JP3761826B2 - Stirrer - Google Patents

Stirrer Download PDF

Info

Publication number
JP3761826B2
JP3761826B2 JP2002083720A JP2002083720A JP3761826B2 JP 3761826 B2 JP3761826 B2 JP 3761826B2 JP 2002083720 A JP2002083720 A JP 2002083720A JP 2002083720 A JP2002083720 A JP 2002083720A JP 3761826 B2 JP3761826 B2 JP 3761826B2
Authority
JP
Japan
Prior art keywords
blade
tank
paddle blade
stirring
paddle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002083720A
Other languages
Japanese (ja)
Other versions
JP2003275564A (en
Inventor
原田  進
博信 上田
強 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002083720A priority Critical patent/JP3761826B2/en
Publication of JP2003275564A publication Critical patent/JP2003275564A/en
Application granted granted Critical
Publication of JP3761826B2 publication Critical patent/JP3761826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液体―液体系、固体―液体系あるいは固体―液体―気体系の混合を行う攪拌装置に関し、特に効率良く混合及び反応を行わせるために好適な攪拌翼構造に関する。
【0002】
【従来の技術】
従来、液体―液体系、固体―液体系及び固体―液体―気体系の攪拌に用いられる翼形状としては液体混合技術(日刊工業;1989年)の259頁に示されるように、複数の羽根を有するディスクタービン翼、パドル翼及びプロペラが公知となっている。あるいは、特開平06−312122に示されているような格子状の攪拌翼がある。
【0003】
図8には、従来のディスクタービンを用いた攪拌装置を示す。通常6枚の羽根を有するディスクタービン10が攪拌槽6の中に4枚の邪魔板7(2枚しか図示されていない)とともに設置されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術は固体粒子の浮遊化及び分散性する配慮が十分でなかった。
【0005】
即ち、図9には、図8に示すディスクタービンの固体―液体系での粒子の濃度分布の計算結果を示す。これは、ケミカルエンジニアリング サイエンス、42(1987年)、第2949頁から第2956頁(Chem.Eng.Sci.,vol42,2949(1987))に記載されているディスクタービンの実験条件、回転数=6.5s-1、翼径=0.13m、粒子平均径=139ミクロン、粒子重量=1.5wt%の状態での水中に粒子が浮遊している解析結果(3次元流れ解析;有限差分法、k−εモデルによる解析結果)を示している。6はバッフル4枚と前記ディスクタービン(6枚羽根)を具備した攪拌槽(槽径=0.39m、液面高さ=0.464m)を表している。この場合、粒子の平均濃度C/Cav(Cは槽内の局所濃度、Cavは槽内全体での平均濃度)が2以上の領域11が翼下部から槽底にかけて存在し、槽内粒子の濃度に不均一が存在することが分かる。
【0006】
本発明の目的は、上記従来技術を改善し、比較的簡単な構造の翼により液体と固体粒子の混合を良好にし、固体粒子を従来よりも均一に分散することによって、固体粒子と液体の接触面積を増加して、固体粒子と液体との反応あるいは固体粒子の液体への溶解性を高め、固体―液体系あるいは固体―液体―気体系で混合を良好にし、効率的に反応を行える攪拌装置を提供することにある。
【0007】
また、本発明の他の目的は、さらに液体―液体系においても、従来よりも短い混合時間で効果的に混合を行え、ある程度の高粘度域まで混合性能が劣化しない攪拌装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的は、攪拌槽の槽底に近接した第1のパドル翼と前記第1のパドル翼の上部に設けられた前記第1パドル翼よりも翼径が小さい第2のパドル翼とがシャフトを介して設置され、前記パドル翼同志が前記シャフトに対してある角度を有して配置され、前記第1のパドル翼と前記第2のパドル翼の両端同志を繋げて構成される第3及び第4の補助翼からなる攪拌装置によって達成される。
【0009】
【発明の実施の形態】
本発明に係る攪拌装置の実施の形態について図面を用いて説明する。
【0010】
図1には、本発明の一実施の形態を示す。攪拌装置5は、回転駆動源(図示せず)の回転駆動軸に接続されているシャフト1と、該シャフト1に取り付けられた第1のパドル翼2と、前記シャフト1の上部に設けられた前記第1のパドル翼2より翼径の小さい第2のパドル翼3と、前記第1のパドル翼2と前記第2のパドル翼3の両端同志を繋げて構成される第3及び第4の補助翼4とから構成され、前記第1のパドル翼2と前記第2のパドル翼3とがシャフト1に対してある角度を有して配置されている。
【0011】
図2は、攪拌槽6に配置された本発明の攪拌装置5を軸方向から見たもので、第1のパドル翼2と第2のパドル翼3とは、ある角度θのずれを有してシャフト1に設けられている。本実施の形態では、第1のパドル翼2は、回転方向に対して第2のパドル翼3よりも位置的に先行する構造になっている。従って、第3及び第4の補助翼4は回転することにより、流体を液面方向に上昇する流速成分を与える効果がある。
【0012】
次に、図3により基本的な液の流れを説明する。攪拌槽6には、流体8及び本発明の攪拌装置5が設けられている。シャフト1が適当な回転を行うことで、槽底部に設けられた比較的大きな第1のパドル翼2から吐出された流体は半径方向に旋回しながら、矢印で示すように攪拌槽上部まで循環し、第2のパドル翼3により旋回成分を与えられながら翼のない台形状の空洞部分9を下降し、再び第1のパドル翼2に戻り、吐出される。一方、第1のパドル翼2から吐出される流体の一部は攪拌槽6の底部に沿って第1のパドル翼2の底部より吸い込まれる。特に、第3及び第4の補助翼4は流体の粘度が大きいあるいは回転数が小さいときのような場合(層流)に、流体を液面方向に円滑に上昇させ、循環させるために効果を発揮する。
【0013】
次に、図1により、攪拌装置5の幾何学的形状について詳しく説明する。第1のパドル翼2の翼径d1は槽内径Dの1/2から3/4の範囲が好ましく、前記第1のパドル翼2の高さh1は槽内径Dの1/4以下の大きさであり、前記第2のパドル翼3の翼径d2は槽内径Dの3/10から4/10の範囲の大きさであり、前記第2のパドル翼3の翼高さh2は槽内径Dの1/15から1/10の範囲にあることが、攪拌装置5として望ましい。さらに、補助翼4の翼幅d3は槽内径Dの1/10から2/10の範囲にあることが好ましい。また、図2に示す第1のパドル翼2と第2のパドル翼3との角度のずれθも10°から45°の範囲にあることが望ましい。このθは流体の粘度が大きくなるほど、大きくする必要がある。
【0014】
図4には、本実施例の攪拌装置5を具備した攪拌槽6(前記従来例と同一形状)での構造を示し、図5には粒子の濃度分布の解析結果を示す。この攪拌槽6内にも複数の邪魔板7が備えられている。本実施の形態では、槽底と翼の間の領域に粒子の平均濃度が2以上の領域11はほとんど存在せず、槽内全体が0.8から1.2の粒子濃度の範囲にあり、従来例より固体粒子がより均一に分布していることが分かる。尚、両解析では攪拌動力を同一にするために、図4の攪拌装置5の回転数は3.17s-1、第1のパドル翼2の翼径=0.195m(槽径の1/2)、第2のパドル翼4の翼径=0.15m(槽径の3/10から4/10の範囲)、第3及び第4の補助翼4の幅=0.039m(槽径の1/10)、第1のパドル翼2の高さ=0.0975m(槽径の1/4)、第2のパドル翼3の高さ=0.0375m(槽径の1/15から1/10の範囲)及び第1のパドル翼と第2のパドル翼の角度のずれθは30°の形状を用いた。
【0015】
従って、本実施の形態によれば、従来翼に比べて同一攪拌動力で、固体粒子と液体の混合を良好にし、反応機に適用した場合、固体粒子から液体への物質移動をより高めるための固液の接触面積の増加を促す効果があり、ひいては効率的な反応を行うことができる効果がある。
【0016】
図6には、図8で示した従来例のディスクタービンと図4で示した本実施の形態の攪拌装置の混合時間を解析した結果を示す。攪拌槽及び翼形状に関しては前述の実施例ものと同じである。処理液の粘度は比較的低粘度域の0.1Pa・s(100センチポイズ)で攪拌動力を同じにするため、ディスクタービンの回転数=6.5s-1、本実施例の攪拌装置の回転数=3.17s-1で解析した。0秒において攪拌槽の上部の一部の領域に計算上ある濃度(=1)を発生させる。横軸はその経過時間(秒)で、縦軸は槽内の濃度の標準偏差を平均濃度で除した無次元数(以後これを濃度の標準偏差と称す)である。黒抜きの▲20は従来のディスクタービンの槽内の濃度の標準偏差の計算値で、白抜きの〇21は本実施の形態の槽内の濃度の標準偏差の計算値である。従って濃度の標準偏差が0に近づくほど槽内の濃度の均一性が高い。尚、攪拌レイノルズ数は約1000であるため、攪拌槽内の流れは乱流である。図6から早い時間で本実施の形態の方が濃度の標準偏差が小さくなっていることが分かる。このことは、触媒を混入した液体を攪拌槽に投入した場合には、本実施の形態の方が早く混合を終了することを意味しており、液―液系の反応機に適用した場合に効率的に反応を行える効果を生じ、反応時間を短くできかつ製品の品質を向上できる効果がある。
【0017】
図7には、他の条件での混合時間の解析結果を示す。攪拌槽及び翼形状に関しては前述の実施の形態のものと同じである。処理液の粘度は比較的高粘度域の20Pa・s(20000センチポイズ)で攪拌動力を同じにするため、ディスクタービンの回転数=8.3s-1、本実施の形態の攪拌装置の回転数=3.17s-1で解析した。尚、攪拌レイノルズ数は約7であるため、攪拌槽内の流れは完全に層流である。層流では流れを軸方向に変える効果がほとんどないため、解析では邪魔板なしの条件で行った。前述した実施の形態と同様に、0秒において攪拌槽の上部の一部の領域に計算上ある濃度(=1)を発生させる。横軸はその経過時間(秒)で、縦軸は槽内の濃度の標準偏差である。黒抜きの▲20は従来のディスクタービンの槽内の濃度の標準偏差の計算値で、白抜きの〇21は本実施の形態の槽内の濃度の標準偏差の計算値である。従って濃度の標準偏差が0に近づくほど前述した実施の形態と同様に槽内の濃度の均一性が高い。比較的高粘度では、黒抜きの▲20はかなり時間が経過しても槽内の濃度の標準偏差は小さくならず、計算範囲内では、濃度の均一化は達成されていない。一方、白抜きの〇21の本実施の形態の攪拌装置では、時間経過とともに、濃度の標準偏差は小さくなっており、濃度の均一化が行われていることが分かる。このことは、触媒を混入した液体を攪拌槽に投入した場合には、本実施の形態の方が高粘度においても早く混合を終了することを意味しており、液―液系の反応機に適用した場合に効率的に反応を行える効果を生じ、反応時間を短くでき、製品の品質を向上できる効果がある。また、ある程度滞留時間を必要とする流通系の反応機に適用した場合でも、低粘度からある程度の高粘度域まで完全混合槽を達成できる効果があり、多段化が必要な場合においても、本実施の形態の一種類の攪拌装置でプロセスを達成できるので、コストメリットがある。
【0018】
【発明の効果】
本発明によれば、従来翼に比べて同一攪拌動力で、固体粒子の浮遊を容易にし、固体粒子と液体の混合をより良好にし、反応機に適用した場合、固体粒子から液体への物質移動をより高めるための固液の接触面積の増加を促す効果があり、ひいては効率的な反応を行うことができる効果がある。
【0019】
また、本発明によれば、液―液系の反応機に適用した場合には、従来翼に比べて混合時間が短いので、反応時間を短くでき、製品の品質を向上できる効果がある。さらに、比較的高粘度域においても従来翼よりも早く混合を終了することができるので、効率的に反応を行える効果があり、反応時間を短くでき、製品の品質を向上できる効果がある。
【0020】
また、本発明によれば、ある程度滞留時間を必要とする流通系の反応機に適用した場合でも、低粘度からある程度の高粘度域まで完全混合槽を達成できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す攪拌装置の便宜的な断面図である。
【図2】本発明の一実施の形態を示す攪拌装置の軸方向から見た図である。
【図3】本発明の攪拌装置を用いた攪拌槽内の流体の流れを示す便宜的な断面図である。
【図4】本発明の他の実施の形態を示す攪拌槽の便宜的な断面図である。
【図5】本発明の攪拌装置を用いた攪拌槽内の固体粒子の濃度分布を示す解析結果を示す図である。
【図6】本発明の攪拌装置と従来例のディスクタービンの混合時間の解析結果の比較を示す図である。
【図7】本発明の攪拌装置と従来例のディスクタービンの他の条件での混合時間の解析結果の比較を示す図である。
【図8】従来例のディスクタービンを用いた攪拌槽の便宜的な断面図である。
【図9】従来例のディスクタービンを用いた攪拌槽内の固体粒子の濃度分布を示す解析結果を示す図である。
【符号の説明】
2…第1のパドル翼、3…第2のパドル翼、4…補助翼、5…攪拌装置、6…攪拌槽、10…ディスクタービン、11…粒子の平均濃度が2以上の領域、20…ディスクタービンの槽内濃度の標準偏差、21…本実施例の槽内濃度の標準偏差。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stirrer that performs liquid-liquid system, solid-liquid system, or solid-liquid-gas system mixing, and more particularly to a stirring blade structure suitable for performing efficient mixing and reaction.
[0002]
[Prior art]
Conventionally, as shown in page 259 of liquid mixing technology (Nikkan Kogyo; 1989), blades used for stirring liquid-liquid systems, solid-liquid systems, and solid-liquid-gas systems have a plurality of blades. Disc turbine blades, paddle blades and propellers are known. Alternatively, there is a grid-like stirring blade as disclosed in JP-A-06-312122.
[0003]
FIG. 8 shows a stirrer using a conventional disk turbine. A disk turbine 10 having six blades is usually installed in a stirring tank 6 with four baffle plates 7 (only two are shown).
[0004]
[Problems to be solved by the invention]
However, the above prior art has not been sufficiently considered to float and disperse solid particles.
[0005]
