JP3762278B2 - Cemented carbide and method for producing the same - Google Patents

Cemented carbide and method for producing the same Download PDF

Info

Publication number
JP3762278B2
JP3762278B2 JP2001298672A JP2001298672A JP3762278B2 JP 3762278 B2 JP3762278 B2 JP 3762278B2 JP 2001298672 A JP2001298672 A JP 2001298672A JP 2001298672 A JP2001298672 A JP 2001298672A JP 3762278 B2 JP3762278 B2 JP 3762278B2
Authority
JP
Japan
Prior art keywords
cemented carbide
iron
chromium
carbide
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001298672A
Other languages
Japanese (ja)
Other versions
JP2003105459A (en
Inventor
浩志 大畑
恵司 宇佐美
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001298672A priority Critical patent/JP3762278B2/en
Priority to US10/256,275 priority patent/US6797369B2/en
Priority to DE10244955.4A priority patent/DE10244955C5/en
Publication of JP2003105459A publication Critical patent/JP2003105459A/en
Priority to US10/916,671 priority patent/US7018726B2/en
Application granted granted Critical
Publication of JP3762278B2 publication Critical patent/JP3762278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Description

【0001】
【発明の属する技術分野】
本発明は超硬合金およびその製造方法に関し、特に炭素鋼、合金鋼、ステンレス鋼等の一般鋼の切削加工に適する切削工具や摺動部材、耐摩耗部材等に使用される高強度かつ高靭性な表面を有する超硬合金とその製造方法に関する。
【0002】
【従来の技術】
金属の切削加工や摺動部材、耐摩耗部材等に広く用いられている超硬合金は、炭化タングステン(WC)を主体とする硬質相をコバルト(Co)やニッケル(Ni)の結合相中で結合させたWC−Co(Ni)合金、もしくはこのWC−Co(Ni)合金に周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の硬質相を分散せしめた系が知られている。これらの超硬合金は、特に、炭素鋼や合金鋼、ステンレス鋼等の一般鋼の切削工具として利用されている。
【0003】
一般的に、かかる超硬合金を製造する方法としては、上記のような超硬合金を構成する原料粉末を粉砕して混合して成形した後、1350〜1600℃で1〜3時間程度焼成する方法が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の超硬合金においては、これを切削工具等として用いた場合、超硬合金中に不純物として含まれる鉄(Fe)およびクロム(Cr)が切削加工中に高温となった被削材に多量に含まれる鉄(Fe)やクロム(Cr)と結合し、被削材が切削工具表面に溶着や凝着して切れ刃等の作用部が異常に摩耗したり、切削抵抗が増大して切削工具表面に損傷が発生しやすくなったり、溶着物や凝着物の凹凸によって被削物表面の仕上面粗さが劣化する等の問題があった。
【0005】
なお、超硬合金中の鉄(Fe)とクロム(Cr)は、一次原料に不可避不純物として含有していたり、製造工程において混入したりするものであるが、工業上完全に取り除くことはできず、また、製造工程で混入する鉄(Fe)およびクロム(Cr)の含有量は工程の変更や、粉砕機等の表面状態に伴って変動するために制御できないものであった。
【0006】
また、鉄(Fe)は炭素との親和性が高いために、超硬合金の表面における鉄(Fe)の含有量が多いと、CVD法やPVD法等の気相合成法で硬質被膜をコーティングする場合には炭素と鉄(Fe)とが優先的に結合し、超硬合金と硬質被膜との界面にη相等の脆化相が生成しやすく、硬質被膜の密着強度が低下する結果、硬質被膜が剥離して破壊したり、これを切削工具や摺動部材として使用した場合には寿命が低下するという問題があった。
【0007】
したがって、本発明は上記課題を解決するためになされたもので、その目的は、切削時や摺動時等の被削材との溶着や凝着を抑制でき、また、良好な硬質被膜を形成することも可能な超硬合金を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記課題、特に超硬合金中の鉄(Fe)およびクロム(Cr)が被削材に与える影響を抑制できる構成について検討した結果、超硬合金中の鉄(Fe)およびクロム(Cr)の含有量を制御し、かつ超硬合金表面におけるコバルト(Co)および/またはニッケル(Ni)に対する鉄(Fe)およびクロム(Cr)の含有比率を超硬合金内部よりも低減させることにより、被削材との溶着や凝着が抑制でき、硬質被膜を被着形成する際にも良好な硬質被膜を被着形成できる超硬合金が得られることを知見して本発明に至った。
【0009】
すなわち、請求項1に係る超硬合金は、コバルト(Co)および/またはニッケル(Ni)の結合金属を2〜20重量%、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および/または炭窒化物を0〜30重量%含有するともに、鉄(Fe)を10〜300ppm、クロム(Cr)を100〜1000ppm含有し、残部が炭化タングステンと不可避不純物から成る超硬合金において、この超硬合金の表面近傍に、この超硬合金内部の前記結合金属の総含有量をw1in、この超硬合金内部の鉄(Fe)およびクロム(Cr)の総含有量をw2in、この超硬合金表面領域の前記結合金属の総含有量をw1suf、この超硬合金表面領域の鉄(Fe)およびクロム(Cr)の総含有量をw2sufとし、pin=w2in/w1in、psuf=w2suf/w1sufとしたとき、psuf<pinの条件を満足する表面領域を有することを特徴とするものである。
【0010】
上記超硬合金では、前記表面領域における前記psufとpinとの比(psuf/pin)の最大値が0.5〜0.95であることが望ましく、前記表面領域の厚みが1〜20μmであることが望ましい。
【0011】
また、上記超硬合金では、超硬合金の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、TiCrN、DLC(ダイヤモンドライクカーボン)、ダイヤモンドおよびAl23の群から選ばれる少なくとも1種からなる硬質被膜を少なくとも1層を総厚み1〜30μmで被着形成してなることが望ましい。
【0012】
請求項5に係る超硬合金の製造方法は、炭化タングステン粉末と、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および/または炭窒化物粉末と、コバルト(Co)および/またはニッケル(Ni)粉末とからなる原料粉末を粉砕混合して成形した後、非酸化性雰囲気中の1350〜1600℃の第1の焼成温度で0.3〜2時間保持し、この第1の焼成温度よりも20〜200℃低い第2の焼成温度に冷却し、続いて真空中の前記第2の焼成温度で1〜3時間保持することを特徴とするものである。
【0013】
上記超硬合金の製造方法では、前記原料粉末を粉砕混合する際に用いる容器および粉砕部材の前記原料粉末と接触する部分が鉄(Fe)およびクロム(Cr)を含有しないことが望ましい。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
本発明の超硬合金は、炭化タングステン相と、コバルト(Co)および/またはニッケル(Ni)の結合金属を2〜20重量%、特に6〜15重量%と、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および/または炭窒化物からなる結晶相を0〜30重量%、特に2〜20重量%、さらに5〜15重量%と、不可避不純物とからなるものである。
【0015】
ここで、コバルト(Co)およびニッケル(Ni)の結合金属の総含有量が2重量%より少ないと、焼結時に発生する液相量が不足して焼結不良となる結果、超硬合金の強度が低下し、逆に、結合金属の総含有量が30重量%より多いと、超硬合金に占める結合金属相量が過剰となり、硬度が低下するとともに、切削加工として金属加工に使用した場合に大きく塑性変形する。
【0016】
また、本発明によれば、超硬合金の硬度を向上させるとともに、鉄(Fe)、クロム(Cr)、コバルト(Co)およびニッケル(Ni)の各金属濃度を所定の範囲内に制御する点で、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および/または炭窒化物を30重量%以下の割合で含有せしめることが望ましい。
【0017】
本発明によれば、超硬合金中の鉄(Fe)の含有量が10〜300ppm、クロム(Cr)の含有量が100〜1000ppmに制御され、かつ、超硬合金内部の結合金属の総含有量をw1in、超硬合金内部の鉄(Fe)およびクロム(Cr)の総含有量をw2in、超硬合金表面領域の結合金属の総含有量をw1suf、超硬合金表面領域の鉄(Fe)およびクロム(Cr)の総含有量をw2sufとし、pin=w2in/w1in、psuf=w2suf/w1sufとしたとき、psuf<pinの条件を満足する表面領域を具備する。すなわち、超硬合金の表面における結合金属に対する鉄(Fe)およびクロム(Cr)の含有比率を超硬合金の内部のそれよりも小さくすることが大きな特徴である。これによって、被削材との溶着や凝着が抑制でき、硬質被膜を被着形成する際にも良好な硬質被膜を被着形成できる超硬合金が得られる。
【0018】
ここで、超硬合金中の鉄(Fe)の含有量は、工業的に10ppmより低くすることができず、また、超硬合金中の鉄(Fe)の含有量が300ppmを越えると、被削材との溶着や凝着が顕著となり、切削性が低下する。一方、クロム(Cr)の含有量が100ppmより低いと、炭化タングステン相の粒成長が顕著となり、超硬合金の強度と靭性が低下する。逆に、クロム(Cr)の含有量が1000ppmを越えると、被削材との溶着や凝着が顕著となり、切削性が低下する。
【0019】
なお、本発明において、超硬合金中の鉄(Fe)およびクロム(Cr)の含有量を測定するには、焼結後の超硬合金を超硬合金製乳鉢などを使って粉砕した粉末を公知の方法で溶解した溶液を作製し、ICP発光分光分析法で測定する方法によって定量することができる。また、これら鉄(Fe)、クロム(Cr)、コバルト(Co)およびニッケル(Ni)の表面と内部の局所的な含有量の比を測定するには、レーザーICP質量分析法を用いることができる。さらに、本発明における超硬合金の内部とは、超硬合金の表面から1mm以上深い領域をいう。
【0020】
また、表面領域におけるpsufとpinとの比(psuf/pin)の最大値は、超硬合金表面の耐溶着性と耐凝着性を改善するために、0.5〜0.95、特に0.6〜0.8であることが望ましい。
【0021】
また、表面領域の厚みは、被削材等の溶着や凝着を抑制し、かつ表面領域の硬度を維持して、塑性変形を防止する点で、1〜20μmであることが望ましい。
【0022】
なお、超硬合金中の炭化タングステン相は六方晶であって、その平均粒径が0.5〜3.0μmであることが望ましい。ここで、本発明における炭化タングステン相等の結晶相の平均粒径とは、超硬合金断面のSEM写真からインターセプト法によって求められる値をいう。
【0023】
また、本発明によれば、超硬合金の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、TiCrN、DLC(ダイヤモンドライクカーボン)、ダイヤモンドおよびAl23の群から選ばれる少なくとも1種からなる硬質被膜を少なくとも1層を被着形成してなるものであってもよく、これによって、超硬合金表面の硬度および耐摩耗性を著しく向上させることができる。
【0024】
さらに、本発明によれば、超硬合金の表面に硬質被膜を被着形成する際においても、超硬合金表面における鉄(Fe)やクロム(Cr)の含有比率が低いために、フェライトや炭化クロム等の生成による炭素の減少が起きないために、界面付近にコバルトの低級炭化物であるη相(W3Co3C、W6Co6Cなど)等の脆化層が生成することなく、良好な硬質被膜を形成することができる。
【0025】
なお、硬質被膜の膜厚は、耐摩耗性と靭性をともに維持する点で総厚み1〜30μmであることが望ましく、また、硬質被膜は従来公知のPVD法やCVD法等の薄膜形成法によって被着形成される。
【0026】
(製造方法)
次に、上述した超硬合金の製造方法を説明する。
まず、例えば鉄(Fe)およびクロム(Cr)の含有量がそれぞれ0.005〜0.1重量%で平均粒径が0.5〜10μmの炭化タングステン粉末を70〜90重量%と、鉄(Fe)とクロム(Cr)の含有量がそれぞれ15〜500ppmで平均粒径が0.5〜10μmの周期律表第4a、5a、6a族金属の群から選ばれる炭化物、窒化物および/または炭窒化物粉末またはその固溶体粉末を0.1〜30重量%と、鉄(Fe)の含有量が1〜15ppmでクロム(Cr)の含有量が1〜20ppmで平均粒径が0.5〜10μmのコバルト(Co)および/またはニッケル(Ni)を5〜15重量%と、さらには所望により金属タングステン(W)粉末あるいはカーボンブラック(C)とを秤量して混合する。
【0027】
これらの混合粉末を鉄(Fe)およびクロム(Cr)を含まない材料、例えば純度99.9%以上の超硬合金からなる内張りやメディアや攪拌アーム等を有する粉砕機内に投入し、アルコール、アセトン、炭化水素等の分散媒を加えて5〜30時間湿式粉砕した後、噴霧乾燥等の公知の造粒方法によって所望の粒径に造粒する。ここで、粉砕時間が5時間より短いと原料粉末を十分に粉砕して混合することができず、所望の均一な表面領域を形成することができない。逆に、粉砕時間が30時間より長いと粉砕機から炭化タングステン成分および他の不純物が多量に混入して混合粉末の組成ずれを引き起こす。
【0028】
次に、得られた混合粉末を用いて、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定形状に成形した後、20Pa以上の非酸化性雰囲気中、1〜20℃/分で1350〜1600℃の第1の焼成温度に昇温し、次いで第1の焼成温度で0.3〜2時間、特に0.5〜1時間保持する。なお、非酸化性雰囲気とは、特に、窒素ガス(N2)、ヘリウムガス(He)、アルゴンガス(Ar)、キセノンガス(Xe)等の不活性ガスを封入またはフローさせる状態をいう。
【0029】
かかる非酸化性雰囲気中、第1の焼成温度で短時間保持することによって、コバルト(Co)および/またはニッケル(Ni)からなる結合金属の一部が金属液相となる。このとき、鉄(Fe)とクロム(Cr)は、コバルト(Co)とニッケル(Ni)に伴って溶融して拡散する。
【0030】
続いて上記第1の焼成温度から20〜200℃低い第2の焼成温度に、望ましくは、超硬合金中における各々の金属の分布状態を最適化するために降温速度5〜50℃/時間で降温し、10Paより低い第2の焼成温度の真空中、特に1200〜1380℃で1〜3時間保持し、表面からCo(コバルト)および/またはニッケル(Ni)が選択的に真空雰囲気中に蒸発するとともに、内部に存在するCo(コバルト)および/またはニッケル(Ni)が選択的に表面へと拡散する結果、焼結体中に所定の金属の濃度勾配をつけることができる。その後、室温まで冷却することにより本発明の超硬合金を作製することができる。
【0031】
ここで、第1の焼成温度が1350℃より低いと、温度が低くて適量の液相を生成させることができず、焼結体を十分に緻密化させることができなくなり、逆に第1の焼成温度が1600℃より高いと、焼結が過度に進行して炭化タングステン粒子等の硬質粒子が粒成長して靭性や強度が低下するとともに、金属液相中のコバルト(Co)および/またはニッケル(Ni)が選択的に表面から多量に蒸発して表面における金属の濃度分布を所定の範囲とすることができず、かつ表面が脆化する。
【0032】
また、第1の焼成温度での保持時間が0.1時間よりも短いと、適量の液相を生成させることができず、焼結体を十分に緻密化させることができず、逆に第1の焼成温度での保持時間が2時間よりも長いと、焼結が過剰に進んで靭性や強度が低下するとともに、鉄(Fe)とクロム(Cr)が所定量を超えて表面に析出したり、表面が脆化する。
【0033】
さらに、第2の焼成温度と第1の焼成温度との差が20℃よりも小さいと、コバルト(Co)およびニッケル(Ni)と鉄(Fe)およびクロム(Cr)との移動速度(拡散速度)に差が生じないため、超硬合金中に所望の濃度分布をつけることができず、逆に第2の焼成温度と第1の焼成温度との差が200℃よりも大きいと、各金属の拡散速度が全体的に低下して所定の金属濃度勾配をつけることができなくなる。
【0034】
【実施例】
表1に示す量で鉄(Fe)およびクロム(Cr)を含有する平均粒径が9μmの炭化タングステン(WC)粉末、金属コバルト(Co)粉末および化合物粉末を表1に示す比率で秤量し、純度99.99%以上の超硬合金からなる内壁、メディア、および攪拌アームを有するアトライタミル内に導入し、これに2−プロパノールを添加して18時間湿式粉砕し、スプレードライによって造粒した後、プレス成形によって切削工具形状(SDK1203)に成形した。
【0035】
次に、得られた成形体を真空焼結炉にセットし、12℃/分の速度で昇温して表1に示す第1の焼成温度で所定時間保持し、続いて表1に示す降温速度で第2の焼成温度に降温した後、この第2の焼成温度で所定時間保持し、その後室温まで冷却した。なお、表中の真空雰囲気とは真空度8Pa以下の状態に制御し、かつ表中の各種ガス(Ar、N2、He)雰囲気とは25Paの状態に制御した。
【0036】
得られた超硬合金に対して、超硬合金からなる乳鉢で粉砕し、この粉末を溶解した溶液に対してICP発光分光分析を行ない、鉄(Fe)およびクロム(Cr)の含有量を測定した。また、超硬合金の表面と、1mm以上研削した面の鉄含有量をレーザーICP−MSで測定した。なお、レーザーICP−MSの測定面積は10μmφとした。
【0037】
【表1】

Figure 0003762278
【0038】
そして、得られた超硬合金を用いて下記(テスト1)の条件によりステンレス鋼の切削を15分間行ない、切削工具のフランク摩耗量および境界損傷量を測定した。なお、切削試験中にフランク摩耗量が0.2mmあるいは境界損傷量が0.5mmに達した場合にはその切削時間を測定した。さらに、切削試験後の工具の刃先を観察し、変形や損傷の有無を確認した。その結果を表2に示す。
【0039】
テスト1
被削材 :ステンレス鋼(SUS304)
工具形状:SDKN1203AUTN
切削速度:200m/分
送り速度:0.2mm/刃
切り込み:2mm
その他 :乾式切削
【0040】
【表2】
Figure 0003762278
【0041】
表1、表2の結果より、原料中の鉄(Fe)の含有量が多い試料No.1および粉砕メディアおよび撹拌アームとしてステンレスを用いた試料No.2では、超硬合金全体中の鉄(Fe)の含有量が300ppmを越えてしまい、切削加工中に硬質被膜が摩滅して超硬合金が露出した後に、急激に摩耗が進行して工具寿命に達してしまった。また、第1の焼成温度のみで保持する(一段焼成)パターンの焼成を行った試料No.3および第1の焼成温度と第2の焼成温度との差が200℃を越える試料No.4では、いずれも表面におけるコバルト(Co)および/またはニッケル(Ni)に対する鉄(Fe)およびクロム(Cr)の含有比率が同等以上となり、被削材の溶着や凝着が顕著で切削性能が低下した。さらに、第1の焼成温度での保持と第2の焼成温度での保持をともに真空中で行った試料No.5ではPsuf/Pinがほぼ1.0となり、表面と内部における(鉄+クロム)と(コバルト+ニッケル)の存在比に差がない。つまり発明品に比べて表面における脆化相の生成量が多いため、硬質被膜の付着力が低下し、切削加工中に被膜の剥離が発生した。この結果、摩耗量は増大し、切削工具切れ刃に溶着物が多量に付着する結果となった。
【0042】
これに対して、本発明に従う試料No.6〜13では、いずれもフランク摩耗量0.2mm(加工時間/15min)以下の優れた耐摩耗性を有するものであった。
【0043】
(実施例2)
また、試料No.2、12、13については、表面にPVD法により表3に示す材質と厚みの硬質被膜を成膜し、上記と同様の条件で切削試験を行った。
【0044】
【表3】
Figure 0003762278
【0045】
表3から明らかなように、鉄の含有量が多い試料2を母材とした試料No.2−1では硬質被膜が剥離して被削物が工具表面に多量に溶着したのに対して、本発明に従う試料No.12を母材にした試料12−1、2、3、および試料No.13を母材にした試料13−1では硬質被膜が剥離することはなく、かつ被削材の溶着も少ないものであった。
【0046】
本発明品については、旋盤で使用する旋削加工用工具、フライス盤やマシニングセンターで使用する正面フライス、エンドミル、ボールエンドミル、ドリル用の工具材種等、汎用的に使用することができる。
【0047】
【発明の効果】
以上詳述したとおり、請求項1に係る超硬合金によれば、超硬合金中の鉄(Fe)およびクロム(Cr)の含有量を制御し、かつ超硬合金表面におけるコバルト(Co)およびまたはニッケル(Ni)に対する鉄(Fe)およびクロム(Cr)の含有比率を超硬合金内部よりも低減させることにより、被削材との溶着や凝着が抑制でき、硬質被膜を被着形成する際にも良好な硬質被膜を被着形成できる超硬合金が得られる。
【0048】
また、請求項5に係る超硬合金の製造方法によれば、炭化タングステン粉末と、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および/または炭窒化物粉末と、コバルト(Co)および/またはニッケル(Ni)粉末とからなる原料粉末を粉砕混合して成形した後、非酸化性雰囲気中、1350〜1600℃の第1の焼成温度で0.3〜2時間保持し、続いて前記第1の焼成温度よりも20〜200℃低い第2の焼成温度に冷却し、この第2の焼成温度の真空中で1〜3時間保持することから、超硬合金中の鉄(Fe)およびクロム(Cr)の含有量を制御し、かつ超硬合金表面におけるコバルト(Co)およびまたはニッケル(Ni)に対する鉄(Fe)およびクロム(Cr)の含有比率を、超硬合金内部よりも低減させた超硬合金となり、被削材との溶着や凝着が抑制でき、硬質被膜を被着形成する際にも良好な硬質被膜を被着形成できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cemented carbide and a method for producing the same, and in particular, high strength and high toughness used for cutting tools, sliding members, wear-resistant members and the like suitable for cutting of general steels such as carbon steel, alloy steel, and stainless steel. The present invention relates to a cemented carbide having a smooth surface and a method for producing the same.
[0002]
[Prior art]
Cemented carbides widely used in metal cutting, sliding members, wear-resistant members, etc., have a hard phase mainly composed of tungsten carbide (WC) in a bonded phase of cobalt (Co) or nickel (Ni). A bonded WC—Co (Ni) alloy, or a system in which a hard phase of 4a, 5a, 6a group metal carbide, nitride, carbonitride of the periodic table is dispersed in the WC—Co (Ni) alloy. Are known. These cemented carbides are particularly used as cutting tools for general steels such as carbon steel, alloy steel, and stainless steel.
[0003]
In general, as a method for producing such a cemented carbide, the raw material powder constituting the cemented carbide as described above is pulverized, mixed and molded, and then fired at 1350-1600 ° C. for about 1 to 3 hours. The method is known.
[0004]
[Problems to be solved by the invention]
However, in the above conventional cemented carbide, when this is used as a cutting tool, iron (Fe) and chromium (Cr) contained as impurities in the cemented carbide become a high temperature during cutting. Combined with iron (Fe) and chromium (Cr) contained in a large amount in the material, the work material is welded and adhered to the surface of the cutting tool, the working part such as the cutting edge is abnormally worn, and the cutting resistance increases. As a result, the surface of the cutting tool is likely to be damaged, and the roughness of the finished surface of the work surface is deteriorated due to the unevenness of the welded material or the adhered material.
[0005]
In addition, iron (Fe) and chromium (Cr) in cemented carbide are contained as inevitable impurities in the primary raw material or mixed in during the manufacturing process, but cannot be completely removed industrially. In addition, the contents of iron (Fe) and chromium (Cr) mixed in the manufacturing process cannot be controlled because they fluctuate in accordance with changes in the process or the surface condition of a pulverizer or the like.
[0006]
Also, since iron (Fe) has a high affinity with carbon, if the content of iron (Fe) on the surface of the cemented carbide is high, a hard film is coated by a vapor phase synthesis method such as CVD or PVD. In this case, carbon and iron (Fe) are preferentially bonded, and an embrittled phase such as η phase is likely to be generated at the interface between the cemented carbide and the hard coating, resulting in a decrease in the adhesion strength of the hard coating. When the coating peels and breaks, or when it is used as a cutting tool or a sliding member, there is a problem that the life is shortened.
[0007]
Therefore, the present invention has been made to solve the above problems, and its purpose is to suppress welding and adhesion to the work material during cutting or sliding, and to form a good hard film. An object of the present invention is to provide a cemented carbide that can be used.
[0008]
[Means for Solving the Problems]
As a result of studying the above-described problem, particularly the configuration that can suppress the influence of iron (Fe) and chromium (Cr) in the cemented carbide on the work material, the present inventors have found that iron (Fe) and chromium in the cemented carbide To control the content of (Cr) and reduce the content ratio of iron (Fe) and chromium (Cr) to cobalt (Co) and / or nickel (Ni) on the surface of the cemented carbide than in the cemented carbide. By this, it was found that a cemented carbide capable of suppressing welding and adhesion to the work material and capable of depositing a good hard film even when depositing a hard film was obtained, leading to the present invention. .
[0009]
That is, the cemented carbide according to claim 1 contains at least 2 to 20% by weight of a cobalt (Co) and / or nickel (Ni) bond metal, and is selected from the group of metals in groups 4a, 5a, and 6a of the periodic table. It contains 0 to 30% by weight of one type of carbide, nitride and / or carbonitride, 10 to 300 ppm of iron (Fe), 100 to 1000 ppm of chromium (Cr), the balance being tungsten carbide and inevitable impurities In the cemented carbide comprising, in the vicinity of the surface of the cemented carbide, the total content of the bonding metal in the cemented carbide is w 1in , the total amount of iron (Fe) and chromium (Cr) in the cemented carbide. The content is w 2in , the total content of the binding metal in the cemented carbide surface region is w 1suf , the total content of iron (Fe) and chromium (Cr) in the cemented carbide surface region is w 2suf , p in = w 2in w 1in, when the p suf = w 2suf / w 1suf , it is characterized in that it has a surface area that satisfies the conditions of the p suf <p in.
[0010]
In the cemented carbide, it is desirable maximum value of the ratio between the p suf and p in in the surface region (p suf / p in) is 0.5 to 0.95, the thickness of the surface region 1 It is desirable that it is ˜20 μm.
[0011]
In the above cemented carbide, the carbides, nitrides, carbonitrides, TiAlN, TiZrN, TiCrN, DLC (diamond-like carbon), diamond of the periodic table group 4a, 5a, 6a metal are provided on the surface of the cemented carbide. It is desirable that at least one hard film made of at least one selected from the group consisting of Al 2 O 3 is deposited and formed with a total thickness of 1 to 30 μm.
[0012]
A method for producing a cemented carbide according to claim 5 includes tungsten carbide powder, and at least one carbide, nitride and / or carbonitride powder selected from the group of metals in groups 4a, 5a and 6a of the periodic table. Then, after pulverizing and mixing the raw material powder composed of cobalt (Co) and / or nickel (Ni) powder, it is 0.3 to 2 hours at a first firing temperature of 1350 to 1600 ° C. in a non-oxidizing atmosphere. Holding and cooling to a second baking temperature 20 to 200 ° C. lower than the first baking temperature, and subsequently holding at the second baking temperature in vacuum for 1 to 3 hours. is there.
[0013]
In the above-mentioned cemented carbide manufacturing method, it is desirable that the container used when pulverizing and mixing the raw material powder and the portion of the pulverized member that contacts the raw material powder do not contain iron (Fe) and chromium (Cr).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The cemented carbide of the present invention comprises a tungsten carbide phase and a cobalt (Co) and / or nickel (Ni) bond metal in an amount of 2 to 20% by weight, particularly 6 to 15% by weight, and periodic tables 4a and 5a. 0-30 wt%, especially 2-20 wt%, more preferably 5-15 wt% of the crystal phase comprising at least one carbide, nitride and / or carbonitride selected from the group 6a metal, unavoidable impurities It consists of
[0015]
Here, if the total content of the binding metal of cobalt (Co) and nickel (Ni) is less than 2% by weight, the amount of liquid phase generated during sintering becomes insufficient, resulting in poor sintering. When the strength decreases, conversely, if the total content of the bonding metal is more than 30% by weight, the amount of the bonding metal phase in the cemented carbide becomes excessive, the hardness decreases, and when used for metal processing as cutting Greatly plastically deforms.
[0016]
Further, according to the present invention, the hardness of the cemented carbide is improved, and each metal concentration of iron (Fe), chromium (Cr), cobalt (Co) and nickel (Ni) is controlled within a predetermined range. Therefore, it is desirable to contain at least one carbide, nitride and / or carbonitride selected from the group of metals in Groups 4a, 5a and 6a of the Periodic Table in a proportion of 30% by weight or less.
[0017]
According to the present invention, the content of iron (Fe) in the cemented carbide is controlled to 10 to 300 ppm, the content of chromium (Cr) is controlled to 100 to 1000 ppm, and the total content of bonded metals inside the cemented carbide is included. The amount of w 1in , the total content of iron (Fe) and chromium (Cr) in the cemented carbide is w 2in , the total content of bonded metal in the cemented carbide surface region is w 1suf , the iron in the cemented carbide surface region (Fe) and the total content of chromium (Cr) and w 2suf, p in = w 2in / w 1in, when the p suf = w 2suf / w 1suf , surface satisfies the conditions of the p suf <p in region It comprises. That is, it is a great feature that the content ratio of iron (Fe) and chromium (Cr) to the bonding metal on the surface of the cemented carbide is smaller than that in the cemented carbide. As a result, welding and adhesion to the work material can be suppressed, and a cemented carbide capable of depositing a good hard coating even when the hard coating is deposited is obtained.
[0018]
Here, the iron (Fe) content in the cemented carbide cannot be industrially made lower than 10 ppm, and if the iron (Fe) content in the cemented carbide exceeds 300 ppm, Welding and adhesion with the cutting material become prominent, and machinability deteriorates. On the other hand, when the content of chromium (Cr) is lower than 100 ppm, the grain growth of the tungsten carbide phase becomes remarkable, and the strength and toughness of the cemented carbide decreases. On the other hand, when the chromium (Cr) content exceeds 1000 ppm, welding and adhesion with the work material become remarkable, and machinability deteriorates.
[0019]
In the present invention, in order to measure the content of iron (Fe) and chromium (Cr) in the cemented carbide, a powder obtained by pulverizing the sintered cemented carbide using a cemented carbide mortar or the like is used. A solution dissolved by a known method can be prepared and quantified by a method of measuring by ICP emission spectrometry. Laser ICP mass spectrometry can be used to measure the ratio of the local content of the surface and the interior of iron (Fe), chromium (Cr), cobalt (Co) and nickel (Ni). . Furthermore, the inside of the cemented carbide in the present invention refers to a region deeper than 1 mm from the surface of the cemented carbide.
[0020]
The maximum value of the ratio of the p suf and p in the surface region (p suf / p in), in order to improve the adhesion resistance and adhesion resistance of the cemented carbide surface, from 0.5 to 0. 95, especially 0.6 to 0.8 is desirable.
[0021]
Further, the thickness of the surface region is desirably 1 to 20 μm from the viewpoint of preventing welding and adhesion of the work material and the like, and maintaining the hardness of the surface region to prevent plastic deformation.
[0022]
The tungsten carbide phase in the cemented carbide is a hexagonal crystal, and the average particle size is preferably 0.5 to 3.0 μm. Here, the average particle diameter of a crystal phase such as a tungsten carbide phase in the present invention refers to a value obtained by an intercept method from an SEM photograph of a cemented carbide cross section.
[0023]
In addition, according to the present invention, carbide, nitride, carbonitride, TiAlN, TiZrN, TiCrN, DLC (diamond-like carbon), diamond of the periodic table group 4a, 5a, 6a metal are provided on the surface of the cemented carbide. And at least one hard coating composed of at least one selected from the group consisting of Al 2 O 3 may be formed, thereby significantly increasing the hardness and wear resistance of the cemented carbide surface. Can be improved.
[0024]
Furthermore, according to the present invention, even when a hard coating is deposited on the surface of the cemented carbide, the content of iron (Fe) or chromium (Cr) on the cemented carbide surface is low, so Since there is no reduction in carbon due to the generation of chromium or the like, an embrittlement layer such as a η phase (W 3 Co 3 C, W 6 Co 6 C, etc.) which is a lower carbide of cobalt is not generated near the interface, A good hard film can be formed.
[0025]
The film thickness of the hard coating is preferably 1 to 30 μm in terms of maintaining both wear resistance and toughness, and the hard coating is formed by a conventionally known thin film forming method such as PVD or CVD. It is deposited.
[0026]
(Production method)
Next, the manufacturing method of the cemented carbide mentioned above is demonstrated.
First, for example, a tungsten carbide powder having a content of 0.005 to 0.1% by weight of iron (Fe) and chromium (Cr) and an average particle size of 0.5 to 10 μm is 70 to 90% by weight, Carbides, nitrides and / or charcoal selected from the group of Group 4a, 5a and 6a metals in the periodic table having an Fe) and chromium (Cr) content of 15 to 500 ppm and an average particle size of 0.5 to 10 μm, respectively. 0.1-30 wt% of nitride powder or solid solution powder thereof, iron (Fe) content of 1-15 ppm, chromium (Cr) content of 1-20 ppm and average particle size of 0.5-10 μm 5 to 15% by weight of cobalt (Co) and / or nickel (Ni) and, if desired, metallic tungsten (W) powder or carbon black (C) are weighed and mixed.
[0027]
These mixed powders are put into a material not containing iron (Fe) and chromium (Cr), for example, a pulverizer having a lining made of cemented carbide having a purity of 99.9% or more, a media, a stirring arm, etc., and alcohol, acetone Then, a dispersion medium such as hydrocarbon is added and wet pulverized for 5 to 30 hours, and then granulated to a desired particle size by a known granulation method such as spray drying. Here, if the pulverization time is shorter than 5 hours, the raw material powder cannot be sufficiently pulverized and mixed, and a desired uniform surface region cannot be formed. Conversely, if the pulverization time is longer than 30 hours, a large amount of tungsten carbide components and other impurities are mixed from the pulverizer, causing a composition shift of the mixed powder.
[0028]
Next, using the obtained mixed powder, after molding into a predetermined shape by a known molding method such as press molding, casting molding, extrusion molding, cold isostatic pressing, etc., in a non-oxidizing atmosphere of 20 Pa or more The temperature is raised to a first baking temperature of 1350 to 1600 ° C. at 1 to 20 ° C./min, and then held at the first baking temperature for 0.3 to 2 hours, particularly 0.5 to 1 hour. Note that the non-oxidizing atmosphere refers to a state in which an inert gas such as nitrogen gas (N 2 ), helium gas (He), argon gas (Ar), or xenon gas (Xe) is sealed or flowed.
[0029]
By holding in the non-oxidizing atmosphere for a short time at the first firing temperature, a part of the binding metal composed of cobalt (Co) and / or nickel (Ni) becomes a metal liquid phase. At this time, iron (Fe) and chromium (Cr) melt and diffuse along with cobalt (Co) and nickel (Ni).
[0030]
Subsequently, to a second firing temperature that is 20 to 200 ° C. lower than the first firing temperature, preferably at a temperature lowering rate of 5 to 50 ° C./hour in order to optimize the distribution state of each metal in the cemented carbide. The temperature is lowered and kept in a vacuum at a second firing temperature lower than 10 Pa, particularly at 1200 to 1380 ° C. for 1 to 3 hours, and Co (cobalt) and / or nickel (Ni) is selectively evaporated from the surface into the vacuum atmosphere. In addition, as a result of the selective diffusion of Co (cobalt) and / or nickel (Ni) to the surface, a predetermined metal concentration gradient can be provided in the sintered body. Thereafter, the cemented carbide of the present invention can be produced by cooling to room temperature.
[0031]
Here, if the first firing temperature is lower than 1350 ° C., the temperature is low and an appropriate amount of liquid phase cannot be generated, and the sintered body cannot be sufficiently densified. When the firing temperature is higher than 1600 ° C., the sintering proceeds excessively, hard particles such as tungsten carbide particles grow and the toughness and strength decrease, and cobalt (Co) and / or nickel in the metal liquid phase decreases. A large amount of (Ni) selectively evaporates from the surface, the metal concentration distribution on the surface cannot be kept within a predetermined range, and the surface becomes brittle.
[0032]
If the holding time at the first firing temperature is shorter than 0.1 hour, an appropriate amount of liquid phase cannot be generated, and the sintered body cannot be sufficiently densified. If the holding time at the firing temperature of 1 is longer than 2 hours, the sintering proceeds excessively and the toughness and strength decrease, and iron (Fe) and chromium (Cr) are deposited on the surface exceeding a predetermined amount. Or the surface becomes brittle.
[0033]
Furthermore, if the difference between the second firing temperature and the first firing temperature is less than 20 ° C., the moving speed (diffusion speed) of cobalt (Co) and nickel (Ni) and iron (Fe) and chromium (Cr) ), A desired concentration distribution cannot be obtained in the cemented carbide, and conversely, if the difference between the second firing temperature and the first firing temperature is greater than 200 ° C., each metal As a result, the diffusion rate of the metal decreases as a whole, and a predetermined metal concentration gradient cannot be established.
[0034]
【Example】
Tungsten carbide (WC) powder having an average particle size of 9 μm containing iron (Fe) and chromium (Cr) in the amounts shown in Table 1, metal cobalt (Co) powder, and compound powder are weighed at the ratio shown in Table 1, After being introduced into an attritor mill having an inner wall made of cemented carbide with a purity of 99.99% or more, media, and a stirring arm, 2-propanol was added thereto, and the mixture was wet pulverized for 18 hours, and granulated by spray drying. A cutting tool shape (SDK1203) was formed by press molding.
[0035]
Next, the obtained molded body was set in a vacuum sintering furnace, heated at a rate of 12 ° C./minute, held at a first firing temperature shown in Table 1 for a predetermined time, and subsequently cooled in temperature shown in Table 1. After the temperature was lowered to the second firing temperature at a rate, the second firing temperature was maintained for a predetermined time, and then cooled to room temperature. The vacuum atmosphere in the table was controlled to a vacuum degree of 8 Pa or less, and the various gas (Ar, N 2 , He) atmospheres in the table were controlled to 25 Pa.
[0036]
The obtained cemented carbide is pulverized in a mortar made of cemented carbide, and ICP emission spectroscopic analysis is performed on the solution in which this powder is dissolved, and the contents of iron (Fe) and chromium (Cr) are measured. did. Moreover, the iron content of the surface of the cemented carbide and the surface ground by 1 mm or more was measured by laser ICP-MS. The measurement area of the laser ICP-MS was 10 μmφ.
[0037]
[Table 1]
Figure 0003762278
[0038]
The obtained cemented carbide was used to cut stainless steel for 15 minutes under the following conditions (Test 1), and the flank wear amount and boundary damage amount of the cutting tool were measured. When the flank wear amount reached 0.2 mm or the boundary damage amount reached 0.5 mm during the cutting test, the cutting time was measured. Furthermore, the cutting edge of the tool after the cutting test was observed to confirm the presence or absence of deformation or damage. The results are shown in Table 2.
[0039]
Test 1
Work material: Stainless steel (SUS304)
Tool shape: SDKN1203AUTN
Cutting speed: 200 m / min Feeding speed: 0.2 mm / blade cutting: 2 mm
Other: Dry cutting [0040]
[Table 2]
Figure 0003762278
[0041]
From the results of Tables 1 and 2, Sample No. with a high content of iron (Fe) in the raw material was obtained. 1 and sample No. 1 using stainless steel as grinding media and stirring arm. In No. 2, the iron (Fe) content in the entire cemented carbide exceeds 300 ppm, and after the hard coating is worn and the cemented carbide is exposed during the cutting process, the wear progresses rapidly and the tool life is increased. I have reached. Sample No. 1 was fired with a pattern held only at the first firing temperature (single-stage firing). 3 and Sample No. 3 in which the difference between the first firing temperature and the second firing temperature exceeds 200 ° C. No. 4, the content ratio of iron (Fe) and chromium (Cr) to cobalt (Co) and / or nickel (Ni) on the surface is equal to or greater than that, the welding and adhesion of the work material are remarkable, and the cutting performance is remarkable. Declined. Furthermore, sample No. 1 in which holding at the first baking temperature and holding at the second baking temperature were both performed in a vacuum. 5, P suf / P in is approximately 1.0, and there is no difference in the abundance ratio of (iron + chromium) and (cobalt + nickel) on the surface and inside. That is, since the amount of embrittlement phase generated on the surface is larger than that of the inventive product, the adhesion of the hard coating is reduced, and the coating is peeled off during the cutting process. As a result, the amount of wear increased, resulting in a large amount of deposits adhering to the cutting tool cutting edge.
[0042]
On the other hand, sample no. Nos. 6 to 13 had excellent wear resistance with a flank wear amount of 0.2 mm (processing time / 15 min) or less.
[0043]
(Example 2)
Sample No. About 2, 12, and 13, the hard coating of the material and thickness shown in Table 3 was formed into the surface by PVD method, and the cutting test was done on the same conditions as the above.
[0044]
[Table 3]
Figure 0003762278
[0045]
As is apparent from Table 3, the sample No. 2 with the sample 2 having a large iron content as the base material was used. In Sample 2-1, the hard coating peeled off and a large amount of work was welded to the tool surface. Samples 12-1, 2, 3, and Sample No. In the sample 13-1 using 13 as a base material, the hard coating was not peeled off, and the welding of the work material was small.
[0046]
The product of the present invention can be used for general purposes such as a turning tool used in a lathe, a face mill used in a milling machine or a machining center, an end mill, a ball end mill, and a drill tool grade.
[0047]
【The invention's effect】
As described above in detail, according to the cemented carbide according to claim 1, the contents of iron (Fe) and chromium (Cr) in the cemented carbide are controlled, and cobalt (Co) on the cemented carbide surface and Alternatively, by reducing the content ratio of iron (Fe) and chromium (Cr) to nickel (Ni) as compared to the inside of the cemented carbide, welding and adhesion with the work material can be suppressed, and a hard coating is deposited. In particular, a cemented carbide capable of depositing a good hard coating is obtained.
[0048]
According to the method for producing a cemented carbide according to claim 5, at least one carbide, nitride and / or charcoal selected from the group consisting of tungsten carbide powder and Group 4a, 5a and 6a metals of the periodic table. After a raw material powder composed of a nitride powder and cobalt (Co) and / or nickel (Ni) powder is pulverized and mixed, it is molded at a first firing temperature of 1350 to 1600 ° C. in a non-oxidizing atmosphere. Hold for 3 to 2 hours, then cool to a second firing temperature 20 to 200 ° C. lower than the first firing temperature, and hold for 1 to 3 hours in a vacuum at this second firing temperature, The content ratio of iron (Fe) and chromium (Cr) to cobalt (Co) and / or nickel (Ni) on the surface of the cemented carbide is controlled and the content of iron (Fe) and chromium (Cr) in the cemented carbide is controlled. The super hard joint It becomes cemented carbide with reduced than the internal, can suppressed welding or adhesion of the work material, the hard film can be deposited forming a good hard coatings even when deposited form.

Claims (6)

コバルト(Co)および/またはニッケル(Ni)の結合金属を2〜20重量%、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および/または炭窒化物を0〜30重量%含有するともに、鉄(Fe)を10〜300ppm、クロム(Cr)を100〜1000ppm含有し、残部が炭化タングステンと不可避不純物から成る超硬合金において、この超硬合金の表面近傍に、この超硬合金内部の前記結合金属の総含有量をw1in、この超硬合金内部の鉄(Fe)およびクロム(Cr)の総含有量をw2in、この超硬合金表面領域の前記結合金属の総含有量をw1suf、この超硬合金表面領域の鉄(Fe)およびクロム(Cr)の総含有量をw2sufとし、pin=w2in/w1in、psuf=w2suf/w1sufとしたとき、psuf<pinの条件を満足する表面領域を有することを特徴とする超硬合金。2-20% by weight of cobalt (Co) and / or nickel (Ni) binding metal, at least one carbide, nitride and / or carbonitride selected from the group of Group 4a, 5a and 6a metals of the Periodic Table In the cemented carbide containing 10 to 300 ppm of iron (Fe) and 100 to 1000 ppm of chromium (Cr) with the balance being tungsten carbide and unavoidable impurities, In the vicinity of the surface, the total content of the binding metal in the cemented carbide is w 1in , the total content of iron (Fe) and chromium (Cr) in the cemented carbide is w 2in , the cemented carbide surface region the total content of w 1Suf of the binding metal, the total content of iron (Fe) and chromium (Cr) of the cemented carbide surface area as w 2suf, p in = w 2in / w 1in, p suf = w was 2suf / w 1suf Can, cemented carbide and having a surface area that satisfies the conditions of the p suf <p in. 前記表面領域における前記psufとpinとの比(psuf/pin)の最大値が0.5〜0.95であることを特徴とする請求項1記載の超硬合金。Cemented carbide according to claim 1, wherein the maximum value of the ratio of the p suf and p in in the surface region (p suf / p in) is 0.5 to 0.95. 前記表面領域の厚みが1〜20μmであることを特徴とする請求項1または2記載の超硬合金。The cemented carbide according to claim 1, wherein the surface region has a thickness of 1 to 20 μm. 前記超硬合金の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、TiCrN、DLC(ダイヤモンドライクカーボン)、ダイヤモンドおよびAl23の群から選ばれる少なくとも1種からなる硬質被膜の少なくとも1層を総厚み1〜30μmで被着形成してなることを特徴とする請求項1乃至3のいずれか記載の超硬合金。Group of carbides, nitrides, carbonitrides, TiAlN, TiZrN, TiCrN, DLC (diamond-like carbon), diamond, and Al 2 O 3 of periodic table group 4a, 5a, 6a metals on the surface of the cemented carbide The cemented carbide according to any one of claims 1 to 3, wherein at least one layer of at least one hard coating selected from the group consisting of: 1 to 30 µm is deposited. 炭化タングステン粉末と、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および/または炭窒化物粉末と、コバルト(Co)および/またはニッケル(Ni)粉末とからなる原料粉末を粉砕混合して成形した後、非酸化性雰囲気中の1350〜1600℃の第1の焼成温度で0.3〜2時間保持し、この第1の焼成温度よりも20〜200℃低い第2の焼成温度に冷却し、続いて真空中の前記第2の焼成温度で1〜3時間保持することを特徴とする超硬合金の製造方法。Tungsten carbide powder, at least one carbide, nitride and / or carbonitride powder selected from group 4a, 5a, 6a metal of periodic table, cobalt (Co) and / or nickel (Ni) powder After being pulverized and mixed, the raw material powder is held at a first firing temperature of 1350 to 1600 ° C. in a non-oxidizing atmosphere for 0.3 to 2 hours, and 20 to 20 times higher than the first firing temperature. A method for producing a cemented carbide comprising cooling to a second firing temperature lower by 200 ° C., and subsequently maintaining the second firing temperature in a vacuum for 1 to 3 hours. 前記原料粉末を粉砕混合する際に用いる容器および粉砕部材の前記原料粉末と接触する部分が鉄(Fe)およびクロム(Cr)を実質的に含有しないことを特徴とする請求項5記載の超硬合金の製造方法。The container used when pulverizing and mixing the raw material powder and a portion of the pulverized member that comes into contact with the raw material powder are substantially free of iron (Fe) and chromium (Cr). Alloy manufacturing method.
JP2001298672A 2001-09-26 2001-09-27 Cemented carbide and method for producing the same Expired - Lifetime JP3762278B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001298672A JP3762278B2 (en) 2001-09-27 2001-09-27 Cemented carbide and method for producing the same
US10/256,275 US6797369B2 (en) 2001-09-26 2002-09-26 Cemented carbide and cutting tool
DE10244955.4A DE10244955C5 (en) 2001-09-26 2002-09-26 Cemented carbide, use of a cemented carbide and method for making a cemented carbide
US10/916,671 US7018726B2 (en) 2001-09-26 2004-08-12 Cemented carbide and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298672A JP3762278B2 (en) 2001-09-27 2001-09-27 Cemented carbide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003105459A JP2003105459A (en) 2003-04-09
JP3762278B2 true JP3762278B2 (en) 2006-04-05

Family

ID=19119536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298672A Expired - Lifetime JP3762278B2 (en) 2001-09-26 2001-09-27 Cemented carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3762278B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10356470B4 (en) * 2003-12-03 2009-07-30 Kennametal Inc. Zirconium and niobium-containing cemented carbide bodies and process for its preparation and its use
CN116940700A (en) * 2021-03-25 2023-10-24 京瓷株式会社 Cemented carbide and cutting tool
CN116103561A (en) * 2023-01-17 2023-05-12 株洲硬质合金集团有限公司 Preparation method of manganese steel-based steel bonded hard alloy

Also Published As

Publication number Publication date
JP2003105459A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP5308426B2 (en) Cemented carbide and cutting tools
US6797369B2 (en) Cemented carbide and cutting tool
WO2011002008A1 (en) Cermet and coated cermet
US20040187639A1 (en) Compositionally graded sintered alloy and method of producing the same
EP1359130A1 (en) Cubic boron nitride sintered body and cutting tool
JPWO2009017053A1 (en) Ti-based cermet, coated cermet and cutting tool
JP2019031742A (en) Cermet, cutting tool and manufacturing method of cermet
JPH04128330A (en) Sintered alloy of graded composition structure and its production
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
US7097685B2 (en) Cemented carbide, coated cemented carbide member and production processes of the same
JP3762278B2 (en) Cemented carbide and method for producing the same
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP4069749B2 (en) Cutting tool for roughing
JP2006037160A (en) Sintered compact
JP5381616B2 (en) Cermet and coated cermet
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPH10237650A (en) Wc base cemented carbide and its production
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JP2000297364A (en) AlTi SERIES ALLOY SPUTTERING TARGET, WEAR RESISTANT AlTi SERIES ALLOY HARD FILM AND FORMATION OF THE FILM
JP2001040446A (en) Diamond-containing hard member and its production
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JP3976285B2 (en) Cermet tool having a hard nitrided layer and method for producing the same
JP3878334B2 (en) Cemented carbide and coated cemented carbide
JP2005082825A (en) Chromium carbide layer-containing cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3762278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8