example, it was incorporated into the apparatus described in Example 2, and the recording / reproduction characteristics were measured under the conditions of a linear recording density of 480 kBPI and a track density of 43.5 kTPI. A value was obtained. Moreover, 20-Gigabit information per square inch could be recorded and reproduced by performing 8-9 code modulation processing on the input signal to the magnetic head and subjecting the output signal to maximum likelihood decoding processing. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference of the medium was 10 bits / surface or less, and an average failure interval of 300,000 hours or more was achieved.
[0042]
【The invention's effect】
The magnetic recording medium of the present invention has a high coercive force and noise reduction effect. By using the magnetic recording medium of the present invention and the spin valve type magnetic head, it is possible to realize a magnetic storage device having a recording density of 20 gigabits per square inch or more and an average failure frequency of 300,000 hours or more. .
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of a magnetic recording medium according to an embodiment of the present invention.
FIG. 2 is a diagram showing the bias voltage dependence of the coercive force of a magnetic recording medium of one example of the present invention and a comparative example medium.
FIG. 3 (a) is a schematic plan view of a magnetic memory device according to one embodiment of the present invention. FIG. 3B is a cross-sectional view taken along the line AA ′ in FIG.
FIG. 4 is a perspective view showing an example of a cross-sectional structure of a magnetic head in the magnetic storage device of the present invention.
FIG. 5 is a schematic diagram showing an example of a cross-sectional structure of a magnetoresistive sensor portion of a magnetic head in the magnetic storage device of the present invention.
[Explanation of symbols]
10. Board
11 ... Seed layer
12 ... Underlayer
13 ... Middle layer
14 ... magnetic layer
15 ... Magnetic phase
16 ... Nonmagnetic matrix phase
21 ... Magnetic head
22 ... Magnetic head drive
23.Recording and playback signal processing system
24 ... Ki Recording Media
25 ... Magnetic recording medium drive
31 ... Substrate
32 ... coil
33 ... Upper recording magnetic pole
34 ... Lower magnetic pole and upper shield layer
35 ... Magnetoresistive sensor
36 ... conductor layer
37 ... Lower shield layer
41 ... Signal detection area
42 ... Gap layer between shield layer and magnetoresistive sensor
43 ... Buffer layer
44 ... First magnetic layer
45 ... Middle layer
46 ... Second magnetic layer
47 ... Antiferromagnetic layer
48 ... Taper part
49 ... Permanent magnet layer
50 ... electrode.

Claims (5)