That is, FIG. 9 shows the calculation result of the particle concentration distribution in the solid-liquid system of the disk turbine shown in FIG. This is the experimental condition of the disk turbine described in Chemical Engineering Science, 42 (1987), pages 2949 to 2956 (Chem. Eng. Sci., Vol 42, 2949 (1987)), rotational speed = 6. .5 s -1 , blade diameter = 0.13 m, particle average diameter = 139 microns, particle weight = 1.5 wt% analysis result (3D flow analysis; finite difference method, (Analysis result by k-ε model). 6 represents an agitation tank (tank diameter = 0.39 m, liquid level height = 0.464 m) equipped with four baffles and the disk turbine (six blades). In this case, a region 11 having an average particle concentration C / Cav (C is a local concentration in the tank, Cav is an average concentration in the entire tank) of 2 or more exists from the lower part of the blade to the tank bottom, and the concentration of the particles in the tank It can be seen that there is non-uniformity.
[0006]
The object of the present invention is to improve the above prior art, improve the mixing of liquid and solid particles with a relatively simple wing, and disperse the solid particles more uniformly than before, thereby bringing the solid particles into contact with the liquid. Stirrer that increases the area, improves the reaction between solid particles and liquid or increases the solubility of solid particles in the liquid, improves the mixing in solid-liquid system or solid-liquid-gas system, and enables efficient reaction Is to provide.
[0007]
Another object of the present invention is to provide a stirrer that can effectively mix in a liquid-liquid system in a shorter mixing time than before and does not deteriorate the mixing performance to a certain high viscosity range. is there.
[0008]
[Means for Solving the Problems]
The above-described object is that the first paddle blade close to the bottom of the stirring tank and the second paddle blade having a smaller blade diameter than the first paddle blade provided on the upper portion of the first paddle blade have the shaft. And the paddle blades are arranged at an angle with respect to the shaft, and the third paddle blade and the second paddle blade are connected to each other. This is achieved by a stirring device comprising four auxiliary blades.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a stirring device according to the present invention will be described with reference to the drawings.
[0010]
FIG. 1 shows an embodiment of the present invention. The stirring device 5 is provided on the shaft 1 connected to a rotation drive shaft of a rotation drive source (not shown), a first paddle blade 2 attached to the shaft 1, and an upper portion of the shaft 1. Second and third paddle blades 3 having a smaller blade diameter than the first paddle blade 2, and third and fourth elements configured by connecting both ends of the first paddle blade 2 and the second paddle blade 3 together. The first paddle blade 2 and the second paddle blade 3 are arranged at an angle with respect to the shaft 1.
[0011]
FIG. 2 is a view of the stirring device 5 of the present invention disposed in the stirring tank 6 as viewed from the axial direction. The first paddle blade 2 and the second paddle blade 3 have a deviation of an angle θ. The shaft 1 is provided. In the present embodiment, the first paddle blade 2 has a structure that precedes the second paddle blade 3 in the rotational direction. Therefore, the third and fourth auxiliary blades 4 have an effect of providing a flow velocity component that raises the fluid in the liquid surface direction by rotating.
[0012]
Next, the basic liquid flow will be described with reference to FIG. The stirring tank 6 is provided with a fluid 8 and the stirring device 5 of the present invention. By appropriately rotating the shaft 1, the fluid discharged from the relatively large first paddle blade 2 provided at the bottom of the tank circulates to the upper part of the stirring tank as indicated by an arrow while turning in the radial direction. While the swirl component is given by the second paddle blade 3, the trapezoidal hollow portion 9 without the blade is lowered and returned to the first paddle blade 2 again to be discharged. On the other hand, a part of the fluid discharged from the first paddle blade 2 is sucked from the bottom of the first paddle blade 2 along the bottom of the stirring tank 6. In particular, the third and fourth auxiliary blades 4 are effective for smoothly raising and circulating the fluid in the liquid surface direction when the viscosity of the fluid is large or the rotational speed is small (laminar flow). Demonstrate.
[0013]
Next, the geometric shape of the stirring device 5 will be described in detail with reference to FIG. The blade diameter d1 of the first paddle blade 2 is preferably in the range of 1/2 to 3/4 of the tank inner diameter D, and the height h1 of the first paddle blade 2 is ¼ or less of the tank inner diameter D. The blade diameter d2 of the second paddle blade 3 is in the range of 3/10 to 4/10 of the tank inner diameter D, and the blade height h2 of the second paddle blade 3 is the tank inner diameter D. It is desirable for the stirring device 5 to be in the range of 1/15 to 1/10. Further, the blade width d3 of the auxiliary blade 4 is preferably in the range of 1/10 to 2/10 of the tank inner diameter D. Also, it is desirable that the angle deviation θ between the first paddle blade 2 and the second paddle blade 3 shown in FIG. 2 is in the range of 10 ° to 45 °. This θ needs to be increased as the viscosity of the fluid increases.
[0014]
FIG. 4 shows the structure of the stirring tank 6 (same shape as the conventional example) provided with the stirring device 5 of this embodiment, and FIG. 5 shows the analysis result of the particle concentration distribution. A plurality of baffle plates 7 are also provided in the stirring tank 6. In the present embodiment, there is almost no region 11 in which the average concentration of particles is 2 or more in the region between the tank bottom and the blades, and the entire inside of the tank is in the particle concentration range of 0.8 to 1.2. It can be seen that the solid particles are more uniformly distributed than the conventional example. In order to make the stirring power the same in both analyses, the rotation speed of the stirring device 5 in FIG. 4 is 3.17 s −1 , and the blade diameter of the first paddle blade 2 is 0.195 m (1/2 of the tank diameter). ), The blade diameter of the second paddle blade 4 = 0.15 m (range 3/10 to 4/10 of the tank diameter), the width of the third and fourth auxiliary blades 4 = 0.039 m (1 of the tank diameter) / 10), height of the first paddle blade 2 = 0.0975 m (1/4 of the tank diameter), height of the second paddle blade 3 = 0.0375 m (1/15 to 1/10 of the tank diameter) And the angle shift θ between the first paddle blade and the second paddle blade is 30 °.
[0015]
Therefore, according to the present embodiment, the mixing of solid particles and liquid is improved with the same stirring power as compared with the conventional blade, and when applied to the reactor, the mass transfer from the solid particles to the liquid is further enhanced. There is an effect of promoting an increase in the contact area of the solid liquid, and in turn, an effect that an efficient reaction can be performed.
[0016]
FIG. 6 shows the result of analyzing the mixing time of the conventional disk turbine shown in FIG. 8 and the stirring device of the present embodiment shown in FIG. The stirring tank and the blade shape are the same as those in the above-described embodiment. The viscosity of the treatment liquid is 0.1 Pa · s (100 centipoise) in a relatively low viscosity region, so that the stirring power is the same. Therefore, the rotational speed of the disk turbine is 6.5 s −1 , and the rotational speed of the stirring device of this embodiment. = 3.17 s- 1 . At 0 seconds, a calculated concentration (= 1) is generated in a partial region at the top of the stirring vessel. The horizontal axis represents the elapsed time (seconds), and the vertical axis represents a dimensionless number obtained by dividing the standard deviation of concentration in the tank by the average concentration (hereinafter referred to as the standard deviation of concentration). A black square 2020 is a calculated value of the standard deviation of the concentration in the conventional disk turbine tank, and a white circle ◯ 21 is a calculated value of the standard deviation of the density in the tank of the present embodiment. Therefore, the uniformity of the concentration in the tank increases as the standard deviation of the concentration approaches zero. Since the stirring Reynolds number is about 1000, the flow in the stirring tank is turbulent. It can be seen from FIG. 6 that the standard deviation of the concentration is smaller in the present embodiment at an earlier time. This means that when the liquid mixed with the catalyst is put into the stirring tank, the present embodiment finishes mixing earlier, and when applied to a liquid-liquid reactor. The effect is that the reaction can be performed efficiently, the reaction time can be shortened, and the quality of the product can be improved.
[0017]
In FIG. 7, the analysis result of the mixing time on other conditions is shown. The stirring tank and blade shape are the same as those of the above-described embodiment. The viscosity of the treatment liquid is 20 Pa · s (20000 centipoise) in a relatively high viscosity region, so that the stirring power is the same. Therefore, the rotational speed of the disk turbine = 8.3 s −1 , and the rotational speed of the stirring device of the present embodiment = Analysis was performed at 3.17 s −1 . Since the stirring Reynolds number is about 7, the flow in the stirring tank is completely laminar. In laminar flow, there was almost no effect of changing the flow in the axial direction, so the analysis was carried out without baffles. Similar to the above-described embodiment, a calculated concentration (= 1) is generated in a partial region at the top of the stirring tank at 0 seconds. The horizontal axis is the elapsed time (seconds), and the vertical axis is the standard deviation of the concentration in the tank. A black square 2020 is a calculated value of the standard deviation of the concentration in the conventional disk turbine tank, and a white circle ◯ 21 is a calculated value of the standard deviation of the density in the tank of the present embodiment. Therefore, as the standard deviation of the concentration approaches 0, the uniformity of the concentration in the tank becomes higher as in the embodiment described above. When the viscosity is relatively high, the black square {circle around (20)} does not reduce the standard deviation of the concentration in the tank even after a considerable period of time, and the concentration is not uniformized within the calculation range. On the other hand, in the stirrer according to the present embodiment, which is white, the standard deviation of the concentration becomes smaller with time, and it can be seen that the concentration is made uniform. This means that when the liquid mixed with the catalyst is put into the stirring tank, the present embodiment finishes the mixing earlier even at a high viscosity, and the liquid-liquid reactor is used. When applied, it has the effect of efficiently performing the reaction, shortening the reaction time, and improving the product quality. Even when applied to a flow reactor that requires a certain amount of residence time, there is an effect that a complete mixing tank can be achieved from a low viscosity to a certain high viscosity region. Since the process can be achieved with one type of stirring device of the form, there is a cost merit.
[0018]
【The invention's effect】
According to the present invention, with the same stirring power compared to conventional blades, the solid particles can be easily floated, the mixing of the solid particles and the liquid is improved, and the mass transfer from the solid particles to the liquid when applied to the reactor. This has the effect of accelerating the increase in the contact area of the solid-liquid for further improving the efficiency, and thus has the effect of allowing an efficient reaction.
[0019]
Further, according to the present invention, when applied to a liquid-liquid reactor, the mixing time is shorter than that of a conventional blade, so that the reaction time can be shortened and the product quality can be improved. Furthermore, since mixing can be completed earlier than the conventional blade even in a relatively high viscosity region, there is an effect that the reaction can be performed efficiently, and the reaction time can be shortened, and the product quality can be improved.
[0020]
In addition, according to the present invention, even when applied to a flow reactor that requires a certain amount of residence time, there is an effect that a complete mixing tank can be achieved from a low viscosity to a certain high viscosity range.
[Brief description of the drawings]
FIG. 1 is a convenient cross-sectional view of a stirring device showing an embodiment of the present invention.
FIG. 2 is a view seen from the axial direction of a stirrer according to an embodiment of the present invention.
FIG. 3 is a convenient cross-sectional view showing a flow of fluid in a stirring tank using the stirring device of the present invention.
FIG. 4 is a convenient cross-sectional view of a stirring tank showing another embodiment of the present invention.
FIG. 5 is a view showing an analysis result showing a concentration distribution of solid particles in a stirring tank using the stirring apparatus of the present invention.
FIG. 6 is a diagram showing a comparison of analysis results of mixing time of the stirring device of the present invention and a conventional disk turbine.
FIG. 7 is a diagram showing a comparison of analysis results of mixing time under other conditions of the stirring device of the present invention and a conventional disk turbine.
FIG. 8 is a convenient sectional view of a stirring tank using a conventional disk turbine.
FIG. 9 is a diagram showing an analysis result showing a concentration distribution of solid particles in a stirring tank using a conventional disk turbine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... 1st paddle blade, 3 ... 2nd paddle blade, 4 ... Auxiliary blade, 5 ... Stirrer, 6 ... Stirrer tank, 10 ... Disk turbine, 11 ... Area | region whose average density | concentration of particle | grains is 2 or more, 20 ... Standard deviation of the concentration in the tank of the disk turbine, 21... Standard deviation of the concentration in the tank of this example.

Claims (6)

液体が収納される攪拌槽内に設置されて前記液体を攪拌する攪拌装置において、
回転駆動源に接続されて回転駆動されるシャフトと、前記攪拌槽の槽底に近接して前記シャフトに固定された第1のパドル翼と、該第1のパドル翼の上部に前記シャフトに固定され、前記第1パドル翼よりも翼径が小さい第2のパドル翼と、前記第1のパドル翼と前記第2のパドル翼の両端同志を繋げて構成される第3及び第4の補助翼とを備え、前記パドル翼同志が前記シャフトに対してある角度を有して配置することを特徴とする攪拌装置。
In a stirring device that is installed in a stirring tank in which a liquid is stored and stirs the liquid,
A shaft connected to a rotational drive source and rotationally driven, a first paddle blade fixed to the shaft in the vicinity of the bottom of the agitation tank, and fixed to the shaft above the first paddle blade A second paddle blade having a smaller blade diameter than the first paddle blade, and third and fourth auxiliary blades configured by connecting both ends of the first paddle blade and the second paddle blade. And the paddle blades are arranged at an angle with respect to the shaft.
請求項1記載の攪拌装置において、前記第1のパドル翼の翼径が槽内径の1/2から3/4の範囲の大きさであり、前記第1のパドルの翼高さが槽内径の1/4以下の大きさであり、前記第2のパドル翼の翼径が槽内径の3/10から4/10の範囲の大きさであり、前記第2のパドル翼の翼高さが槽内径の1/15から1/10の範囲の大きさであることを特徴とする攪拌装置。2. The stirring device according to claim 1, wherein a blade diameter of the first paddle blade is in a range of ½ to 3/4 of a tank inner diameter, and a blade height of the first paddle blade is a tank inner diameter. The blade size of the second paddle blade is in a range of 3/10 to 4/10 of the inner diameter of the tank, and the blade height of the second paddle blade is A stirrer having a size in the range of 1/15 to 1/10 of the inner diameter. 請求項1又は2記載の攪拌装置において、前記第3及び第4の補助翼の翼幅が槽内径の1/10から2/10の範囲の大きさであることを特徴とする攪拌装置。3. The stirring device according to claim 1, wherein the third and fourth auxiliary blades have a blade width in a range of 1/10 to 2/10 of the tank inner diameter. 請求項1又は2又は3記載の攪拌装置において、前記第1のパドル翼と前記第2のパドル翼の前記シャフトに対する角度が10°から45°の範囲にあることを特徴とする攪拌装置。4. The stirring device according to claim 1, wherein an angle of the first paddle blade and the second paddle blade with respect to the shaft is in a range of 10 ° to 45 °. 請求項4記載の攪拌装置において、回転方向に対して前記第1のパドル翼よりも前記第2のパドル翼のほうが、位置的に遅れていることを特徴とする攪拌装置。5. The stirring device according to claim 4, wherein the second paddle blade is delayed in position relative to the first paddle blade with respect to the rotation direction. 請求項1乃至5の何れか一つに記載の攪拌装置において、前記攪拌槽内に複数の邪魔板を有することを特徴とする攪拌装置。6. The stirring apparatus according to claim 1, wherein the stirring tank has a plurality of baffle plates.
JP2002083720A 2002-03-25 2002-03-25 Stirrer Expired - Fee Related JP3761826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083720A JP3761826B2 (en) 2002-03-25 2002-03-25 Stirrer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083720A JP3761826B2 (en) 2002-03-25 2002-03-25 Stirrer

Publications (2)

Publication Number Publication Date
JP2003275564A JP2003275564A (en) 2003-09-30
JP3761826B2 true JP3761826B2 (en) 2006-03-29

Family

ID=29206931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083720A Expired - Fee Related JP3761826B2 (en) 2002-03-25 2002-03-25 Stirrer

Country Status (1)

Country Link
JP (1) JP3761826B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681379B2 (en) 2003-05-19 2005-08-10 大洋化学株式会社 Storage bag exhaust valve
JP2014188384A (en) * 2013-03-26 2014-10-06 Snow Brand Milk Products Co Ltd Agitation method for viscous fluid and device therefor
CN106706881A (en) * 2016-12-16 2017-05-24 广东省生态环境技术研究所 Method and device for achieving analog-matching runoff with stable flow and sand content
JP7393238B2 (en) 2020-02-13 2023-12-06 太平洋セメント株式会社 Method for producing inorganic oxide particles
CN114797715B (en) * 2021-01-18 2024-02-02 万华化学(四川)有限公司 Emulsion polymerization reaction kettle

Also Published As

Publication number Publication date
JP2003275564A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
EP0880993B1 (en) Impeller assembly with asymmetric concave blades
EP0254494B1 (en) Improvement in or relating to impellers
US5098669A (en) Stirring reactor for viscous materials
WO2017185431A1 (en) Gas-liquid dispersion mixing device equipped with annular sector-shaped concave surface impeller blade
JPS5922633A (en) Method and apparatus for mixing gas and liquid
JP5575139B2 (en) Processing equipment
US20130208560A1 (en) Fractal impeller for stirring
EP0402317B1 (en) Apparatus for mixing viscous materials
JP2000202268A (en) Agitator
JP5413243B2 (en) Stirring apparatus and stirring method
JP3826443B2 (en) Stirrer
JP3761826B2 (en) Stirrer
JP3224498B2 (en) Stirrer
JP3578782B2 (en) Stirrer
JP2016087590A (en) Agitating device
JP4075332B2 (en) Sewage treatment tank
CN102350250A (en) Double-layer stirring paddle combination device
JP3887303B2 (en) Stirrer
JPH07124456A (en) Agitating device
JP4220168B2 (en) Stirring apparatus and stirring method for liquid containing solid particles
JP2749002B2 (en) High viscosity liquid stirring tank
JPH0321211B2 (en)
JPS6313788Y2 (en)
JPH07786A (en) Impeller
US5015322A (en) Tank arrangement particularly designed for chemical milling operations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3761826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees