JP3761749B2 - Compressor motor and compressor - Google Patents

Compressor motor and compressor Download PDF

Info

Publication number
JP3761749B2
JP3761749B2 JP25581899A JP25581899A JP3761749B2 JP 3761749 B2 JP3761749 B2 JP 3761749B2 JP 25581899 A JP25581899 A JP 25581899A JP 25581899 A JP25581899 A JP 25581899A JP 3761749 B2 JP3761749 B2 JP 3761749B2
Authority
JP
Japan
Prior art keywords
compressor
stator
insulating member
stator core
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25581899A
Other languages
Japanese (ja)
Other versions
JP2001082335A (en
Inventor
健志 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP25581899A priority Critical patent/JP3761749B2/en
Publication of JP2001082335A publication Critical patent/JP2001082335A/en
Application granted granted Critical
Publication of JP3761749B2 publication Critical patent/JP3761749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Brushless Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空気調和装置等に搭載される圧縮機に組み込まれる圧縮機用電動機に関し、特に電動機の固定子の構造に関する。
【0002】
【従来の技術】
図1に示すように、空気調和装置に搭載される圧縮機1は、電動機部2と圧縮部11から構成されている。
電動機部2は、回転軸3に一体に取付けられる回転子4と、この回転子4の外周面と狭小の間隙を在して配置される固定子5とから構成される。
【0003】
図10に従来の固定子の組立図を示す。また、図11に図10中のA−A線における断面図を示す。また、図12に図11の一部拡大図を示す。
図11に示すように固定子5は、電磁鋼板を積層した固定子鉄心6に絶縁部材7を嵌め、その上に巻線8を巻くことによって形成される。
【0004】
固定子5において、固定子鉄心6の回転軸3の軸方向と同一方向の長さをt、同様に固定子5の上端と下端に巻線8が延出して形成されるコイルエンド91とコイルエンド92からなるコイルエンド部9の長さをhとすると、コイルエンド部9と固定子鉄心6の比(h/t)が0.6より大きくなっていた。
ここで、hはコイルエンド部全ての長さ(コイルエンド91の長さh1とコイルエンド92の長さh2の合計)である。
【0005】
また、一般的に絶縁部材7には、ポリエステルフィルムが用いられ、その体積抵抗は1×10Ωより小さかった。
【0006】
そして、前記電動機2が駆動する際に巻線8を流れる電流は以下の2つの経路を通り、漏洩電流となっていた。
1) 巻線8に付着した潤滑油または冷媒を通り圧縮機ケース10に流れる。
2) 固定子鉄心6と巻線8の間の絶縁材7を通過して固定子鉄心6を流れる。
【0007】
このような従来の構成では、コイルエンド部9の占める割合が多い分、巻線8に付着する潤滑油や冷媒も多く、巻線へ流れる電流が漏洩しやすかった。また、絶縁部材7に用いる材料の体積抵抗も小さいため、絶縁が不完全であり、固定子鉄心6へも漏洩していた。
【0008】
【発明が解決しようとする課題】
上述した従来の構成においては、漏洩電流を減らすために、巻線の径を細くするという対策がとられていた。
【0009】
しかしながら、巻線の径を細くするという対策では、銅損が大きくなり、電動機の効率が低下するなどの問題があった。
【0010】
本発明は、上記事情を考慮してなされたもので、漏洩電流を少なくし、効率の良い圧縮機用電動機および圧縮機を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、内周部に沿って複数の磁極歯が所定間隔を在して放射状に設置される環状の固定子鉄心と、前記固定子鉄心の磁極歯に絶縁部材を介して巻装される巻線とからなる固定子の前記巻線を集中巻とするとともに、固定子鉄心の回転軸軸方向と同一方向の長さに対する前記固定子の上端と下端に巻線が延出してなるコイルエンドの前記回転軸軸方向と同一方向の長さの比を0.6以下とし、かつ、前記固定子鉄心と前記巻線の間を絶縁する絶縁部材に体積抵抗率が1×10 14 Ωm以上の材料を用いるとともに絶縁部材の体積抵抗を1×10Ω以上としている。
【0012】
請求項2の発明は、請求項1の発明において、固定子鉄心断面における前記絶縁部材の厚さと、固定子鉄心と絶縁部材との接触部分の長さの比を7×10−4 以上としている。
【0014】
請求項の発明は、請求項1及び2のいずれかの発明において、絶縁部材に樹脂成形材を用いた構成としている。
【0016】
請求項の発明は、請求項1〜のいずれかの発明に係る圧縮機用電動機を搭載して冷媒を圧縮する圧縮機であって、圧縮する冷媒にHFC系冷媒を用いた構成としている。
【0017】
上述した構成により、請求項1の発明によれば、容易に固定子鉄心の回転軸軸方向と同一方向の長さに対するコイルエンドの回転軸軸方向と同一方向の長さの比を0.6以下にでき、また、少ない絶縁部材で巻線に付着した潤滑油や冷媒を介して流れる漏洩電流及び絶縁部材を介して固定子鉄心に流れる漏洩電流を小さく出来る。
【0018】
請求項2の発明によれば、請求項1の発明に加えて、絶縁部材を介して固定子鉄心に流れる漏洩電流をより小さく出来る。
【0020】
請求項の発明によれば、請求項1及び2の発明に加えて、容易に体積抵抗率を1×1014Ωm以上とすることができる。
【0022】
請求項の発明によれば、HCFC冷媒に対して漏洩電流が大きくなる傾向のあるHFC冷媒を用いても、本発明に係る圧縮機用電動機の構成により、漏洩電流の増加を防止することができる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態につき、図面を参照して詳細に説明する。まず、本発明に係る電動機の第1の実施の形態について説明する。
【0024】
尚、本実施の形態は空気調和機等に用いられる圧縮機に適用したもので、圧縮機の構成は図1に示したものと同様であるため、同一の部分についてはその図示及び説明を省略する。
【0025】
図2に本実施の形態に係る電動機部2に用いられる固定子5の組立図を示す。また、図3に図2中のA−A線における断面図を示す。また、図4に図3の一部拡大図を示す。また、図5に固定子5の上面図を示す。
【0026】
固定子5は内周部に沿って複数の磁極歯12が所定間隔を在して放射状に設置される環状の固定子鉄心6と、この鉄心の磁極歯12に絶縁部材7を介して巻装される巻線8とから形成されている。
【0027】
コイルエンド部9と固定子鉄心6の回転軸と同一方向の長さをそれぞれhとtとすると、その比(h/t)が0.6以下となるように形成する。
尚、hはコイルエンド部9の全ての長さ(コイルエンド91の長さh1とコイルエンド92の長さh2の合計)である。
【0028】
図6にh/tと漏洩電流の関係を示す。h/tが大きい範囲においては、コイルエンド部9の占める割合が多いため、巻線8に付着した潤滑油または冷媒を通りケース10に流れる量が多くなる。逆にh/tが小さくなるほど漏洩電流が少なくなる。なお、h/tが0.6以下では、漏洩電流は略一定である。
【0029】
また、図7にh/tを0.5とした場合の絶縁部材7の体積抵抗と漏洩電流の関係を示す。図7より、絶縁部材7の体積抵抗を1×10Ω以上に設計すると漏洩電流を小さくできることがわかる。また、この傾向はh/tが0.6以下の範囲において同様の傾向を示す。
【0030】
よって、h/tが0.6以下の範囲においてさらに漏洩電流を低減できるように絶縁材8の体積抵抗を1×10Ω以上に設計する。
【0031】
次に本発明に係る圧縮機の第2の実施の形態について説明する。
図4に示すように、固定子鉄心6のA−A断面における絶縁材7の厚さをW、固定子鉄心6と絶縁部材7の接触部分の長さをLとする。ここで、接触部分の長さLは、絶縁材が複数ある場合は全接触部分の合計の長さ(L=L+L+L+・・・+L)を意味する。
【0032】
図8にW/Lと漏洩電流の関係を示す。図8よりW/Lが7×10−4以上となったところから漏洩電流の低減の割合が大きくなっていることがわかる。
【0033】
また、この図8においては、h/tが0.5の場合であるが、図8における傾向は、h/tが0.6以下の範囲においても同様である。
よって、WとLの比(W/L)が7×10−4以上となるように形成する。
【0034】
次に本発明に係る圧縮機の第3の実施の形態について説明する。
図9に体積抵抗率と漏洩電流の関係を示す。図9より体積抵抗率が1×1014Ωm以上となったところから漏洩電流の低減の割合が大きくなっていることがわかる。
また、この図においては、h/tが0.5の場合であるが、図9における傾向は、h/tが0.6以下の範囲においても同様である。
よって、絶縁材8の体積抵抗率を1×1014Ωm以上に設計することにより、少ない絶縁材料で漏洩電流の低減が計れる。
【0035】
また、本発明の実施の形態では、絶縁材8に樹脂成形材を用いたが、樹脂成形材としては、ポリフェニレンサルファイド(PPS)、ナイロン(PA)、ポリブチレンラレフタード(PBT)や液晶ポリマー(LCD)等が挙げられる。これらの材料を絶縁材8に用いることによって、体積抵抗率を1×1014Ωm以上として形成することができる。
【0036】
さらに上記第1ないし第3の実施の形態においては、HCFC冷媒に対して漏洩電流が大きくなる傾向のあるHFC冷媒を用いても、本発明に係る圧縮機用電動機の構成により、漏洩電流の増加を防止することができる。
【0037】
尚、HCFC系冷媒を用いた場合でも漏洩電流の低減効果はHFC系冷媒を用いたときと同様に得られる。
【0038】
また、本発明では、圧縮機構にロータリタイプのものを備えた圧縮機を説明したが、これに限らず、例えばスクロールタイプのものを備えた圧縮機でもよい。
【0039】
【発明の効果】
以上説明したように、本発明によれば、電動機の効率を低下させることなく、電動機運転中に、巻線に付着した潤滑油や冷媒を介して圧縮機ケースに流れる漏洩電流や、絶縁部材を介して固定子鉄心に流れる漏洩電流を低減できる。
【図面の簡単な説明】
【図1】本発明に係る圧縮機の断面図。
【図2】本発明に係る圧縮機用電動機の固定子の組立図。
【図3】図2中のA−A線における断面図。
【図4】図3の一部拡大図
【図5】第1の実施の形態に係る固定子の上面図。
【図6】h/tと漏洩電流の関係を示すグラフ。
【図7】h/tを0.5とした場合の絶縁部材の体積抵抗と漏洩電流の関係を示すグラフ。
【図8】W/Lと漏洩電流の関係を示すグラフ。
【図9】体積効率と漏洩電流の関係を示すグラフ。
【図10】従来の固定子の組立図。
【図11】図10中のA−A線における断面図。
【図12】図11の一部拡大図。
【符号の説明】
1…圧縮機
2…電動機部
11…圧縮部
3…回転軸
4…回転子
5…固定子
12…磁極歯
6…固定子鉄心
7…絶縁部材
8…巻線
9…コイルエンド部
91、92…コイルエンド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric motor for a compressor incorporated in a compressor mounted on an air conditioner or the like, and more particularly to a structure of a stator of the electric motor.
[0002]
[Prior art]
As shown in FIG. 1, the compressor 1 mounted on the air conditioner includes an electric motor unit 2 and a compression unit 11.
The electric motor unit 2 includes a rotor 4 that is integrally attached to the rotating shaft 3 and a stator 5 that is disposed with a small gap from the outer peripheral surface of the rotor 4.
[0003]
FIG. 10 shows an assembly drawing of a conventional stator. FIG. 11 is a cross-sectional view taken along line AA in FIG. FIG. 12 is a partially enlarged view of FIG.
As shown in FIG. 11, the stator 5 is formed by fitting an insulating member 7 on a stator core 6 in which electromagnetic steel plates are laminated, and winding a winding 8 thereon.
[0004]
In the stator 5, a coil end 91 and a coil formed by extending the length 8 in the same direction as the axial direction of the rotating shaft 3 of the stator core 6 and similarly extending the winding 8 to the upper end and the lower end of the stator 5. When the length of the coil end portion 9 composed of the end 92 is h, the ratio (h / t) between the coil end portion 9 and the stator core 6 is larger than 0.6.
Here, h is the length of all the coil end portions (the sum of the length h1 of the coil end 91 and the length h2 of the coil end 92).
[0005]
In general, a polyester film was used for the insulating member 7 and its volume resistance was less than 1 × 10 8 Ω.
[0006]
And when the said motor 2 drives, the electric current which flows through the coil | winding 8 passed the following two paths | routes, and became a leakage current.
1) Flows through the lubricating oil or refrigerant adhering to the winding 8 to the compressor case 10.
2) Flows through the stator core 6 through the insulating material 7 between the stator core 6 and the winding 8.
[0007]
In such a conventional configuration, since the ratio of the coil end portion 9 is large, the lubricating oil and refrigerant adhering to the winding 8 are also large, and the current flowing through the winding is likely to leak. Further, since the volume resistance of the material used for the insulating member 7 is small, the insulation is incomplete, and the material leaks to the stator core 6.
[0008]
[Problems to be solved by the invention]
In the conventional configuration described above, a measure has been taken to reduce the winding diameter in order to reduce the leakage current.
[0009]
However, the measures to reduce the diameter of the winding have problems such as increased copper loss and reduced motor efficiency.
[0010]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an efficient compressor motor and compressor that reduce leakage current.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is directed to an annular stator core in which a plurality of magnetic pole teeth are radially arranged along the inner peripheral portion at a predetermined interval, and the magnetic pole teeth of the stator core The windings of the stator consisting of the windings wound around the insulation member are concentrated windings, and the upper and lower ends of the stator with respect to the length in the same direction as the rotation axis direction of the stator core The ratio of the length of the coil end formed by extending the winding in the same direction as the direction of the rotation axis is 0.6 or less, and the volume of the insulating member that insulates between the stator core and the winding. A material having a resistivity of 1 × 10 14 Ωm or more is used, and a volume resistance of the insulating member is set to 1 × 10 8 Ω or more.
[0012]
According to a second aspect of the present invention, in the first aspect of the invention, the ratio of the thickness of the insulating member in the cross section of the stator core to the length of the contact portion between the stator core and the insulating member is 7 × 10 −4 or more . .
[0014]
According to a third aspect of the present invention, in any one of the first and second aspects, a resin molding material is used for the insulating member.
[0016]
Invention of Claim 4 is a compressor which mounts the motor for compressors which concerns on any one of Claims 1-3 , and compresses a refrigerant | coolant, Comprising: It is set as the structure which used the HFC type refrigerant | coolant for the refrigerant | coolant to compress. .
[0017]
With the configuration described above, according to the first aspect of the present invention, the ratio of the length in the same direction as the rotation axis direction of the coil end to the length in the same direction as the rotation axis direction of the stator core is easily set to 0.6. In addition, the leakage current flowing through the lubricating oil or refrigerant attached to the winding with a small number of insulating members and the leakage current flowing through the stator core through the insulating members can be reduced.
[0018]
According to the invention of claim 2, in addition to the invention of claim 1, the leakage current flowing through the stator core via the insulating member can be further reduced.
[0020]
According to the invention of claim 3 , in addition to the inventions of claims 1 and 2, the volume resistivity can be easily set to 1 × 10 14 Ωm or more.
[0022]
According to the invention of claim 4 , even if an HFC refrigerant that tends to have a large leakage current with respect to the HCFC refrigerant is used, an increase in the leakage current can be prevented by the configuration of the compressor motor according to the present invention. it can.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, a first embodiment of an electric motor according to the present invention will be described.
[0024]
The present embodiment is applied to a compressor used in an air conditioner or the like, and the configuration of the compressor is the same as that shown in FIG. 1, and therefore, illustration and description of the same parts are omitted. To do.
[0025]
FIG. 2 shows an assembly diagram of the stator 5 used in the electric motor unit 2 according to the present embodiment. FIG. 3 is a cross-sectional view taken along line AA in FIG. FIG. 4 is a partially enlarged view of FIG. FIG. 5 shows a top view of the stator 5.
[0026]
The stator 5 is an annular stator core 6 in which a plurality of magnetic pole teeth 12 are radially arranged along the inner peripheral portion at a predetermined interval, and the magnetic pole teeth 12 of the iron core are wound around an insulating member 7. And the winding 8 to be formed.
[0027]
When the lengths in the same direction as the rotation axes of the coil end portion 9 and the stator core 6 are h and t, respectively, the ratio (h / t) is 0.6 or less.
Note that h is the total length of the coil end portion 9 (the sum of the length h1 of the coil end 91 and the length h2 of the coil end 92).
[0028]
FIG. 6 shows the relationship between h / t and leakage current. In the range where h / t is large, since the ratio of the coil end portion 9 is large, the amount flowing through the case 10 through the lubricating oil or refrigerant adhering to the winding 8 increases. Conversely, as h / t decreases, the leakage current decreases. Note that when h / t is 0.6 or less, the leakage current is substantially constant.
[0029]
FIG. 7 shows the relationship between the volume resistance of the insulating member 7 and the leakage current when h / t is 0.5. FIG. 7 shows that the leakage current can be reduced when the volume resistance of the insulating member 7 is designed to be 1 × 10 8 Ω or more. Moreover, this tendency shows the same tendency in the range where h / t is 0.6 or less.
[0030]
Therefore, the volume resistance of the insulating material 8 is designed to be 1 × 10 8 Ω or more so that the leakage current can be further reduced in the range where h / t is 0.6 or less.
[0031]
Next, a second embodiment of the compressor according to the present invention will be described.
As shown in FIG. 4, the thickness of the insulating material 7 in the section AA of the stator core 6 is W, and the length of the contact portion between the stator core 6 and the insulating member 7 is L. Here, the length L of the contact portion means the total length of all the contact portions (L = L 1 + L 2 + L 3 +... + L n ) when there are a plurality of insulating materials.
[0032]
FIG. 8 shows the relationship between W / L and leakage current. It can be seen from FIG. 8 that the rate of reduction of leakage current increases from the point where W / L is 7 × 10 −4 or more.
[0033]
In FIG. 8, h / t is 0.5, but the tendency in FIG. 8 is the same even when h / t is 0.6 or less.
Therefore, it is formed so that the ratio of W to L (W / L) is 7 × 10 −4 or more.
[0034]
Next, a third embodiment of the compressor according to the present invention will be described.
FIG. 9 shows the relationship between volume resistivity and leakage current. From FIG. 9, it can be seen that the rate of reduction of leakage current is increased from the point where the volume resistivity is 1 × 10 14 Ωm or more.
In FIG. 9 , h / t is 0.5, but the tendency in FIG. 9 is the same even when h / t is 0.6 or less.
Therefore, the leakage current can be reduced with a small amount of insulating material by designing the volume resistivity of the insulating material 8 to 1 × 10 14 Ωm or more.
[0035]
Further, in the embodiment of the present invention, a resin molding material is used for the insulating material 8, but as the resin molding material, polyphenylene sulfide (PPS), nylon (PA), polybutylene raftade (PBT), and liquid crystal polymer are used. (LCD). By using these materials for the insulating material 8, the volume resistivity can be set to 1 × 10 14 Ωm or more.
[0036]
Furthermore, in the first to third embodiments, even if an HFC refrigerant that tends to have a large leakage current with respect to the HCFC refrigerant is used, the increase in the leakage current is achieved by the configuration of the compressor motor according to the present invention. Can be prevented.
[0037]
Even when the HCFC refrigerant is used, the effect of reducing the leakage current can be obtained in the same manner as when the HFC refrigerant is used.
[0038]
Further, in the present invention, the compressor having a rotary type compressor has been described. However, the present invention is not limited to this, and for example, a compressor having a scroll type may be used.
[0039]
【The invention's effect】
As described above, according to the present invention, the leakage current flowing through the compressor case and the insulating member through the lubricating oil and refrigerant attached to the windings can be reduced during operation of the motor without reducing the efficiency of the motor. The leakage current flowing through the stator core can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a compressor according to the present invention.
FIG. 2 is an assembly drawing of a stator of an electric motor for a compressor according to the present invention.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
4 is a partially enlarged view of FIG. 3. FIG. 5 is a top view of the stator according to the first embodiment.
FIG. 6 is a graph showing the relationship between h / t and leakage current.
FIG. 7 is a graph showing the relationship between the volume resistance of the insulating member and the leakage current when h / t is 0.5.
FIG. 8 is a graph showing the relationship between W / L and leakage current.
FIG. 9 is a graph showing the relationship between volumetric efficiency and leakage current.
FIG. 10 is an assembly diagram of a conventional stator.
11 is a cross-sectional view taken along line AA in FIG.
12 is a partially enlarged view of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Electric motor part 11 ... Compression part 3 ... Rotating shaft 4 ... Rotor 5 ... Stator 12 ... Magnetic pole tooth 6 ... Stator core 7 ... Insulation member 8 ... Winding 9 ... Coil end part 91, 92 ... Coil end

Claims (4)

回転軸に一体に取付けられる回転子と、前記回転子の外周面と狭小の間隙を在して配置される固定子と、からなる圧縮機用電動機において、前記固定子は、内周部に沿って複数の磁極歯が所定間隔を在して放射状に設置される環状の固定子鉄心と、前記固定子鉄心の磁極歯に絶縁部材を介して巻装される巻線とからなり、前記巻線を集中巻とするとともに、固定子鉄心の前記回転子の軸方向と同一方向の長さに対する前記固定子の上端と下端に巻線が延出してなるコイルエンドの前記回転子の軸方向と同一方向の長さの比を0.6以下とし、かつ、前記固定子鉄心と前記巻線の間を絶縁する絶縁部材に体積抵抗率が1×10 14 Ωm以上の材料を用いるとともに絶縁部材の体積抵抗を1×10Ω以上とすることを特徴とする圧縮機用電動機。An electric motor for a compressor comprising a rotor that is integrally attached to a rotating shaft and a stator that is arranged with a small gap between the outer peripheral surface of the rotor and the stator extends along an inner peripheral portion. A plurality of magnetic pole teeth are arranged radially at predetermined intervals, and a winding wound around the magnetic pole teeth of the stator iron core via an insulating member. Is the same as the axial direction of the rotor of the coil end formed by winding the upper and lower ends of the stator with respect to the length in the same direction as the axial direction of the rotor of the stator core. A material having a volume ratio of 1 × 10 14 Ωm or more is used for the insulating member that insulates between the stator core and the windings with a ratio of lengths in the direction of 0.6 or less, and the volume of the insulating member compressor motor, which comprises a resistor and 1 × 10 8 Ω or more 前記固定子鉄心断面における前記絶縁部材の厚さと、前記固定子鉄心と前記絶縁部材との接触部分の長さの比を7×10−4 以上とすることを特徴とする請求項1に記載の圧縮機用電動機。2. The ratio of the thickness of the insulating member in the stator core cross section to the length of the contact portion between the stator core and the insulating member is 7 × 10 −4 or more . Electric motor for compressor. 前記絶縁部材に樹脂成形材を用いたことを特徴とする請求項1及び2のいずれかに記載の圧縮機用電動機。The electric motor for a compressor according to any one of claims 1 and 2, wherein a resin molding material is used for the insulating member. 請求項1〜のいずれかに記載の圧縮機用電動機を搭載して冷媒を圧縮する圧縮機であって、圧縮する冷媒にHFC系冷媒を用いたことを特徴とする圧縮機。A compressor for compressing a refrigerant by mounting the electric motor for compressor according to any one of claims 1 to 3, wherein an HFC-based refrigerant is used as the refrigerant to be compressed.
JP25581899A 1999-09-09 1999-09-09 Compressor motor and compressor Expired - Lifetime JP3761749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25581899A JP3761749B2 (en) 1999-09-09 1999-09-09 Compressor motor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25581899A JP3761749B2 (en) 1999-09-09 1999-09-09 Compressor motor and compressor

Publications (2)

Publication Number Publication Date
JP2001082335A JP2001082335A (en) 2001-03-27
JP3761749B2 true JP3761749B2 (en) 2006-03-29

Family

ID=17284059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25581899A Expired - Lifetime JP3761749B2 (en) 1999-09-09 1999-09-09 Compressor motor and compressor

Country Status (1)

Country Link
JP (1) JP3761749B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019786B2 (en) * 2002-05-08 2007-12-12 ダイキン工業株式会社 DC motor winding method
JP2010057211A (en) * 2008-08-26 2010-03-11 Nippon Densan Corp Motor
JP2012139069A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Sealed compressor
JP6582236B2 (en) * 2015-06-11 2019-10-02 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2001082335A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
US6765319B1 (en) Plastic molded magnet for a rotor
US6595760B2 (en) Stator assembly for a refrigerant compressor having coils wound to the stator teeth
JP3960122B2 (en) Electric compressor
CN100373750C (en) Fuel pump of compact structure for use in high torque
JP5021454B2 (en) Rotor mounting cooling fan
US7772736B2 (en) Permanent magnet synchronous motor, rotor of the same, and compressor using the same
US8450901B2 (en) Motor for compressor and hermetic compressor having the same
WO2012147244A1 (en) Electric motor and electric device provided with same
JP2007127013A (en) Fuel pump
JP7046155B2 (en) Stator, motor, compressor and air conditioner
WO2015083687A1 (en) Compressor
JP6914346B2 (en) Manufacturing method of stator, motor, compressor, air conditioner and stator
JP5708267B2 (en) Rotating electric machine and compressor using the same
JP2012253918A (en) Rotating electric machine and compressor using the same
JP4722276B2 (en) Electric motor stator
JP3761749B2 (en) Compressor motor and compressor
JP3978786B2 (en) Electric motor and fuel pump using the same
JP5490200B2 (en) Electric motor, air conditioner equipped with the electric motor, and method for manufacturing the electric motor
JP6901035B2 (en) Manufacturing methods for rotating electric machines, compressors, and rotating electric machines
US20150010414A1 (en) Stator, three-phase induction motor, and compressor
WO2019123913A1 (en) Electrically driven compressor
JP3838568B2 (en) Structure and processing method of laminated can for ammonia cand motor
EP0827258A1 (en) Device for supporting rotating shaft and small-sized motor
CN107017722B (en) Motor for use in refrigerant environments
WO2024084844A1 (en) Electric motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3761749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term