基板上に形成された第1の下地層と、
第1の下地層上に形成されかつbcc構造を有し(100)配向したCrを主成分とする合金を含有する第2の下地層と、
第2の下地層上に形成されかつhcp構造を有し(11.0)配向したCoを主成分とする合金を含有する第3の下地層と、
第3の下地層上に形成されかつhcp構造を有し(11.0)配向したCoを主成分とする合金結晶および酸化物または窒化物を含有する磁性層とを有し、
前記酸化物または窒化物の濃度は磁性層の全元素に対して3mol%以上50mol%以下であり、
前記磁性層に含有されるCoを主成分とするhcp構造の合金結晶は前記酸化物または窒化物によって相互に分離されかつ前記Coを主成分とするhcp構造の合金結晶の磁化容易軸は基板面に対して実質的に平行に配向していることを特徴とする磁気記録媒体。
A first underlayer formed on the substrate;
A second underlayer containing an alloy mainly composed of Cr formed on the first underlayer and having a bcc structure and having (100) orientation;
A third underlayer containing an alloy mainly composed of Co formed on the second underlayer and having an hcp structure and having (11.0) orientation;
A magnetic layer containing an alloy crystal and an oxide or nitride, which is formed on the third underlayer and has an hcp structure and has (11.0) orientation and which has Co as a main component,
The concentration of the oxide or nitride is 3 mol% or more and 50 mol% or less with respect to all elements of the magnetic layer,
The alloy crystal of hcp structure mainly containing Co contained in the magnetic layer is separated from each other by the oxide or nitride, and the easy axis of magnetization of the alloy crystal of hcp structure mainly containing Co is the substrate surface. A magnetic recording medium characterized by being oriented substantially parallel to the magnetic recording medium.
基板上に形成されかつB2構造またはL21構造またはC11b構造の合金を含有する第1の下地層と、
第1の下地層上に形成されかつbcc構造を有し(211)配向したCrを主成分とする合金を含有する第2の下地層と、
第2の下地層上に形成されかつhcp構造を有し(10.0)配向したCoを主成分とする合金を含有する第3の下地層と、
第3の下地層上に形成されかつhcp構造を有し(10.0)配向したCoを主成分とする合金結晶および酸化物または窒化物とを含有する磁性層とを有し、
前記酸化物または窒化物の濃度は磁性層の全元素に対して3mol%以上50mol%以下であり、
前記Coを主成分とするhcp構造の合金結晶は前記酸化物または窒化物によって相互に分離されかつ前記Coを主成分とするhcp構造の合金結晶の磁化容易軸は基板面に対して実質的に平行に配向していることを特徴とする磁気記録媒体。
A first underlayer containing alloy is formed on the substrate and B 2 structure or L 21 structures or C 11b structure,
A second underlayer containing an alloy composed mainly of Cr formed on the first underlayer and having a (211) orientation having a bcc structure;
A third underlayer containing a Co-based alloy formed on the second underlayer and having an hcp structure and having a (10.0) orientation;
A magnetic layer formed on the third underlayer and containing an alloy crystal mainly composed of Co having a hcp structure and (10.0) orientation and an oxide or nitride;
The concentration of the oxide or nitride is 3 mol% or more and 50 mol% or less with respect to all elements of the magnetic layer,
The alloy crystals of hcp structure containing Co as a main component are separated from each other by the oxide or nitride, and the easy axis of magnetization of the alloy crystals of hcp structure containing Co as a main component is substantially relative to the substrate surface. A magnetic recording medium characterized by being oriented in parallel.
前記Coを主成分とするhcp構造を有する第3の下地層は、Cr、V、Mnのいずれかの元素を25at%以上、50at%以下含有し、更にW、Mo、Ta、Pt、Ti、Nb、Al、Cu、Ru、Pdから選ばれた元素を少なくとも1種20at%以下含有していることを特徴とする請求項1または2に記載の磁気記録媒体。  The third underlayer having an hcp structure containing Co as a main component contains 25 at% or more and 50 at% or less of any element of Cr, V, and Mn, and further W, Mo, Ta, Pt, Ti, 3. The magnetic recording medium according to claim 1, comprising at least one element selected from Nb, Al, Cu, Ru, and Pd of 20 at% or less. 基板上に形成された第1の下地層と、
第1の下地層上に形成されかつbcc構造を有し(100)配向したCrを主成分とする合金を含有する第2の下地層と、
第2の下地層上に形成されかつfcc構造を有し(100)配向したAgまたはAgを主成分とする合金あるいは(100)配向したB2構造の合金を含有する第3の下地層と、
第3の下地層上に形成されかつhcp構造を有し(11.0)配向したCoを主成分とする合金結晶および酸化物または窒化物とを含有する磁性層とを有し、
前記酸化物または窒化物の濃度は磁性層の全元素に対して3mol%以上50mol%以下であり、
前記Coを主成分とするhcp構造の合金結晶は前記酸化物または窒化物によって相互に分離されかつ前記Coを主成分とするhcp構造の合金結晶の磁化容易軸は基板面に対して実質的に平行に配向していることを特徴とする磁気記録媒体。
A first underlayer formed on the substrate;
A second underlayer containing an alloy mainly composed of Cr formed on the first underlayer and having a bcc structure and having (100) orientation;
A third underlayer formed on the second underlayer and containing an (100) -oriented Ag or an Ag-based alloy having an fcc structure or a (100) -oriented B 2 structure alloy;
A magnetic layer formed on the third underlayer and containing an alloy crystal and an oxide or nitride mainly composed of Co having a hcp structure and having (11.0) orientation,
The concentration of the oxide or nitride is 3 mol% or more and 50 mol% or less with respect to all elements of the magnetic layer,
The alloy crystals of hcp structure containing Co as a main component are separated from each other by the oxide or nitride, and the easy axis of magnetization of the alloy crystals of hcp structure containing Co as a main component is substantially relative to the substrate surface. A magnetic recording medium characterized by being oriented in parallel.
磁気記録媒体と、磁気記録媒体を記録方向に駆動する駆動部と、記録用誘導ヘッドと再生用磁気抵抗ヘッドを併せ持つ複合型磁気ヘッドと、前記複合型磁気ヘッドからの入出力信号を処理する記録再生信号処理手段とを備えた磁気記憶装置において、
前記磁気記録媒体として、請求項1〜4のうち何れかに記載の磁気記録媒体を備えることを特徴とする磁気記憶装置。
A magnetic recording medium; a drive unit for driving the magnetic recording medium in a recording direction; a composite magnetic head having both a recording induction head and a reproducing magnetoresistive head; and recording for processing input / output signals from the composite magnetic head In a magnetic storage device comprising reproduction signal processing means,
A magnetic storage device comprising the magnetic recording medium according to claim 1 as the magnetic recording medium.
JP28242499A 1999-10-04 1999-10-04 Magnetic recording medium and magnetic storage device Expired - Fee Related JP3764833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28242499A JP3764833B2 (en) 1999-10-04 1999-10-04 Magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28242499A JP3764833B2 (en) 1999-10-04 1999-10-04 Magnetic recording medium and magnetic storage device

Publications (3)

Publication Number Publication Date
JP2001101651A JP2001101651A (en) 2001-04-13
JP2001101651A5 JP2001101651A5 (en) 2004-10-14
JP3764833B2 true JP3764833B2 (en) 2006-04-12

Family

ID=17652239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28242499A Expired - Fee Related JP3764833B2 (en) 1999-10-04 1999-10-04 Magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP3764833B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534347B2 (en) * 2000-02-23 2010-09-01 富士電機デバイステクノロジー株式会社 Magnetic recording medium and manufacturing method thereof
JP2002190108A (en) * 2000-10-13 2002-07-05 Fuji Electric Co Ltd Magnetic recording medium and its production method
JP2003077121A (en) * 2001-08-31 2003-03-14 Fuji Electric Co Ltd Magnetic recording medium and manufacturing method therefor
JP2003123243A (en) 2001-10-18 2003-04-25 Fuji Electric Co Ltd Magnetic recording medium and method of manufacturing the same
JP4497784B2 (en) 2002-02-28 2010-07-07 富士電機デバイステクノロジー株式会社 Magnetic recording medium
JP2003323714A (en) * 2002-05-01 2003-11-14 Fuji Electric Co Ltd Magnetic recording medium and its production method
JP4127775B2 (en) * 2002-07-12 2008-07-30 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP3688666B2 (en) 2002-07-31 2005-08-31 株式会社東芝 Magnetic disk unit
JP2004227717A (en) 2003-01-24 2004-08-12 Fuji Electric Device Technology Co Ltd Magnetic recording medium and its manufacturing method
JP4812254B2 (en) 2004-01-08 2011-11-09 富士電機株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
US7371471B2 (en) 2004-03-08 2008-05-13 Nec Tokin Corporation Electromagnetic noise suppressing thin film
JP5518449B2 (en) 2009-12-02 2014-06-11 エイチジーエスティーネザーランドビーブイ Magnetic recording medium and method for manufacturing the same
JP6073194B2 (en) * 2013-07-03 2017-02-01 昭和電工株式会社 Magnetic recording medium, magnetic storage device

Also Published As

Publication number Publication date
JP2001101651A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
US6001447A (en) Longitudinal magnetic recording media and magnetic storage apparatus using the same
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
EP1378893A1 (en) Perpendicular magnetic recording media
CN108573715B (en) Assisted magnetic recording medium and magnetic memory apparatus
US6569545B1 (en) Magnetic recording medium and a magnetic storage apparatus
JP2001184626A (en) Magnetic recording medium and magnetic memory device
JP3648450B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP3217012B2 (en) Magnetic recording media
JP3716097B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2006085751A (en) Magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JP2005038596A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JPH10320740A (en) Magnetic storage device and intrasurface magnetic recording medium
JP2001118234A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000315311A (en) Vertical magnetic recording medium and magnetic storage device
JP4283934B2 (en) Magnetic recording medium and magnetic storage device
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JP2918199B2 (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees