JP3763469B2 - Cultivation medium and cultivation method using the same - Google Patents

Cultivation medium and cultivation method using the same Download PDF

Info

Publication number
JP3763469B2
JP3763469B2 JP2002152405A JP2002152405A JP3763469B2 JP 3763469 B2 JP3763469 B2 JP 3763469B2 JP 2002152405 A JP2002152405 A JP 2002152405A JP 2002152405 A JP2002152405 A JP 2002152405A JP 3763469 B2 JP3763469 B2 JP 3763469B2
Authority
JP
Japan
Prior art keywords
pumice
medium
cultivation
continuous cropping
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002152405A
Other languages
Japanese (ja)
Other versions
JP2003339228A (en
Inventor
真世 鈴木
和成 増田
哲生 黒田
和幸 関
剛己 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002152405A priority Critical patent/JP3763469B2/en
Publication of JP2003339228A publication Critical patent/JP2003339228A/en
Application granted granted Critical
Publication of JP3763469B2 publication Critical patent/JP3763469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、栽培用培地及び栽培方法に関し、更に具体的には、例えば野菜、果樹、花卉植物などを主として施設栽培法、場合によっては露地栽培法によって節水及び省資源下で栽培するのに好適な栽培用培地に関する。また、培地の水分調節ができるので、果菜類のうちトマトやメロン等で糖度を上げることができるなど、付加価値のある農作物を栽培することのできる栽培用培地及び栽培方法に関する。
【0002】
【従来の技術】
サラダナやトマトなどの高級野菜などを栽培する場合、畑地などではなく、例えばオープンエリヤ施設やハウス施設などで精密に環境管理しながら、工場生産的に栽培をする必要がある場合がある。このような栽培方法を、施設栽培と呼んでいる。
一方、温室栽培は、早生ミカン等を除き、従来は単年度毎に収穫される植物(農作物)に適用されてきた。温室栽培は、むしろポット栽培に向くが、植物から培地への影響があるため、1収穫毎に培地の交換が必要であった。
【0003】
【発明が解決しようとする課題】
上記のように野菜や花卉植物の栽培法には土耕(露地栽培)と施設栽培がある。
土耕では、肥料を施用しつつ作付を多年に渡り続け、すなわち同種あるいは近種作物を連作した場合、病害が発生したり、収量が著しく低下したりする。これを連作障害と称する。上記した問題点の外に、連作障害は種々の現象として表れ、野菜栽培において問題となっている。
そのため連作障害を起こさず、健全な作物栽培を持続するために種々の対策が実施されている。
【0004】
微生物による連作障害を回避するための、従来の土壌培地での解決策としては、1)熱による殺菌・消毒(オートクレーブ処理)、2)薬液による殺菌・消毒、及び3)培地を廃棄して交換する方法が実施されてきた。
しかしながら、これらの対策はいずれも労力、資金がかかり、しかも廃棄物を生じることもあり、さらに必ずしも完全に効果があがらないこともあった。そこで、土耕の場合はやむをえず輪作を行うこともあった。
【0005】
また、土壌以外の培地を使用する養液栽培においては、連作障害を回避するための手段としては、次のような手段が取られている。
1)ロックウール耕では、毎年又は隔年の培地交換、
2)湛液型水耕では、系(管)の消毒、
3)NFTでは、栽培ベッド(薄膜状)のフィルムを一作ごとに更新、
4)礫耕では、礫の洗浄・処理、残根の処理、
5)毛管水耕では、系(管)の消毒、
6)砂耕では、砂の洗浄、消毒。
しかしながら、これらの対策は上記の土耕のところで記述したのと同様の問題点があった。
【0006】
本発明は、このような従来の課題に鑑みてなされたものであり、熱処理や薬品を使用する消毒・殺菌などの動力や資金がかからず、廃棄物を生じることもなく、しかも連作障害を生じない栽培用培地及び栽培方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者等は、上記の課題を解決するために鋭意検討を行い、軽石培地を用いて栽培する場合の連作障害を調べるために、それを用いて連作したところ意外にも連作歴があるものの方が、新規な軽石よりもかえって連作障害が生じない場合があることを確認し、その連作障害を生じない理由を探求して種々分析を行った結果、連作して連作障害を生じないものとなっている軽石培地は、その交換性カチオンの化学組成が当初の化学組成から変化してある一定の範囲のものとなっていること、かつその軽石培地にある微生物の状況が変化して根圏微生物が植物の青枯病の発生を阻止できるようになっていることを見出した。
その結果、連作歴があって、前記のような条件になっている軽石培地を植物栽培の培地とすれば、連作障害の発生を阻止できることを見出した。
そして、その栽培においては、培養液を点滴掛流し式で供給し、少水量養液栽培法で栽培すれば、連作障害の発生の防止が容易であることも見出し、これらの知見に基づいて本発明を完成するに至った。
【0008】
すなわち、本発明は、次の手段により前記の課題を解決した。
(1)交換性カチオン(Ca+Mg)/Kのモル当量比値が6〜50であるとともに、根圏微生物が存在する軽石から構成されることを特徴とする栽培用培地。
(2)前記軽石は、多孔性表面を有する粒子からなることを特徴とする前記(1)の栽培用培地。
(3)前記軽石は、3.0〜4.0meq/100gの陽イオン交換容量を有することを特徴とする前記(1)又は(2)記載の栽培用培地。
(4)前記(1)〜(3)のいずれか1項記載の栽培用培地を用い、培養液を点滴掛け流し方式で供給し、植物を育苗及び/又は成育させることを特徴とする栽培方法。
【0009】
【発明の実施の形態】
本発明における軽石培地に用いる軽石の化学組成は、交換性カチオン(Ca+Mg)/Kのモル当量比値が6〜50であることが必要である。軽石培地に通常使用されている火山性軽石(未使用)は、その化学組成からいうと、例えば交換性カルシウムが3.64meq/kg(73mg/kg)で、交換性マグネシウムが0.84meq/kg(10mg/kg)で、交換性カリウムが2.28meq/kg(89mg/kg)であるため、それから計算すると、交換性カチオン(Ca+Mg)/Kのモル当量比値が約2.0であるから、本発明において使用する軽石培地の軽石の化学組成はこれと著しく異なっている。なお、前記の「交換性カチオン」の量は、軽石1に対しカチオンの量によって測定したものである。
【0010】
本発明者が発見した連作障害が発生しない、連作に使用してきた軽石培地の軽石の化学組成は、長年の使用により培養液の適用に伴い、培養液が含む肥料成分の適用、カルシウム分やマグネシウム分を含む水の潅水により、さらには栽培植物の根の周囲の環境、例えば根圏微生物の種類などの影響により、長期間にわたり軽石のイオン交換が行われて、交換性カチオン(Ca+Mg)/Kのモル当量比値が6〜50となるようなものに変化したものとみられる。
この交換性カチオン(Ca+Mg)/Kのモル当量比値の最適範囲に関する本発明の解明により、軽石培地として連作に使用してきた軽石培地を用いなくとも、自然の未使用の軽石を処理により交換性カチオン(Ca+Mg)/Kのモル当量比値が6〜50となるように調整することにより、連作障害が発生しにくい軽石培地を容易に得ることができる。その化学組成を調整する処理としてはイオン交換などの処理を挙げることができる。
【0011】
軽石培地中には、試験によって確かめられた通り、連作障害を抑制する機能のある微生物が存在している。これは、交換性カチオン比とともに、本栽培培地の連作障害抑制機能の原因の一つである。
本明細書において、根圏微生物について、植物根が土壌中に伸長し、その影響が及ぶ範囲を根圏(rhizosphere)と呼び、そこに定着することが可能な微生物群(主として細菌、放線菌、糸状菌)を根圏微生物と総称している。一般的に根圏では、植物根から糖、アミノ酸、有機酸その他各種の物質が分泌されるため、非根圏に比べて微生物の数が多い。前記根圏微生物は、植物の青枯病の発生を阻止するのに十分な量存在することが好ましい。
【0012】
根圏微生物として同定された細菌は各属にわたるが、Pseudomonas,Arthrobacter,Clostridium,Azot bacter,Beijerinckia,Klebsiellaなどが知られている。イネのほかには、コムギ、トウモロコシ、サトウキビなどでも同じ属の根圏微生物が同定され、窒素固定能が計測されている。
【0013】
本明細書において、青枯病とは、細菌Ralstonia solanacearumによる植物の病気を称する。本病に罹ると、始め茎の先端部の葉が日中萎ちょうし、夜間は回復するといった状態が数日続くが、後に全身が萎ちょうし、夜間も回復しなくなり、下葉から枯れ上がり、ついには枯死する。茎や根を切断すると導管部を中心に維管束全体が褐変し、切口から汚白色の病原細菌の粘液が溢出する。本病は気温の高い時に発生しやすく、夏期に栽培する作型で発生が多く、秋から春に収穫する作型では発生が少ない。病原細菌は短桿状で1〜4本の単極鞭毛、ときに両極鞭毛をもつ細菌で、高温でよく成育し、成育適温度は30〜37℃である。本細菌は多犯性で、トマト、ナス、ピーマン、ジャガイモ、タバコ、シュンギク、など44科数100種に及ぶ植物を侵す(タバコでは例外的に立枯病と称し、青枯病といわない)。本細菌には病原性あるいは生理的、遺伝的性質の異なる系統の存在も知られている。
【0014】
本病は典型的な土壌伝染性の病気である。病原細菌は被害植物残渣とともに土中に残り、いったん土壌中に入った病原細菌は植物遺体が分解しても、また、宿主となる植物が存在しない状態でも、土壌湿度が比較的高い場合には数年間は生存することができる。自然状態では土壌中で生存していた病原細菌が根や茎の傷口などから侵入する。また、本細菌は水中で長く生存できるので、灌漑水あるいは降雨時の地表水などによって伝播されることもある。侵入した病原細菌は導管内で増殖しながら上昇し、茎、葉柄などの導管を閉塞する。そのため水分の上昇が妨げられ、植物は萎ちょうし、ついに枯死する。本病は多犯性で被害が極めて大きいが、有効な防除薬剤もない。実用的な抵抗製品種もほとんどないことから、特に被害の大きいトマトおよびナスでは抵抗性台木への接木による防除が広く行われている。
上記の微生物、疾病については、微生物学辞典(日本微生物学協会編、技報堂出版、1998年8月23日発行)に詳細に記載されている。
【0015】
本発明においては、先に述べた化学組成と前記した根圏微生物の条件の両方を一緒に満たすことにより、軽石培地による栽培で連作障害を著しく抑えることができる。その一方の条件だけでもある程度の効果を得ることができる。
本発明においては、軽石培地の軽石としては、本出願人が先に出願したPCT/JP00/07204の発明で示しているように、飽和透水係数が0.3〜0.8cm/sec、通気係数が乾燥試料及び湿潤試料で15〜40cm/secで粒状の軽石であることが栽培を行うために好ましい。
このように、軽石培地の物理性に加えて、培地における化学性と生物性の特徴に着目した点が、本発明における重要ポイントである。
病原菌の作用と関係の深い根圏微生物も、未使用軽石には殆どないのに、連用軽石では多様を示していることである。
【0016】
本発明においては、使用する軽石培地の軽石は、前記した性状の他に、3.0〜4.0meq/100gの陽イオン交換容量を有するものであることが好ましく、この点は肥料成分の保持能力を高くする点で好ましい他、前記した交換性カチオン(Ca+Mg)/Kのモル当量比値を所定の値に調整する上でも好ましいことである。また、軽石の粒状については1.0〜5.6mmの粒径にあることが好ましい。
【0017】
【実施例】
以下の実施例によって、本発明の各種態様をより具体的に説明する。これらの実施例は、本発明の具体例を示すものであり、本発明はこれらの実施例によって何等限定されるものではない。
【0018】
実施例1
サラダナを4年連作した軽石培地及び10年連作した軽石培地の各上層及び下層並びに未使用軽石について、各試料を風乾後5mm程度のふるいを通し、サラダナの根等を除去した後の軽石の化学的特性値を第1表に示す。なお、各2個づつの試料を混合して1試料とし、混合後の試料について処理を実施した。また、未使用軽石及び4年、10年連作した軽石培地は、飽和透水係数及び通気係数、平均粒径は同等で、物性は安定している。陽イオン交換容量(NH4 +量で表す)などは第1表に示すとおりのものである。
【0019】
【表1】

Figure 0003763469
【0020】
第1表から明らかなように、各使用済み軽石は上層、下層とも未使用の軽石に比べ、(Ca+Mg)/Kのカチオン当量比値がずっと大きいことが分かる。
4年又は10年間サラダナの連作中に使用した肥料は、水1リットルに対し大塚化学の液体肥料1号を0.75g、2号を0.5g添加溶解した希釈液肥であり、この液肥の化学組成は、Ca、Mg、Kだけについていうと、Ca:8.2、Mg:3.0、K:8.6で、(Ca+Mg)/Kのカチオン当量比値は1.3であった。
【0021】
実施例2
トマトの青枯病の発生程度を、連作歴のある培地及び未使用培地について、オートクレーブ殺菌及び養分添加の影響を試験し、トマト青枯病抑制能の評価を行った。
1)方法:下記に示す連作歴のある軽石培地を用いて行った。このとき、前記軽石培地をオートクレーブ殺菌をした軽石も試料として用意した。また、軽石(1)に大塚化学の液体肥料を播種時から水分の代わり添加し、良好な養分条件での発病を検討した。病原菌の接種量は軽石1g当たりに103個とし、水分含量はpF2.0程度になるよう毎日灌水した。なお、pF値は土壌の保水性に関する指数を表す。
軽石(1):フレッシュな軽石
軽石(2):サラダナを15年程連作した軽石
軽石(3):サラダナを5年程連作した軽石
【0022】
2)結果:図1に示すように、オートクレーブ殺菌していない軽石(2)(3)では全く発病しなかったのに対し、オートクレーブ殺菌した軽石(2)(3)ではいずれも発病が認められた。したがって、連作歴のある軽石培地において、トマト青枯病発生が抑制される原因の一つとして微生物の作用による病害抵抗性の賦与が推察された。しかし、オートクレーブ殺菌した軽石(2)(3)における発病率は、軽石(1)よりは依然低く、培地中養分が植物体に病害抵抗性を賦与している可能性も十分に考えられた。図1において、「Autclaved軽石」はオートクレーブ殺菌した軽石を表し、「軽石1+Nutr」は液体肥料であらかじめ処理した軽石1を表す。
【0023】
実施例3
比較的高密度の病原菌を接種した場合のトマト青枯病発生率について、実施例2と同様の試験を行った。この例ではオートクレーブ殺菌したものは用いなかった。また、対照のために、黄色土(愛知県東郷町名古屋大学農学部付属農場より採取した化学肥料連用土壌)の試料も用意した。
1)方法:実施例2では軽石1gあたりに103個の病原菌を接種したが、本実施例では、105個と100倍多い病原菌を接種し、発病の程度を観察した。2)結果:図2に示すように、新鮮な軽石培地(1)では播種18日後にはすべての個体が枯死したが、連作歴のある培地(2)(3)、対照として用いている黄色土では播種27日後でも8割程度が健全個体であった。
【0024】
実施例4
軽石の土壌病害抑制機能の効果を、実際の成長状況から極めて具体的に示す実験を行った。
前記軽石の連作障害抑制機能評価を目的に、トマト青枯病菌(Ralstonia sokanacearum)を接種しトマト種子(桃太郎)播種後21日間栽培した時点での発病率を調べた。その結果、病原菌非接種培地では全く発病しなかったのに対し、未使用のエコポラス培地では100%発病した。一方、連作歴のある培地では全く発病が見られず、連作により病害菌に対する抵抗力が強まる可能性が示唆された。
【0025】
実施例5
培養液の点滴掛流し方式(少水量養液栽培)の各種土壌病害抑制能の評価を下記の手順により行った。
1.トマト青枯病発生程度の評価
実験1:軽石培地と黄色土壌との比較
1)供試媒体:軽石及び黄色土(愛知県東郷町名古屋大学農学部付属農場より採取した化学肥料連用土壌、これまでの研究結果ではトマト青枯病が発生しやすい土壌)。
【0026】
2)接種菌量及び栽培条件:径9cmのビニールポットに軽石は120g、黄色土は200gを充填した。このとき、軽石などの培地は乾燥重1g当たり101、103、105個となるように、トマト青枯病菌(Ralstonia solanacearum YU1Rif43)を接種し、水分含量を軽石はpF2.2程度、黄色土は最大容水量の45%(pF2.3程度に相当)に調整した。そこに、2日間あらかじめ芽出ししたトマト種子(タキイ種苗、桃太郎)を播種し、実験室、ないし人工気象機内で栽培した。毎日ポットの重量を測定し、不足した水分量を添加し、初期の水分条件を維持した。また播種後6日目以降は添加する水分を大塚液肥に変更した。
【0027】
3)結果:播種後21日間栽培した時点での発病率を第2表に示す。病原菌を接種しない場合、また、1g当たり10個の病原菌を接種した場合には、軽石でも黄色土でも発病は見られなかった。病原菌103あるいは105個を接種したときには、黄色土に比べ軽石でより発病率が高かった。これまでの結果より、黄色土はトマト青枯病に対し発病助長的であることから、軽石自体にトマト青枯病抑制能があるとは考えにくい結果となった。
【0028】
【表2】
Figure 0003763469
【0029】
実施例6
実験2:連作歴のある軽石培地におけるトマト青枯病発生程度
1)方法:上記実施例5の実験1と同じ実験を以下に示す連作歴のある軽石培地を用いて行った。ただし、病原菌の接種量は1g当たりに103個とした。また、水分含量はpF2.0程度になるよう毎日灌水した。
軽石(1):フレッシュな軽石
軽石(2):サラダナを15年程連作した軽石
軽石(3):サラダナを5年程連作した軽石
軽石(4):ナスを4年程連作した軽石
【0030】
2)結果:第3表に示すように、新鮮な軽石では発病率が100%であったのに対し、連作した軽石培地ではいずれも現時点では発病が見られていない。植物を連作することにより、本軽石培地は病原菌に対し、何らかの抵抗力を有する可能性が示唆された。この原因として、連作によりある種の微生物が軽石培地に定着し、それらが青枯病に対して拮抗能を示す可能性が考えられる。
【0031】
【表3】
Figure 0003763469
【0032】
以上の実施例1〜6の結果を総合して、下記の所見が得られる。
(1)未使用軽石培地は、黄色土(助長土壌:病害に弱い土壌)と同程度に病害に弱いことが分かった(実施例4の実験1より)。
(2)5年連作(サラダナ)、15年連作(サラダナ)、4年連作(ナス)各軽石培地と未使用軽石培地との比較より、連用することにより抵抗性が増すことが分かった(実施例6の実験2より)。
(3)蒸気加圧殺菌した連用軽石培地の抵抗性の低下に関しては、10〜30%抵抗性が低下することが分かった。これは、何らかの微生物効果が病害への抵抗性に関与することを推定させる(実施例2より)。
【0033】
【発明の効果】
本発明によれば、軽石を培地に用いるに当たり、その化学組成及び生物性を予め調整しておくことにより、連作しても連作障害を起こさずに良好な栽培を継続できる。しかも、熱処理や薬品を使用する消毒・殺菌などの必要がない。
このため、植物の栽培、育成に際して、熱処理や薬品を使用する消毒・殺菌などの必要がなく、さらに、その栽培に使用した培地を使用する時には、薬品を使用する消毒・殺菌などの必要がない。そして、連作に使用しても連作障害を起こさないので、培地を交換する手間が掛からない。また、使用済みの培土の廃棄による経済的な負担が軽減されるなど、多種多様の効果を奏する。
【図面の簡単な説明】
【図1】連作歴のある軽石培地のトマト青枯病抑制能に対するオートクレーブ殺菌及び養分添加の影響を示すグラフである。
【図2】比較的高濃度の病原菌を接種した場合の各種培地に対するトマト青枯病発生率を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cultivation medium and a cultivation method, and more specifically, for example, suitable for cultivating vegetables, fruit trees, flowering plants and the like mainly under a facility cultivation method and, in some cases, an outdoor cultivation method under water saving and resource saving. The present invention relates to a medium for cultivation. Moreover, since the water | moisture content of a culture medium can be adjusted, it is related with the cultivation medium and cultivation method which can grow a crop with added value, such as being able to raise sugar content with tomato, melon, etc. among fruit vegetables.
[0002]
[Prior art]
When cultivating high-quality vegetables such as salad nails and tomatoes, it may be necessary to cultivate in a productive manner while precisely managing the environment in, for example, an open area facility or a house facility instead of a field. This cultivation method is called facility cultivation.
On the other hand, greenhouse cultivation has been applied to plants (agricultural crops) that are harvested every single year, except for early mandarin oranges. Greenhouse cultivation is more suitable for pot cultivation, but there is an influence on the medium from plants, so that it was necessary to change the medium every harvest.
[0003]
[Problems to be solved by the invention]
As described above, there are soil cultivation (open field cultivation) and institutional cultivation in the cultivation method of vegetables and flower plants.
In soil cultivation, cropping continues for many years while applying fertilizers, that is, when the same or similar crops are continuously cropped, diseases occur and the yield is significantly reduced. This is called continuous cropping failure. In addition to the above-mentioned problems, continuous cropping failure appears as various phenomena, which is a problem in vegetable cultivation.
Therefore, various measures have been implemented in order to maintain healthy crop cultivation without causing continuous cropping problems.
[0004]
In order to avoid continuous cropping damage caused by microorganisms, conventional soil culture medium solutions include 1) heat sterilization / disinfection (autoclave treatment), 2) chemical sterilization / disinfection, and 3) discarding and replacing the medium. A method has been implemented.
However, all of these measures are labor intensive and funded, and may generate waste, and may not always be fully effective. Therefore, in the case of soil cultivation, rotation was unavoidable.
[0005]
Moreover, in the hydroponic culture using culture media other than soil, the following means are taken as means for avoiding continuous cropping failures.
1) In rock wool cultivation, medium exchange every year or every other year,
2) In submerged hydroponics, the system (tube) is disinfected,
3) In NFT, the film of the cultivation bed (thin film) is updated every work,
4) In gravel cultivation, gravel cleaning and treatment, residual root treatment,
5) In capillary hydroponics, disinfection of the system (tube)
6) In sand culture, sand is washed and disinfected.
However, these measures had the same problems as described in the above section on soil cultivation.
[0006]
The present invention has been made in view of such conventional problems, and does not require power and funds for disinfection and sterilization using heat treatment and chemicals, does not generate waste, and prevents continuous cropping problems. It is an object to provide a culture medium and a cultivation method that do not occur.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and in order to investigate continuous cropping failures when cultivated using pumice culture medium, there are unexpectedly continuous cropping history using it. As a result of confirming that there are cases where continuous cropping disorder does not occur rather than a new pumice stone, and as a result of investigating the reasons why the continuous cropping disorder does not occur, and performing various analyzes, it is said that continuous cropping disorder does not occur In the pumice medium, the chemical composition of the exchangeable cation has changed from the original chemical composition to a certain range, and the situation of the microorganisms in the pumice medium has changed and the rhizosphere It was found that microorganisms can prevent plant bacterial wilt.
As a result, it has been found that the occurrence of continuous cropping failure can be prevented if a pumice culture medium having a history of continuous cropping and having the above-mentioned conditions is used as a plant culture medium.
And in the cultivation, it was found that it is easy to prevent the occurrence of continuous cropping failure by supplying the culture solution in a drip-spraying method and cultivating it with the low-volume hydroponics method, and based on these findings The invention has been completed.
[0008]
That is, this invention solved the said subject by the following means.
(1) A culture medium characterized by having a molar equivalent ratio value of exchangeable cations (Ca + Mg) / K of 6 to 50 and comprising pumice in which rhizosphere microorganisms are present.
(2) The cultivation medium according to (1), wherein the pumice is composed of particles having a porous surface.
(3) The culture medium according to (1) or (2), wherein the pumice has a cation exchange capacity of 3.0 to 4.0 meq / 100 g.
(4) A cultivation method characterized by using the cultivation medium according to any one of (1) to (3) above, supplying a culture solution by a drip pouring method, and raising plants and / or growing plants. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The chemical composition of the pumice used for the pumice medium in the present invention requires that the molar equivalent ratio value of the exchangeable cation (Ca + Mg) / K is 6-50. In terms of chemical composition, volcanic pumice that is normally used for pumice media is, for example, 3.64 meq / kg (73 mg / kg) of exchangeable calcium and 0.84 meq / kg of exchangeable magnesium. (10 mg / kg), and the exchangeable potassium is 2.28 meq / kg (89 mg / kg). Therefore, when calculated from this, the molar equivalent ratio value of the exchangeable cation (Ca + Mg) / K is about 2.0. The chemical composition of the pumice of the pumice medium used in the present invention is significantly different from this. The amount of the “exchangeable cation” is measured by the amount of cation with respect to the pumice 1.
[0010]
The chemical composition of the pumice of the pumice medium that has been used for continuous cropping that does not cause the continuous cropping failure discovered by the present inventor is the application of fertilizer components contained in the culture broth, calcium content and magnesium, Due to the irrigation of water containing water and the influence of the environment around the roots of the cultivated plant, for example, the type of rhizosphere microorganisms, ion exchange of pumice is performed over a long period of time, and exchangeable cations (Ca + Mg) / K It is considered that the molar equivalent ratio value of was changed to 6 to 50.
By elucidating the present invention regarding the optimal range of the molar equivalent ratio value of this exchangeable cation (Ca + Mg) / K, it is possible to treat natural unused pumice by treatment without using a pumice medium that has been used for continuous cultivation as a pumice medium. By adjusting the molar equivalent ratio value of cation (Ca + Mg) / K to be 6 to 50, a pumice medium in which continuous cropping damage is unlikely to occur can be easily obtained. Examples of the process for adjusting the chemical composition include processes such as ion exchange.
[0011]
In the pumice medium, as confirmed by the test, there are microorganisms that have a function of suppressing continuous cropping disorder. This is one of the causes of the continuous cropping disorder suppressing function of the main culture medium together with the exchangeable cation ratio.
In the present specification, for rhizosphere microorganisms, the range in which plant roots extend into the soil and are affected is called rhizosphere, and a group of microorganisms (mainly bacteria, actinomycetes, (Filiform fungi) are collectively called rhizosphere microorganisms. Generally, in the rhizosphere, sugars, amino acids, organic acids, and other various substances are secreted from the plant root, so that the number of microorganisms is larger than that in the non-rhizosphere. The rhizosphere microorganism is preferably present in an amount sufficient to prevent the occurrence of bacterial wilt of plants.
[0012]
Bacteria identified as rhizosphere microorganisms include various genera, but Pseudomonas, Arthrobacter, Clostridium, Azot bacter, Beijerinckia, Klebsiella and the like are known. In addition to rice, rhizosphere microorganisms of the same genus have been identified in wheat, corn, sugarcane, etc., and nitrogen fixation ability has been measured.
[0013]
In the present specification, bacterial wilt refers to a plant disease caused by the bacterium Ralstonia solanacerum. When this disease occurs, the state of the leaves at the beginning of the stem initially withering during the day and recovering at night continues for a few days, but later the whole body withered and does not recover at night. Will die. When the stems and roots are cut, the entire vascular bundle browns around the conduit, and dirty white pathogenic bacteria mucus overflows from the cut end. This disease is likely to occur when the temperature is high, occurring frequently in cropping patterns cultivated in summer, and rare in cropping crops harvested from autumn to spring. The pathogenic bacterium is a short rod-shaped bacterium having 1 to 4 monopolar flagella and sometimes bipolar flagella, and grows well at a high temperature, and the optimum growth temperature is 30 to 37 ° C. This bacterium is polycytic and invades plants of 100 families of 44 families such as tomatoes, eggplants, peppers, potatoes, tobacco, sengiku, etc. (Tobacco is exceptionally called withering disease and is not called bacterial wilt) . It is also known that there are strains with different pathogenicity, physiological and genetic properties in this bacterium.
[0014]
This disease is a typical soil-borne disease. The pathogenic bacteria remain in the soil with the damaged plant residue, and once the pathogenic bacteria enter the soil, even if the plant remains decomposed or in the absence of the host plant, the soil humidity is relatively high. Can survive for several years. In the natural state, pathogenic bacteria that have survived in the soil invade through roots and stem wounds. In addition, since this bacterium can survive for a long time in water, it may be transmitted by irrigation water or surface water during rainfall. The invading pathogenic bacteria rise while growing in the conduit and block the conduits such as stems and petioles. As a result, the increase in moisture is hindered, the plant wilts and eventually dies. The disease is polycynic and extremely damaging, but there is no effective control agent. Since there are few practical resistance product types, especially tomatoes and eggplants, which are particularly damaged, are widely controlled by grafting to resistant rootstocks.
The above microorganisms and diseases are described in detail in the Microbiology Dictionary (edited by the Japanese Society of Microbiology, published by Gihodo, August 23, 1998).
[0015]
In the present invention, by satisfying both the chemical composition described above and the rhizosphere microorganism conditions described above, continuous cropping failure can be remarkably suppressed by cultivation with a pumice medium. A certain degree of effect can be obtained with only one of the conditions.
In the present invention, as the pumice of the pumice culture medium, as shown in the invention of PCT / JP00 / 07204 filed earlier by the present applicant, the saturated hydraulic conductivity is 0.3 to 0.8 cm / sec, the air permeability coefficient In order to carry out cultivation, it is preferable that the pumice is a dry sample and a wet sample and is granular pumice at 15 to 40 cm / sec.
Thus, in addition to the physical properties of the pumice medium, the point that focuses on the chemical and biological characteristics of the medium is an important point in the present invention.
The rhizosphere microorganisms that are closely related to the action of the pathogenic bacteria are hardly found in unused pumice, but they are diverse in continuous pumice.
[0016]
In the present invention, the pumice used in the pumice culture medium preferably has a cation exchange capacity of 3.0 to 4.0 meq / 100 g in addition to the above-mentioned properties, and this point holds the fertilizer component. In addition to being preferable in terms of increasing the ability, it is also preferable for adjusting the molar equivalent ratio value of the exchangeable cation (Ca + Mg) / K to a predetermined value. Moreover, it is preferable that it is the particle size of 1.0-5.6 mm about the granular form of pumice.
[0017]
【Example】
The following examples illustrate the various aspects of the present invention more specifically. These examples show specific examples of the present invention, and the present invention is not limited to these examples.
[0018]
Example 1
Pumice chemistry after each sample was air-dried and passed through a sieve of about 5 mm after removing the roots of Saladana from pumice culture medium produced continuously for 4 years and pumice medium produced continuously for 10 years and unused pumice. Table 1 shows the characteristic values. Two samples each were mixed to make one sample, and the mixed sample was processed. Moreover, the unused pumice and the pumice medium continuously produced for 4 years and 10 years have the same saturated water permeability coefficient, air permeability coefficient, and average particle diameter, and have stable physical properties. The cation exchange capacity (expressed in terms of NH 4 + ) and the like are as shown in Table 1.
[0019]
[Table 1]
Figure 0003763469
[0020]
As is apparent from Table 1, it can be seen that each used pumice has a much higher cation equivalent ratio value of (Ca + Mg) / K than the unused pumice in both the upper and lower layers.
The fertilizer used during 4 or 10 years of continuous production of Saladana is diluted liquid fertilizer in which 0.75 g of liquid fertilizer No. 1 from Otsuka Chemical is added and dissolved in 0.5 g of No. 2 per 1 liter of water. Regarding the composition of Ca, Mg, and K alone, Ca: 8.2, Mg: 3.0, K: 8.6, and the cation equivalent ratio value of (Ca + Mg) / K was 1.3.
[0021]
Example 2
The degree of occurrence of bacterial wilt of tomato was evaluated on the effects of autoclave sterilization and addition of nutrients on medium with a history of continuous cropping and unused medium, and the ability to suppress bacterial wilt on tomato was evaluated.
1) Method: It was carried out using a pumice medium with a history of continuous cropping shown below. At this time, pumice obtained by autoclaving the pumice medium was also prepared as a sample. In addition, Otsuka Chemical's liquid fertilizer was added to pumice (1) instead of water from the time of sowing, and the disease under favorable nutrient conditions was examined. The inoculation amount of the pathogenic bacteria was 10 3 per 1 g of pumice, and watering was performed every day so that the water content was about pF2.0. In addition, pF value represents the index regarding the water retention property of soil.
Pumice (1): Fresh pumice pumice (2): Pumice pumice made from 15 years of Sardana (3) Pumice made from Sardana for about 5 years [0022]
2) Results: As shown in FIG. 1, pumice (2) (3) not autoclaved did not cause any disease, whereas autoclaved pumice (2) (3) did not cause any disease. It was. Therefore, in pumice medium with a history of continuous cropping, it was speculated that the provision of disease resistance by the action of microorganisms was one of the reasons that the occurrence of tomato bacterial wilt was suppressed. However, the incidence of autoclaved pumice (2) (3) was still lower than that of pumice (1), and the possibility that nutrients in the medium imparted disease resistance to the plant was also considered. In FIG. 1, “Autoclaved pumice” represents autoclaved pumice, and “Pumice 1 + Nutr” represents pumice 1 pretreated with liquid fertilizer.
[0023]
Example 3
The test similar to Example 2 was conducted about the incidence rate of tomato bacterial wilt when inoculated with a relatively high-density pathogen. In this example, an autoclave-sterilized product was not used. In addition, a sample of yellow soil (chemical fertilizer continuous soil collected from the farm attached to the Faculty of Agriculture, Nagoya University, Togo Town, Aichi Prefecture) was also prepared for control.
1) Method: In Example 2, 10 3 pathogenic bacteria were inoculated per 1 g of pumice, but in this example, 10 5 and 100 times more pathogenic bacteria were inoculated, and the degree of disease was observed. 2) Results: As shown in FIG. 2, in the fresh pumice medium (1), all individuals died 18 days after sowing, but the medium (2) (3) with a history of continuous cropping, yellow used as a control In soil, about 80% were healthy individuals even 27 days after sowing.
[0024]
Example 4
An experiment was carried out to demonstrate the effect of pumice on the soil disease control function from the actual growth situation.
For the purpose of evaluating the continuous cropping disorder inhibiting function of the pumice stone, the disease incidence was examined at the time of inoculation with tomato bacterial wilt (Ralstonia sokanacearum) and cultivation for 21 days after sowing of tomato seeds (Momotaro). As a result, the disease did not occur at all on the non-inoculation medium of the pathogenic bacteria, whereas 100% of the disease occurred on the unused Ecoporus medium. On the other hand, no disease was observed in the medium with a history of continuous cropping, suggesting that continuous cropping may increase the resistance against disease-causing bacteria.
[0025]
Example 5
Evaluation of various soil disease control ability of the drip pouring method of the culture solution (small water culture) was performed according to the following procedure.
1. Evaluation test of the degree of tomato bacterial wilt occurrence 1: Comparison between pumice medium and yellow soil 1) Test medium: Pumice and yellow soil (chemical fertilizer continuous soil collected from the farm attached to the Faculty of Agriculture, Nagoya University, Togo Town, Aichi Prefecture) Research results show that tomato bacterial wilt is likely to occur).
[0026]
2) Inoculum and cultivation conditions: A 9 cm diameter vinyl pot was filled with 120 g of pumice and 200 g of yellow soil. At this time, a culture medium such as pumice is inoculated with tomato bacterial wilt (Ralstonia solanacearum YU1Rif43) so that the dry weight is 10 1 , 10 3 , 10 5 , and the water content of pumice is about pF2.2, yellow The soil was adjusted to 45% of the maximum water capacity (corresponding to about pF2.3). There, tomato seeds (Takii seedlings, Momotaro) sprouting in advance for 2 days were sown and cultivated in a laboratory or an artificial weather machine. The pot was weighed daily and the lack of moisture was added to maintain the initial moisture conditions. Moreover, the water | moisture content to add was changed into Otsuka liquid manure after the 6th day after sowing.
[0027]
3) Results: Table 2 shows the disease incidence when cultivated for 21 days after sowing. When no pathogen was inoculated, or when 10 pathogens were inoculated per gram, no disease was observed in either pumice or yellow soil. When 10 3 or 10 5 pathogens were inoculated, the incidence was higher with pumice than yellow soil. From the results so far, yellow soil is conducive to the development of tomato bacterial wilt, so it is unlikely that pumice itself has the ability to suppress tomato bacterial wilt.
[0028]
[Table 2]
Figure 0003763469
[0029]
Example 6
Experiment 2: Occurrence of tomato bacterial wilt on pumice medium with a history of continuous cropping 1) Method: The same experiment as Experiment 1 of Example 5 was performed using a pumice medium with a history of continuous cropping shown below. However, the dose of pathogenic bacteria was 10 3 per gram. In addition, watering was performed every day so that the water content was about pF2.0.
Pumice (1): Fresh pumice pumice (2): Pumice pumice that has been continuously produced for about 15 years (3) Pumice pumice that has been continuously produced for about 5 years (4): Pumice that has been continuously produced for about 4 years
2) Results: As shown in Table 3, the incidence of disease was 100% with fresh pumice, whereas no disease was observed in any of the continuously produced pumice media. It was suggested that this pumice medium may have some resistance against pathogenic bacteria by continuous planting. This may be due to the possibility that certain microorganisms have settled in the pumice medium due to continuous cropping, and that they show antagonism against bacterial wilt.
[0031]
[Table 3]
Figure 0003763469
[0032]
By combining the results of Examples 1 to 6 described above, the following findings are obtained.
(1) Unused pumice medium was found to be as vulnerable to disease as yellow soil (encouraged soil: soil vulnerable to disease) (from Experiment 1 of Example 4).
(2) 5-year continuous cropping (saladana), 15-year continuous cropping (saladana), 4-year continuous cropping (eggplant) From the comparison of each pumice culture medium with an unused pumice culture medium, it was found that resistance increases with continuous use (implementation) From Experiment 2 of Example 6).
(3) Regarding the decrease in the resistance of the continuous pumice medium sterilized by steam pressure, it has been found that the resistance decreases by 10 to 30%. This infers that some microbial effect is involved in disease resistance (from Example 2).
[0033]
【The invention's effect】
According to the present invention, when pumice is used as a medium, by adjusting its chemical composition and biological property in advance, good cultivation can be continued without causing continuous cropping troubles even if continuous cropping occurs. Moreover, there is no need for heat treatment or disinfection / sterilization using chemicals.
For this reason, there is no need for heat treatment or disinfection / sterilization using chemicals when cultivating and growing plants, and there is no need for disinfection / sterilization using chemicals when using the medium used for cultivation. . And even if it uses for a continuous cropping, since it does not raise | generate a continuous cropping failure, the effort which replace | exchanges a culture medium does not start. In addition, it has a wide variety of effects, such as reducing the economic burden of discarding used soil.
[Brief description of the drawings]
FIG. 1 is a graph showing the effects of autoclave sterilization and nutrient addition on tomato bacterial wilt control ability of pumice medium with a history of continuous cropping.
FIG. 2 is a graph showing the incidence of tomato bacterial wilt on various media inoculated with a relatively high concentration of pathogenic bacteria.

Claims (4)

交換性カチオン(Ca+Mg)/Kのモル当量比値が6〜50であるとともに、根圏微生物が存在する軽石から構成されることを特徴とする栽培用培地。A culture medium characterized by having a molar equivalent ratio of exchangeable cations (Ca + Mg) / K of 6 to 50 and comprising pumice in which rhizosphere microorganisms are present. 前記軽石は、多孔性表面を有する粒子からなることを特徴とする請求項1の栽培用培地。The cultivation medium according to claim 1, wherein the pumice is composed of particles having a porous surface. 前記軽石は、3.0〜4.0meq/100gの陽イオン交換容量を有することを特徴とする請求項1又は請求項2記載の栽培用培地。The cultivation medium according to claim 1 or 2, wherein the pumice has a cation exchange capacity of 3.0 to 4.0 meq / 100 g. 請求項1〜3のいずれか1項記載の栽培用培地を用い、培養液を点滴掛け流し方式で供給し、植物を育苗及び/又は成育させることを特徴とする栽培方法。A cultivation method characterized by using the cultivation medium according to any one of claims 1 to 3 and supplying a culture solution by a drip pouring method to grow a seedling and / or grow a plant.
JP2002152405A 2002-05-27 2002-05-27 Cultivation medium and cultivation method using the same Expired - Fee Related JP3763469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152405A JP3763469B2 (en) 2002-05-27 2002-05-27 Cultivation medium and cultivation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152405A JP3763469B2 (en) 2002-05-27 2002-05-27 Cultivation medium and cultivation method using the same

Publications (2)

Publication Number Publication Date
JP2003339228A JP2003339228A (en) 2003-12-02
JP3763469B2 true JP3763469B2 (en) 2006-04-05

Family

ID=29769745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152405A Expired - Fee Related JP3763469B2 (en) 2002-05-27 2002-05-27 Cultivation medium and cultivation method using the same

Country Status (1)

Country Link
JP (1) JP3763469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106508391A (en) * 2016-11-07 2017-03-22 青岛农业大学 Protected tomato planting management method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106508391A (en) * 2016-11-07 2017-03-22 青岛农业大学 Protected tomato planting management method

Also Published As

Publication number Publication date
JP2003339228A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
EP3016493B1 (en) Treatment for seeds disinfection
JP6573553B2 (en) Hydroponics method using beneficial microorganisms
Schwarz et al. Influence of nutrient solution concentration and a root pathogen (Pythium aphanidermatum) on tomato root growth and morphology
CN104082007A (en) Cuttage breeding method for annona squamosa linn
Kumbar et al. Evaluation of eggplant rootstocks for grafting eggplant to improve fruit yield and control bacterial wilt disease
CN103858771A (en) Maize transgenic tissue culture seedling transplanting method
CN108541592A (en) The tissue culture mating system of kapok
JP5854517B2 (en) New strain, root cancer control agent and / or plant seed germination rate improver using the new strain
JP3763469B2 (en) Cultivation medium and cultivation method using the same
WO2012116475A1 (en) Seedling-raising and root-shaping agent for inserting into plate of rice seeding machine and application method thereof
CN104429733A (en) Method for preventing and controlling black shank of Honghua Dajinyuan
JP4079209B2 (en) Cutting seedlings and inoculation methods of cutting seedlings
CN103355141A (en) Method for improving provisonal planting survival rate of tissue culture rooting sugarcane seedlings
CN1034847C (en) Continuous cropping technique for water melon
JP3014794B2 (en) How to grow plants
KR100669147B1 (en) Method of no chemicultivation for high yield of fruit crops And Beans
WO2021230175A1 (en) Plant disease control agent and plant disease control method
Carr et al. Impact of tillage on field pea following spring wheat
CN108575608B (en) Continuous cropping soil treatment method for promoting growth and production of strawberries
CN115011488B (en) Penicillium purpureum C1-GP and application thereof in cultivation of blueberry mycorrhizal seedlings
Рlugatar et al. Plant-microbial interactions as a way of increasing the efficiency of Spiraea cantoniensis Lour. growing in an industrial nursery
Hassanein Comparison of plant propagation efficiency under hydroponic/soilless culture and traditional/soil culture systems
PATRA et al. SUSTAINABLE SUG AINABLE SUG AINABLE SUGARCANE INITIA ANE INITIA ANE INITIATIVE: BETTER OPTION FOR TIVE: BETTER OPTION FOR CANE PRODUCTION
Fadel Development of ornamental seedlings and cuttings for hydroponics using different substrate
Kazaz et al. Comparison of soil and soilless cultivation of carnation in Isparta Province

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees