JP3763428B2 - Double reflector antenna device - Google Patents

Double reflector antenna device Download PDF

Info

Publication number
JP3763428B2
JP3763428B2 JP12588396A JP12588396A JP3763428B2 JP 3763428 B2 JP3763428 B2 JP 3763428B2 JP 12588396 A JP12588396 A JP 12588396A JP 12588396 A JP12588396 A JP 12588396A JP 3763428 B2 JP3763428 B2 JP 3763428B2
Authority
JP
Japan
Prior art keywords
reflecting mirror
mirror
reflector
double
antenna device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12588396A
Other languages
Japanese (ja)
Other versions
JPH09312518A (en
Inventor
博之 出口
滋 牧野
孝至 片木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12588396A priority Critical patent/JP3763428B2/en
Publication of JPH09312518A publication Critical patent/JPH09312518A/en
Application granted granted Critical
Publication of JP3763428B2 publication Critical patent/JP3763428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えばロケットによって打ち上げられ、宇宙空間へ運搬されて使用される宇宙用の複反射鏡アンテナ装置に関するものである。
【0002】
【従来の技術】
従来、この種の装置として、図10に示すようなものがあった。この図は電子情報通信学会偏、アンテナ工学ハンドブック、p.300,昭55年10月30日、オーム社に示されたもので、図において、1は回転放物面からなる主反射鏡、2は回転双曲面からなる副反射鏡、3は副反射鏡2の一方の焦点にその位相中心を配置したホーンからなる一次放射器、4は副反射鏡2を保持する支持体、5は衛星構体である。上記従来のカセグレンアンテナにおいて送信の場合、一次放射器3より放射される球面波は、副反射鏡2により反射された後、主反射鏡1の焦点を曲率中心とする球面波に変換され主反射鏡1に向けて伝搬し、主反射鏡1により反射されて平面波に変換され、鏡軸方向(図示のz軸方向)に向けて放射される。
【0003】
【発明が解決しようとする課題】
従来の複反射鏡アンテナ装置は以上のように構成されているので、副反射鏡を保持する支持体によりブロッキング、反射波、及び回折波が生じて電気的性能が劣化する。宇宙用アンテナでは、副反射鏡を保持する支持体がロケットの打ち上げ時の振動や衝撃に対し耐えられるように構成されるので、地上用のアンテナに比べて支持体が大形となる。そのため、支持体によるブロッキング、反射波、及び回折波の影響がさらに大きくなり、利得低下、主ビーム形状の変化、及びサイドローブレベルの上昇など、電気的性能の劣化が大きくなるという問題点があった。
【0004】
この発明は上記のような問題点を解決するためになされたもので、副反射鏡を保持する支持体による電気的性能の劣化を軽減することのできる複反射鏡アンテナ装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る複反射鏡アンテナ装置は、主反射鏡、副反射鏡、一次放射器、及び上記副反射鏡を保持する支持体を備えてなる複反射鏡アンテナ装置において、上記支持体を少なくとも、上記複反射鏡アンテナ装置の幾何光学的な光線を遮る面積を低減させた形状と配置で設置され、上記複反射鏡アンテナ装置の宇宙空間での使用時の負荷に耐えられれば足る強度の第1の支持体と、上記複反射鏡アンテナ装置の宇宙空間への運搬時の負荷に耐える強度で、上記主反射鏡と上記副反射鏡との間に設けられ、上記主反射鏡と同一の鏡面定数の曲面形状を有する複数個の鏡面部材からなる第2の支持体とに分けて構成し、宇宙空間における上記複反射鏡アンテナ装置使用時に、上記複数個の鏡面部材を、上記副反射鏡への接続支持を解除して上記主反射鏡の開口の外周のスピルオーバする電波を反射させる位置に展開する鏡面部材展開機構を備えたものである。
また、上記複数個の鏡面部材が宇宙空間で上記主反射鏡の開口の外周に展開された時に、上記複数個の鏡面部材間に伸張され、スピルオーバする電波を反射させる金属メッシュを備えたものである。
【0013】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1を表す構成図であり、同図(a)は宇宙空間への運搬のためのロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。1、2、3、5は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。同図において、複反射鏡アンテナの一種であるカセグレンアンテナで送信する場合を例に説明する。4は副反射鏡2を所定の位置に保持させる支持体であり、副反射鏡2より反射される球面波あるいは主反射鏡1より反射される平面波による幾何光学的な光線が照射される面積の小さな形状と配置で設置され、複反射鏡アンテナ装置の宇宙空間での使用時の負荷に耐えられれば足る強度の第1の支持体である支柱4aと、この幾何光学的な光線が照射される面積の大きな形状を有し、複反射鏡アンテナ装置の宇宙空間への運搬時の負荷に耐える強度の第2の支持体である部材4bとから構成され、同図(a)に示すように部材4bを設けることによりロケット打ち上げ時の振動や衝撃に対して耐え得る強度を得る。6は部材4bを宇宙空間において複反射鏡アンテナ装置から切り離すための部材切り離し機構であり、同図(b)に示すように、宇宙空間でのアンテナ使用時には部材4bを幾何光学的な光線が照射されない領域に移動させる。支柱4aは、同図(b)に示すように、無重力状態において副反射鏡2を保持すればよいため十分小さい形状により構成できる。よって、宇宙空間でのアンテナ使用時においては、幾何光学的な光線が照射される領域に支柱4aのみが存在するだけであるから、支持体4によるブロッキング、反射波、及び回折波の影響を小さくでき、電気的性能の劣化を抑えることができる。
【0014】
実施の形態2.
図2は本発明の実施の形態2を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。1、2、3、5は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。同図における支持体4は、図1の支持体4の主反射鏡1に対する取り付け位置を変え、また3本ずつで構成したものであり、発明の実施の形態1と同様の効果を得る。
【0015】
実施の形態3.
図3は本発明の実施の形態3を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。図において、1、2、3、5は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。4は副反射鏡2を所定の位置に保持させる支持体であり、副反射鏡2より反射される球面波あるいは主反射鏡1より反射される平面波による幾何光学的な光線が照射される面積の小さな形状を有する支柱4aと、この幾何光学的な光線が照射される面積の大きな形状を有する部材4b、及び遮へい部材4cとから構成され、同図(a)に示すように部材4bを設けることによりロケット打ち上げ時の振動や衝撃に対して耐え得る強度を得る。なお、上記の例は、第2の支持体である部材4bと遮へい部材4cとが接続されて共に設置されている場合を示す。6は上記部材4bを宇宙空間において複反射鏡アンテナ装置から切り離すための部材切り離し機構、7は主反射鏡1の後方の太陽から主反射鏡1への直接光を遮断する遮へい板、8は遮へい部材4cを主反射鏡1と太陽との間に移動させて設置する遮へい部材展開機構である。同図(b)に示すように宇宙空間でのアンテナ使用時には部材4bを幾何光学的な光線が照射されない領域に移動させ、遮へい部材展開機構8が遮へい部材4cを主反射鏡1と太陽との間に駆動して展開し、宇宙空間でのアンテナ使用時において遮へい板7とともに太陽から主反射鏡1への直接光を遮断する。よって、遮へい部材4c及び遮へい板7が太陽を遮断して主反射鏡1の温度上昇による熱変形を抑え、電気的性能の劣化を抑えることができる。また、支柱4aは無重力状態において副反射鏡2を保持すればよいため十分小さい形状により構成でき、支持体4によるブロッキング、反射波、及び回折波の影響を小さくして、電気的性能の劣化を抑えることができる。
【0016】
実施の形態4.
図4は本発明の実施の形態4を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。同図において、1、2、3、5は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。4は副反射鏡2を所定の位置に保持させる支持体であり、副反射鏡2より反射される球面波あるいは主反射鏡1より反射される平面波による幾何光学的な光線が照射される面積の小さな形状を有する支柱4aと、この幾何光学的な光線が照射される面積の大きな形状を有しかつ主反射鏡1と異なる鏡面定数の曲面形状を有する鏡面部材4dとから構成され、鏡面部材4dによりロケット打ち上げ時の振動や衝撃に対して耐え得る強度を得る。9は宇宙空間において鏡面部材4dを主反射鏡1の開口の外周の幾何光学的な光線が存在する空間へ駆動し保持する鏡面部材展開機構である。同図(b)に示すように宇宙空間でのアンテナ使用時において、副反射鏡2より反射される球面波の一部は、鏡面部材4dにより反射してスピルオーバを低減でき、また、鏡面部材4dは主反射鏡1と異なる鏡面定数の曲面形状を有するため、鏡面部材4dでの反射は主ビーム方向以外の方向に放射され、主反射鏡1による放射パターンと逆相で加わることによりサイドローブレベルを低下させる。また、支柱4aを十分小さい形状により構成できるから、支持体4によるブロッキング、反射波、及び回折波の影響を小さくでき、電気的性能の劣化を抑えることができる。
【0017】
実施の形態5.
図5は本発明の実施の形態5を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。同図において、1、2、3、5は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。4は副反射鏡2を所定の位置に保持させる支持体であり、副反射鏡2より反射される球面波あるいは主反射鏡1より反射される平面波による幾何光学的な光線が照射される面積の小さな形状を有する支柱4aと、この幾何光学的な光線が照射される面積の大きな形状を有しかつ主反射鏡1と同じ鏡面定数の曲面形状を有する鏡面部材4eとから構成され、鏡面部材4eによりロケット打ち上げ時の振動や衝撃に対して耐え得る強度を得る。10は宇宙空間において鏡面部材4eを主反射鏡1の開口の外周の幾何光学的な光線が存在する空間へ駆動し保持する鏡面部材展開機構であり、鏡面部材4eが主反射鏡1と同じ鏡面定数を有するので、副反射鏡2より反射される球面波は鏡面部材4eにより反射してスピルオーバを低減でき、鏡軸方向に平面波として放射され、利得を増加させることができる。また、支柱4aを十分小さい形状により構成できるから、支持体4による、ブロッキング、反射波、及び回折波の影響を小さくでき、電気的性能の劣化を抑えることができる。
【0018】
実施の形態6.
図6は本発明の実施の形態6を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。2、3は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。また、4a、10は図5に示した発明の実施の形態と同様のものである。4fは、開口形状の一部あるいは全部が直線や折れ線あるいは多角形からなる主反射鏡1と電気的に連続的に接続された鏡面部材であり、主反射鏡1と鏡面部材4fを連続的に接続させることにより、開口エッジ近傍における電流分布の乱れによる開口分布の劣化を抑えることができ、かつ、鏡面部材4fが主反射鏡1と同じ鏡面定数を有するので、副反射鏡2より反射される球面波は鏡面部材4fにより反射してスピルオーバを低減でき、鏡軸方向に平面波として放射され、利得を増加させることができる。また、支柱4aを十分小さい形状により構成できるから、支持体4によるブロッキング、反射波、及び回折波の影響を小さくでき、電気的性能の劣化を抑えることができる。
【0019】
実施の形態7.
図7は本発明の実施の形態7を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。2、3は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。また、1、4a、4f、10は図6に示した発明の実施の形態と同様のものである。11は宇宙空間で鏡面部材4fに電気的に接続されスピルオーバする空間に張られ電波を反射させる金属メッシュ、12は鏡面部材4fと金属メッシュ11をつなげる金属メッシュ接合部である。同図(b)に示すように宇宙空間でのアンテナ使用時には、鏡面部材4fの展開にともなって金属メッシュ11が開き、アンテナ開口をより大きくできるので高能率となり、支持体4によるブロッキング、反射波、及び回折波の影響を小さくした状態で、スピルオーバを低減でき、電気的性能の劣化を抑えることができる。
【0020】
実施の形態8.
図8は本発明の実施の形態8を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。なお、この発明の実施の形態8では、主反射鏡と複数個の鏡面部材の形状を、上記複数個の鏡面部材が宇宙空間で上記主反射鏡の開口の外周に展開された時に、上記主反射鏡と上記複数個の鏡面部材とによって得られる開口が楕円の形状を有するように形成した場合を例として示す。図において、13は開口形状Am の主反射鏡、14は開口形状As の副反射鏡、15は開口形状Ah の一次放射器、4は開口形状As の副反射鏡14を保持する支持体、4gはロケット打ち上げ時の振動や衝撃に対して開口形状As の副反射鏡14を保持し、宇宙空間でのアンテナ使用時には開口形状As の副反射鏡14より反射される球面波を反射して平面波に変換し、開口形状Am の主反射鏡13の主ビーム方向に放射する開口形状Aの鏡面部材、10は開口形状Am の主反射鏡13の鏡面定数で決まる鏡面位置に開口形状Aの鏡面部材4gを駆動し固定する鏡面部材展開機構である。同図(b)に示すように宇宙空間でのアンテナ使用時には、開口形状As の副反射鏡14で反射された幾何光学的な光線は、全て開口形状Am の主反射鏡13あるいは開口形状Aの鏡面部材4gにより反射され同一方向に伝搬する平面波に変換され放射される。宇宙空間でのアンテナ使用時には、簡略な構成でアンテナ開口をより大きくできるので高能率となり、支持体4によるブロッキング、反射波、及び回折波の影響を小さくした状態で、スピルオーバを低減でき、電気的性能を向上させることができる。
【0021】
実施の形態9.
図9は本発明の実施の形態9を表す構成図であり、同図(a)はロケット打ち上げ時、同図(b)は宇宙空間でのアンテナ使用時を示す。1、2、3、5は図10に示した従来装置相当のものであり、従来装置と同様の動作をする。4は副反射鏡2を所定の位置に保持させる支持体であり、副反射鏡2より反射される球面波あるいは主反射鏡1より反射される平面波による幾何光学的な光線が照射される面積の小さな形状を有しかつ副反射鏡2を主反射鏡1の鏡軸方向に駆動する副反射鏡駆動機構4hを備えた第1の支持体と、この幾何光学的な光線が照射される面積の大きな形状を有する部材4bからなる第2の支持体とから構成される。同図(a)に示すように部材4bを設けることによりロケット打ち上げ時の振動や衝撃に対して耐え得る強度を得られ、さらに、副反射鏡駆動機構4hを備えているので、ロケット打ち上げ時には副反射鏡2を主反射鏡1近傍に配置できるので、部材4bをコンパクトにできる。6は部材4bを宇宙空間において複反射鏡アンテナ装置から切り離すための部材切り離し機構であり、同図(b)に示すように、宇宙空間でのアンテナ使用時には部材4bを幾何光学的な光線が照射されない領域に移動させ、副反射鏡駆動機構4hが副反射鏡2を所定の位置に移動させ設定する。よって、宇宙空間でのアンテナ使用時においては、幾何光学的な光線が照射される領域に副反射鏡駆動機構4hを有する支柱4aのみが存在するだけであるから、支持体4によるブロッキング、反射波、及び回折波の影響を小さくでき、電気的性能の劣化を抑えることができる。
【0022】
なお、以上に示した発明の実施の形態において、送信の場合を例にとり説明したが、受信の場合に対しても可逆的に作用し、この発明の目的に対して同等に有効である。また、一次放射器として円錐ホーンを用いたが、コルゲートホーンあるいは複モードホーンやその他の形状のホーンであっても、上記発明の実施の形態と同等の効果を有する。また、複反射鏡アンテナ装置としてカセグレンアンテナの場合を示したが、グレゴリアンアンテナやその他の放射系の形式の場合であっても、上記それぞれの発明の実施の形態と同様の効果を有する。
【0023】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に記載されるような効果が得られる。
【0027】
この発明によれば、宇宙空間での複反射鏡アンテナ装置使用時に、第2の支持体を主反射鏡と同一の鏡面定数の曲面形状を有する複数個の鏡面部材で構成し、鏡面部材展開機構が上記複数個の鏡面部材を上記主反射鏡の開口の外周のスピルオーバする電波を反射させる位置に展開するので、上記鏡面部材での反射は主ビーム方向に放射され、スピルオーバを低減でき、利得を増加させることができる。
また、複数個の鏡面部材が宇宙空間で主反射鏡の開口の外周に展開された時に、上記複数個の鏡面部材間に伸張され、スピルオーバする電波を反射させる金属メッシュを備えたので、宇宙空間での複反射鏡アンテナ装置使用時に、アンテナ開口を主反射鏡より大きくして高能率とできるとともに、スピルオーバする電波を反射させスピルオーバを低減できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の複反射鏡アンテナ装置を示す構成図である。
【図2】 この発明の実施の形態2の複反射鏡アンテナ装置を示す構成図である。
【図3】 この発明の実施の形態3の複反射鏡アンテナ装置を示す構成図である。
【図4】 この発明の実施の形態4の複反射鏡アンテナ装置を示す構成図である。
【図5】 この発明の実施の形態5の複反射鏡アンテナ装置を示す構成図である。
【図6】 この発明の実施の形態6の複反射鏡アンテナ装置を示す構成図である。
【図7】 この発明の実施の形態7の複反射鏡アンテナ装置を示す構成図である。
【図8】 この発明の実施の形態8の複反射鏡アンテナ装置を示す構成図である。
【図9】 この発明の実施の形態9の複反射鏡アンテナ装置を示す構成図である。
【図10】 従来例を表す構成図である。
【符号の説明】
1 主反射鏡、2 副反射鏡、3 一次放射器、4 支持体、4a 支柱、4b 部材、4c 遮へい部材、4d、4e、4f 鏡面部材、4g 開口形状Aの鏡面部材、4h 副反射鏡駆動機構、5 衛星構体、6 部材切り離し機構、7 遮へい板、8 遮へい部材展開機構、9、10 鏡面部材展開機構、11 金属メッシュ、12 金属メッシュ接合部、13 開口形状Am の主反射鏡、14 開口形状As の副反射鏡、15 開口形状Ah の一次放射器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a double-reflector antenna device for space use that is launched by, for example, a rocket and transported to outer space.
[0002]
[Prior art]
Conventionally, there has been a device of this type as shown in FIG. This figure shows the IEICE bias, antenna engineering handbook, p. 300, shown on October 30, 1955 by Ohm Co., in the figure, 1 is a main reflecting mirror made of a rotating paraboloid, 2 is a sub reflecting mirror made of a rotating hyperboloid, and 3 is a sub reflecting mirror A primary radiator composed of a horn having its phase center arranged at one focal point 2, 4 is a support for holding the sub-reflecting mirror 2, and 5 is a satellite structure. In the case of transmission by the conventional Cassegrain antenna, the spherical wave radiated from the primary radiator 3 is reflected by the sub-reflecting mirror 2 and then converted into a spherical wave having the focal point of the main reflecting mirror 1 as the center of curvature and is reflected by the main reflection. It propagates toward the mirror 1, is reflected by the main reflecting mirror 1, is converted into a plane wave, and is emitted toward the mirror axis direction (z-axis direction in the figure).
[0003]
[Problems to be solved by the invention]
Since the conventional double-reflecting mirror antenna apparatus is configured as described above, blocking, reflected waves, and diffracted waves are generated by the support that holds the sub-reflecting mirror, and the electrical performance deteriorates. In the space antenna, the support body that holds the sub-reflecting mirror is configured to withstand vibrations and shocks when the rocket is launched, so the support body is larger than the ground antenna. Therefore, the influence of blocking, reflected waves, and diffracted waves by the support is further increased, and there is a problem that the electrical performance is greatly deteriorated, such as a decrease in gain, a change in main beam shape, and an increase in sidelobe level. It was.
[0004]
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a double-reflecting mirror antenna device that can reduce deterioration of electrical performance due to a support that holds a sub-reflecting mirror. To do.
[0008]
[Means for Solving the Problems]
The double-reflecting mirror antenna device according to the present invention is a double-reflecting mirror antenna device comprising a main reflecting mirror, a sub-reflecting mirror, a primary radiator, and a support that holds the sub-reflecting mirror. The first reflector has a strength that is sufficient if it can be installed in a shape and arrangement with a reduced area to block the geometrical optical rays of the double-reflecting mirror antenna device, and can withstand the load when the double-reflecting mirror antenna device is used in outer space. And the same mirror constant as the main reflector provided between the main reflector and the sub-reflector with a strength that can withstand the load when the double reflector antenna device is transported to space. The second support body is composed of a plurality of mirror surface members having a curved surface shape, and the plurality of mirror surface members are connected to the sub-reflection mirror when the multi-reflection mirror antenna device is used in space. Release the connection support above Those having a mirror member deployment mechanism to deploy a radio wave spillover of the periphery of the opening of the reflecting mirror in a position to reflect.
In addition, when the plurality of mirror surface members are deployed on the outer periphery of the opening of the main reflecting mirror in outer space, a metal mesh is provided that reflects the spillover radio waves that are extended between the plurality of mirror surface members. is there.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a block diagram showing Embodiment 1 of the present invention, where FIG. 1 (a) shows a rocket launch for transportation into outer space, and FIG. 1 (b) shows an antenna used in outer space. . 1, 2, 3, and 5 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. In the figure, a case where transmission is performed with a Cassegrain antenna, which is a kind of double reflector antenna, will be described as an example. Reference numeral 4 denotes a support that holds the sub-reflecting mirror 2 at a predetermined position, and has an area irradiated with geometrical optical rays by spherical waves reflected from the sub-reflecting mirror 2 or plane waves reflected from the main reflecting mirror 1. The geometrical optical beam is applied to the support column 4a, which is a first support body that is installed in a small shape and arrangement and is sufficient to withstand the load when the double reflector antenna device is used in outer space. The member 4b, which is a second support body having a large area and having a strength capable of withstanding a load during transportation of the double-reflecting mirror antenna device to outer space, as shown in FIG. By providing 4b, the strength to withstand the vibration and impact at the time of launching the rocket is obtained. Reference numeral 6 denotes a member separation mechanism for separating the member 4b from the double reflector antenna device in outer space. As shown in FIG. 6B, when the antenna is used in outer space, the member 4b is irradiated with geometric optical rays. Move to an area that is not done. As shown in FIG. 4B, the support column 4a can be configured with a sufficiently small shape because it only has to hold the sub-reflecting mirror 2 in a weightless state. Therefore, when the antenna is used in outer space, only the support column 4a is present in the area irradiated with the geometrical optical beam, so that the influence of blocking, reflected waves, and diffracted waves by the support 4 is reduced. And deterioration of electrical performance can be suppressed.
[0014]
Embodiment 2. FIG.
FIGS. 2A and 2B are configuration diagrams showing Embodiment 2 of the present invention. FIG. 2A shows a rocket launch, and FIG. 2B shows an antenna in space. 1, 2, 3, and 5 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. The support body 4 in the figure is configured by changing the mounting position of the support body 4 of FIG. 1 with respect to the main reflecting mirror 1 and by three each, and the same effect as in the first embodiment of the invention is obtained.
[0015]
Embodiment 3 FIG.
FIGS. 3A and 3B are configuration diagrams showing Embodiment 3 of the present invention. FIG. 3A shows the time when the rocket is launched, and FIG. 3B shows the time when the antenna is used in space. In the figure, 1, 2, 3 and 5 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. Reference numeral 4 denotes a support that holds the sub-reflecting mirror 2 at a predetermined position, and has an area irradiated with geometrical optical rays by spherical waves reflected from the sub-reflecting mirror 2 or plane waves reflected from the main reflecting mirror 1. It is composed of a column 4a having a small shape, a member 4b having a large shape to which the geometrical optical beam is irradiated, and a shielding member 4c, and a member 4b is provided as shown in FIG. The strength to withstand the vibration and impact when launching the rocket is obtained. In addition, said example shows the case where the member 4b which is a 2nd support body, and the shielding member 4c are connected and installed together. 6 is a member separating mechanism for separating the member 4b from the double reflector antenna device in outer space, 7 is a shielding plate for blocking direct light from the sun behind the main reflector 1 to the main reflector 1, and 8 is a shield. This is a shielding member deployment mechanism in which the member 4c is moved between the main reflecting mirror 1 and the sun. As shown in FIG. 4B, when the antenna is used in outer space, the member 4b is moved to a region where the geometric optical beam is not irradiated, and the shielding member unfolding mechanism 8 moves the shielding member 4c between the main reflector 1 and the sun. When the antenna is used in space, the direct light from the sun to the main reflector 1 is blocked together with the shielding plate 7 when the antenna is used in outer space. Therefore, the shielding member 4c and the shielding plate 7 can block the sun, suppress the thermal deformation due to the temperature rise of the main reflecting mirror 1, and suppress the deterioration of the electrical performance. Further, since the support column 4a only needs to hold the sub-reflecting mirror 2 in a weightless state, it can be configured with a sufficiently small shape, and the influence of blocking, reflected waves, and diffracted waves by the support 4 can be reduced to reduce the electrical performance. Can be suppressed.
[0016]
Embodiment 4 FIG.
FIGS. 4A and 4B are configuration diagrams showing Embodiment 4 of the present invention. FIG. 4A shows the time when the rocket is launched, and FIG. 4B shows the time when the antenna is used in space. In the figure, 1, 2, 3, and 5 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. Reference numeral 4 denotes a support that holds the sub-reflecting mirror 2 at a predetermined position, and has an area irradiated with geometrical optical rays by spherical waves reflected from the sub-reflecting mirror 2 or plane waves reflected from the main reflecting mirror 1. The mirror member 4d is composed of a support column 4a having a small shape and a mirror member 4d having a large surface area irradiated with this geometrical optical beam and having a curved surface shape having a specular constant different from that of the main reflecting mirror 1. The strength to withstand the vibration and impact when launching the rocket is obtained. Reference numeral 9 denotes a mirror member deployment mechanism that drives and holds the mirror member 4d in a space where geometric optical rays exist on the outer periphery of the opening of the main reflecting mirror 1 in space. As shown in FIG. 4B, when the antenna is used in outer space, a part of the spherical wave reflected from the sub-reflecting mirror 2 can be reflected by the mirror member 4d to reduce spillover, and the mirror member 4d. Has a curved surface shape with a specular constant different from that of the main reflecting mirror 1, so that the reflection at the mirror surface member 4d is radiated in a direction other than the main beam direction and is added in the opposite phase to the radiation pattern by the main reflecting mirror 1, thereby causing the side lobe level Reduce. Moreover, since the support | pillar 4a can be comprised by a sufficiently small shape, the influence of the blocking by the support body 4, a reflected wave, and a diffracted wave can be made small, and deterioration of an electrical performance can be suppressed.
[0017]
Embodiment 5. FIG.
FIG. 5 is a block diagram showing Embodiment 5 of the present invention, where FIG. 5 (a) shows when the rocket is launched, and FIG. 5 (b) shows when the antenna is used in outer space. In the figure, 1, 2, 3, and 5 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. Reference numeral 4 denotes a support that holds the sub-reflecting mirror 2 at a predetermined position, and has an area irradiated with geometrical optical rays by spherical waves reflected from the sub-reflecting mirror 2 or plane waves reflected from the main reflecting mirror 1. The mirror 4 is composed of a column 4a having a small shape and a mirror member 4e having a large area to which the geometrical optical beam is irradiated and having a curved surface shape having the same mirror constant as that of the main reflector 1. The strength to withstand the vibration and impact when launching the rocket is obtained. Reference numeral 10 denotes a mirror member deployment mechanism that drives and holds the mirror member 4e in a space where geometric optical rays exist on the outer periphery of the opening of the main reflector 1 in outer space. The mirror member 4e has the same mirror surface as that of the main reflector 1. Since it has a constant, the spherical wave reflected from the sub-reflecting mirror 2 can be reflected by the mirror member 4e to reduce the spillover, and can be radiated as a plane wave in the mirror axis direction to increase the gain. Moreover, since the support | pillar 4a can be comprised by a sufficiently small shape, the influence of the blocking by the support body 4, a reflected wave, and a diffracted wave can be made small, and deterioration of an electrical performance can be suppressed.
[0018]
Embodiment 6 FIG.
FIGS. 6A and 6B are configuration diagrams showing Embodiment 6 of the present invention. FIG. 6A shows the time when the rocket is launched, and FIG. 6B shows the time when the antenna is used in outer space. Reference numerals 2 and 3 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. 4a and 10 are the same as those of the embodiment of the invention shown in FIG. 4f is a mirror surface member in which a part or all of the opening shape is electrically continuously connected to the main reflecting mirror 1 having a straight line, a polygonal line, or a polygon, and the main reflecting mirror 1 and the mirror surface member 4f are continuously connected. By connecting, the deterioration of the aperture distribution due to the disturbance of the current distribution in the vicinity of the aperture edge can be suppressed, and the mirror member 4f has the same mirror constant as that of the main reflector 1, so that it is reflected from the sub-reflector 2. The spherical wave can be reflected by the mirror member 4f to reduce spillover, and can be radiated as a plane wave in the mirror axis direction to increase the gain. Moreover, since the support | pillar 4a can be comprised by a sufficiently small shape, the influence of the blocking by the support body 4, a reflected wave, and a diffracted wave can be made small, and deterioration of an electrical performance can be suppressed.
[0019]
Embodiment 7 FIG.
FIGS. 7A and 7B are configuration diagrams showing Embodiment 7 of the present invention. FIG. 7A shows the time when the rocket is launched, and FIG. 7B shows the time when the antenna is used in space. Reference numerals 2 and 3 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. Reference numerals 1, 4a, 4f and 10 are the same as those of the embodiment of the invention shown in FIG. Reference numeral 11 denotes a metal mesh that is electrically connected to the mirror surface member 4f in outer space and stretches in a spillover space to reflect radio waves, and 12 is a metal mesh joint that connects the mirror surface member 4f and the metal mesh 11. As shown in FIG. 5B, when the antenna is used in outer space, the metal mesh 11 is opened with the development of the mirror member 4f, and the antenna opening can be made larger. In the state where the influence of the diffracted wave is reduced, the spillover can be reduced and the deterioration of the electrical performance can be suppressed.
[0020]
Embodiment 8 FIG.
FIGS. 8A and 8B are configuration diagrams showing Embodiment 8 of the present invention. FIG. 8A shows the time when the rocket is launched, and FIG. 8B shows the time when the antenna is used in space. In Embodiment 8 of the present invention, the shapes of the main reflecting mirror and the plurality of mirror surface members are the same when the plurality of mirror surface members are developed on the outer periphery of the opening of the main reflecting mirror in space. An example in which the opening obtained by the reflecting mirror and the plurality of mirror surface members is formed to have an elliptical shape will be described. In the figure, 13 is a main reflector opening shape A m, 14 are sub-reflector opening shape A s, 15 primary radiator opening shape A h, 4 holds the sub-reflecting mirror 14 of the opening shape A s support, 4g holds the secondary reflecting mirror 14 of the opening shape a s to vibration and shock during launch vehicle, the spherical wave when the antenna used in space reflected from the subreflector 14 opening shape a s reflected and converted into a plane wave, the mirror member opening shape a for emitting the main beam direction of the main reflecting mirror 13 of the opening shape a m, 10 specular position determined by the mirror constants of the main reflecting mirror 13 of the opening shape a m This is a mirror member expanding mechanism for driving and fixing the mirror member 4g having the opening shape A. When antenna use in outer space, as shown in FIG. 5 (b), the geometrical optics rays reflected by the auxiliary reflecting mirror 14 of the opening shape A s, the main reflecting mirror 13 or the aperture shapes of all opening shape A m It is reflected by A mirror surface member 4g, converted into a plane wave propagating in the same direction, and emitted. When the antenna is used in outer space, the antenna opening can be made larger with a simple configuration, so that the efficiency is improved, and the spillover can be reduced while the influence of blocking, reflected waves, and diffracted waves by the support 4 is reduced. Performance can be improved.
[0021]
Embodiment 9 FIG.
FIGS. 9A and 9B are configuration diagrams showing Embodiment 9 of the present invention. FIG. 9A shows the time when the rocket is launched, and FIG. 9B shows the time when the antenna is used in outer space. 1, 2, 3, and 5 are equivalent to the conventional apparatus shown in FIG. 10, and operate in the same manner as the conventional apparatus. Reference numeral 4 denotes a support that holds the sub-reflecting mirror 2 at a predetermined position, and has an area irradiated with geometrical optical rays by spherical waves reflected from the sub-reflecting mirror 2 or plane waves reflected from the main reflecting mirror 1. A first support having a small shape and having a sub-reflecting mirror driving mechanism 4h that drives the sub-reflecting mirror 2 in the direction of the mirror axis of the main reflecting mirror 1, and an area irradiated with this geometrical optical beam It is comprised from the 2nd support body which consists of the member 4b which has a big shape. By providing the member 4b as shown in FIG. 5A, it is possible to obtain a strength that can withstand vibrations and shocks at the time of launching the rocket, and since the auxiliary reflector driving mechanism 4h is provided, Since the reflecting mirror 2 can be disposed in the vicinity of the main reflecting mirror 1, the member 4b can be made compact. Reference numeral 6 denotes a member separation mechanism for separating the member 4b from the double reflector antenna device in outer space. As shown in FIG. 6B, when the antenna is used in outer space, the member 4b is irradiated with geometric optical rays. The sub-reflecting mirror driving mechanism 4h moves the sub-reflecting mirror 2 to a predetermined position and sets it. Therefore, when the antenna is used in outer space, only the support column 4a having the sub-reflecting mirror driving mechanism 4h exists in the region irradiated with the geometrical optical beam. And the influence of the diffracted wave can be reduced, and the deterioration of the electrical performance can be suppressed.
[0022]
In the embodiment of the present invention described above, the case of transmission has been described as an example. However, it also works reversibly in the case of reception, and is equally effective for the purpose of the present invention. Further, although the conical horn is used as the primary radiator, a corrugated horn, a multimode horn or other shape horn has the same effect as the embodiment of the present invention. Further, although the case of a Cassegrain antenna is shown as the double-reflecting mirror antenna device, even if it is a Gregorian antenna or other radiation system type, the same effects as those of the embodiments of the respective inventions described above are obtained.
[0023]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0027]
According to the present invention, when the double reflector antenna device is used in outer space, the second support is composed of a plurality of mirror members having a curved surface shape having the same mirror constant as that of the main reflector, and the mirror member deployment mechanism Expands the plurality of mirror surface members to a position that reflects the spillover radio waves on the outer periphery of the opening of the main reflecting mirror, so that the reflection on the mirror surface member is radiated in the main beam direction, reducing the spillover and increasing the gain. Can be increased.
In addition, when the plurality of mirror surface members are deployed on the outer periphery of the opening of the main reflecting mirror in outer space, a metal mesh that extends between the plurality of mirror surface members and reflects radio waves that spill over is provided. When using the double-reflecting mirror antenna apparatus, the antenna opening can be made larger than the main reflecting mirror for high efficiency, and the spillover can be reduced by reflecting radio waves that spill over.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a double reflector antenna device according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram showing a double reflector antenna device according to a second embodiment of the present invention.
FIG. 3 is a configuration diagram showing a double reflector antenna device according to a third embodiment of the present invention.
FIG. 4 is a configuration diagram showing a double reflector antenna device according to a fourth embodiment of the present invention.
FIG. 5 is a configuration diagram showing a double reflector antenna device according to a fifth embodiment of the present invention;
FIG. 6 is a configuration diagram showing a double reflector antenna device according to a sixth embodiment of the present invention.
FIG. 7 is a configuration diagram showing a double reflector antenna device according to a seventh embodiment of the present invention.
FIG. 8 is a configuration diagram showing a double reflector antenna device according to an eighth embodiment of the present invention;
FIG. 9 is a configuration diagram showing a double reflector antenna device according to a ninth embodiment of the present invention.
FIG. 10 is a configuration diagram illustrating a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main reflecting mirror, 2 Sub reflecting mirror, 3 Primary radiator, 4 Support body, 4a Support | pillar, 4b Member, 4c Shielding member, 4d, 4e, 4f Mirror surface member, 4g Mirror surface member of opening shape A, 4h Sub reflector driving mechanism, 5 satellite body 6 members detach mechanism, 7 shield 8 shield deployment mechanism, 9,10 mirror member deployment mechanism, 11 a metal mesh, 12 metal mesh junction, 13 a main reflector opening shape a m, 14 subreflector opening shape a s, a primary radiator 15 opening shape a h.

Claims (2)

主反射鏡、副反射鏡、一次放射器、及び上記副反射鏡を保持する支持体を備えてなる複反射鏡アンテナ装置において、上記支持体を少なくとも、上記複反射鏡アンテナ装置の幾何光学的な光線を遮る面積を低減させた形状と配置で設置され、上記複反射鏡アンテナ装置の宇宙空間での使用時の負荷に耐えられれば足る強度の第1の支持体と、上記複反射鏡アンテナ装置の宇宙空間への運搬時の負荷に耐える強度で、上記主反射鏡と上記副反射鏡との間に設けられ、上記主反射鏡と同一の鏡面定数の曲面形状を有する複数個の鏡面部材からなる第2の支持体とに分けて構成し、宇宙空間における上記複反射鏡アンテナ装置使用時に、上記複数個の鏡面部材を、上記副反射鏡への接続支持を解除して上記主反射鏡の開口の外周のスピルオーバする電波を反射させる位置に展開する鏡面部材展開機構を備えたことを特徴とする複反射鏡アンテナ装置。  A double-reflecting mirror antenna device comprising a main reflecting mirror, a sub-reflecting mirror, a primary radiator, and a support for holding the sub-reflecting mirror, wherein the support is at least geometrically optical of the double-reflecting mirror antenna device. A first support that is installed in a shape and arrangement with a reduced area for blocking light, and that is strong enough to withstand a load during use of the double-reflecting mirror antenna device in outer space, and the double-reflecting mirror antenna device From a plurality of mirror surface members having a curved surface shape having the same mirror constant as that of the main reflector provided between the main reflector and the sub-reflector with a strength capable of withstanding a load during transportation to outer space. The second reflector is configured separately from the second reflector, and when the double reflector antenna device is used in outer space, the plurality of mirror members are released from connection support to the sub reflector and the main reflector of the main reflector is released. Spill over the perimeter of the opening Double reflector antenna apparatus characterized by comprising a mirror member deployment mechanism to deploy at a position for reflecting the wave. 請求項1に記載の複反射鏡アンテナ装置において、上記複数個の鏡面部材が宇宙空間で上記主反射鏡の開口の外周に展開された時に、上記複数個の鏡面部材間に伸張され、スピルオーバする電波を反射させる金属メッシュを備えたことを特徴とする複反射鏡アンテナ装置。2. The double-reflecting mirror antenna device according to claim 1, wherein when the plurality of specular members are deployed on the outer periphery of the opening of the main reflecting mirror in outer space, the plurality of specular members are expanded and spill over. A double-reflecting mirror antenna device comprising a metal mesh that reflects radio waves.
JP12588396A 1996-05-21 1996-05-21 Double reflector antenna device Expired - Lifetime JP3763428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12588396A JP3763428B2 (en) 1996-05-21 1996-05-21 Double reflector antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12588396A JP3763428B2 (en) 1996-05-21 1996-05-21 Double reflector antenna device

Publications (2)

Publication Number Publication Date
JPH09312518A JPH09312518A (en) 1997-12-02
JP3763428B2 true JP3763428B2 (en) 2006-04-05

Family

ID=14921289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12588396A Expired - Lifetime JP3763428B2 (en) 1996-05-21 1996-05-21 Double reflector antenna device

Country Status (1)

Country Link
JP (1) JP3763428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220149536A1 (en) * 2020-11-09 2022-05-12 Hughes Network Systems, Llc Reducing reflector antenna spillover lobes and back lobes in satellite communication systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905804B1 (en) * 2006-09-13 2010-10-22 Cit Alcatel SPACE ACQUISITION INSTRUMENT WITH REFLECTOR (S) DEPLOYABLE (S) AND HIGH COMPACITY
JP4876941B2 (en) * 2007-01-31 2012-02-15 三菱電機株式会社 Deployable antenna
FR2968848A1 (en) * 2010-12-14 2012-06-15 Alcatel Lucent PARABOLIC REFLECTOR ANTENNA
US8947777B2 (en) * 2011-02-25 2015-02-03 Utah State University Research Foundation Multiple petal deployable telescope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220149536A1 (en) * 2020-11-09 2022-05-12 Hughes Network Systems, Llc Reducing reflector antenna spillover lobes and back lobes in satellite communication systems

Also Published As

Publication number Publication date
JPH09312518A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
US6522305B2 (en) Microwave antennas
JPH0633697Y2 (en) Multi-communication satellite orbit spacecraft
JPS5991708A (en) Antenna device
JP3763428B2 (en) Double reflector antenna device
US6580399B1 (en) Antenna system having positioning mechanism for reflector
JP2002204124A (en) Offset cassegrain antenna of side feeding type provided with main reflecting mirror gimbals
US4425566A (en) Antenna arrangement for providing a frequency independent field distribution with a small feedhorn
JP2008187628A (en) Expansion antenna
US3706999A (en) Cassegraninian antenna having limited spillover energy
JP4151593B2 (en) Double reflector antenna device
JP2002353723A (en) Parabolic antenna with radome
JP3860241B2 (en) Aperture antenna
JP2687413B2 (en) Reflector antenna
Imbriale et al. Novel solutions to low-frequency problems with geometrically designed beam-waveguide systems
JP2982185B2 (en) Aperture antenna
JP2687412B2 (en) Reflector antenna
JP4080137B2 (en) Multi-frequency band antenna
JPH0720012B2 (en) Antenna device
JPH06244631A (en) Antenna module for space
JP2687415B2 (en) Reflector antenna
JP2822768B2 (en) Antenna device
JP2650232B2 (en) Double reflector antenna device
JPS60182804A (en) Antenna system
JPS58175302A (en) Antenna device
JPH056802B2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term