JP3760920B2 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
JP3760920B2
JP3760920B2 JP2003054581A JP2003054581A JP3760920B2 JP 3760920 B2 JP3760920 B2 JP 3760920B2 JP 2003054581 A JP2003054581 A JP 2003054581A JP 2003054581 A JP2003054581 A JP 2003054581A JP 3760920 B2 JP3760920 B2 JP 3760920B2
Authority
JP
Japan
Prior art keywords
light
reflected
pulse
receiving
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003054581A
Other languages
Japanese (ja)
Other versions
JP2004261366A (en
Inventor
禎祐 木村
一泰 酒井
泰司 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003054581A priority Critical patent/JP3760920B2/en
Priority to US10/786,156 priority patent/US7252639B2/en
Publication of JP2004261366A publication Critical patent/JP2004261366A/en
Application granted granted Critical
Publication of JP3760920B2 publication Critical patent/JP3760920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Description

【0001】
【発明の属する技術分野】
本発明は、脈拍数等の生体の状態を検出するセンサに関するものである。
【0002】
【従来の技術】
近年では、健康管理の用途で、日常生活やジョギング等の運動時において、心臓の拍動数(心拍数)をモニターするニーズが高まっている。この心拍数を検出するには、心拍に伴って発生する活動電位を胸部より計測して、即ち心電図を用いて、その振幅のピーク間隔時間から算出する方法が一般的である。
【0003】
しかし、この方法は、電極を体に貼り付ける必要があり、その手順がわずらわしいので、最近では、より簡便な方法として、脈波を計測して脈拍数を検出する方法が考えられている。
前記脈波とは、心拍につれて起こる動脈内の圧力変動が、末梢動脈に波動として伝わったものであり、その脈波を計測する装置として、光学式脈波センサがある。
【0004】
この光学式脈波センサは、血液中のヘモグロビンの光吸収特性を利用して、末梢動脈の血液の波動的な容積変化を計測するものであり、人体(指、腕、こめかみ等)に簡便に装着して脈波を計測することができるため、脈拍数を検出する装置として、今後も広く普及して行くと考えられる。
【0005】
また、前記心拍数、脈拍数(拍/分)は、下記式(1)に示す様に、それぞれ60を心電波形、脈波波形の振幅のピーク間隔時間(秒)で割った値である。
心拍数、脈拍数(拍/分)=60/振幅のピーク間隔時間(秒)・・・(1)
この心電波形と脈波波形の振幅のピーク位置は、図10に示す様に、通常、同期しており、心拍数と脈拍数は一致する。
【0006】
しかし、日常生活や運動時において、脈波センサを装着した計測部位に体動が生ずると、末梢動脈の血流が乱れ、心拍とは無関係な脈波の振幅のピークが発生し、心拍数と脈拍数は一致しなくなる。こうなると、脈拍数を心拍数の代用として利用しようとする本来の目的は達成できない。
【0007】
また、心拍とは無関係な脈波の振幅のピークは、心拍に同期する脈波の振幅のピークの発生周波数と近いという特性があるため、通常のノイズ除去に適用されるフィルタ処理では、対策が不可能である。
この対策として、運動ノイズセンサを用いて運動ノイズによる信号を検出し、運動ノイズと脈拍信号が重なった信号から運動ノイズを除去し、運動時でも正確な脈拍を検出しようとする技術が提案されている(特許文献1参照)。
【0008】
また、異なる波長の光を生体に照射し、それぞれで得られた信号を演算処理することにより、生体の体動波成分と血液脈動波成分を区別し、脈拍を正確に検出しようとする技術が提案されている(特許文献2参照)。
【0009】
【特許文献1】
特開平7−299044号公報 (第2頁、図1)
【特許文献2】
特開平7−088092号公報 (第2頁、図1)
【0010】
【発明が解決しようとする課題】
しかしながら、前記特許文献1の技術では、運動ノイズセンサを用いて運動ノイズを検出しても、皮膚の表面反射など人体に関して発生するノイズには対応できないという問題があった。
【0011】
また、前記特許文献2の技術では、両信号に体動波成分と血液脈動波成分とが含まれ、また、センサの装着状態や個人差によって、体動波成分と血液脈動波成分の関係は変化するため、同公報に記載の一意的な演算処理では脈拍を正確に求めることができないという問題があった。
本発明は、前記課題を解決するためになされたものであり、その目的は、皮膚の表面反射、センサの装着状態、個人差等の影響を低減して、正確に脈拍等の生体の状態を検出することができるセンサを提供することにある。
【0033】
【課題を解決するための手段及び発明の効果】
(1)請求項1の発明は、生体に対して、波長の異なる光を、それぞれ別個に照射する光照射手段と、前記光照射手段から照射された各光の反射光を受光する反射波受光手段と、を、筐体内に収容したセンサ(例えば脈波センサ)において、前記光照射手段及び前記反射波受光手段の各光の照射側及び受光側に、各光及びその反射光が透過する窓部を備えるとともに、前記長波長の光を照射する側の窓部の外側及び/又は前記長波長の光の反射波を受光する側の窓部の外側に、前記人体の皮膚から離すように引き下がり部を設けたことを特徴とするセンサを要旨とする。
【0034】
本発明では、長波長の光(例えば赤外光)を照射する側の窓部の外側及び/又は長波長の光の反射波を受光する側の窓部の外側に、人体の皮膚から離すように引き下がり部(隙間となる部分)を設けるので、窓部の外側に皮膚が密着している箇所に比べて、皮膚の動きが容易になる。よって、例えば赤外光を用いた場合に、体動の変化を検出する能力が高いという効果がある。
【0035】
(2)請求項2の発明は、生体に対して、波長の異なる光を、それぞれ別個に照射する光照射手段と、前記光照射手段から照射された各光の反射光を受光する反射波受光手段と、を、筐体内に収容したセンサ(例えば脈波センサ)において、前記光照射手段及び前記反射波受光手段の各光の照射側及び受光側に、各光及びその反射光が透過する窓部を備えるとともに、前記長波長の光を照射する側の窓部の外側及び/又は前記長波長の光の反射波を受光する側の窓部の外側に、凹凸を設けたことを特徴とするセンサを要旨とする。
【0036】
本発明では、長波長の光(例えば赤外光)を照射する側の窓部の外側及び/又は長波長の光の反射波を受光する側の窓部の外側に、凹凸を設けるので、窓部の外側に皮膚が密着している箇所に比べて、皮膚の動きが容易になる。よって、例えば赤外光を用いた場合に、体動の変化を検出する能力が高いという効果がある。
【0037】
(3)請求項3の発明は、生体に対して、波長の異なる光を、それぞれ別個に照射する光照射手段と、前記光照射手段から照射された各光の反射光を受光する反射波受光手段と、を、筐体内に収容したセンサ(例えば脈波センサ)において、前記光照射手段及び前記反射波受光手段の各光の照射側及び受光側に、各光及びその反射光が透過する窓部を備えるとともに、前記長波長の光を照射する側の窓部の外側及び/又は前記長波長の光の反射波を受光する側の窓部の外側に、透光性の柔軟な材料を配置したことを特徴とするセンサを要旨とする。
【0038】
本発明では、長波長の光(例えば赤外光)を照射する側の窓部の外側及び/又は長波長の光の反射波を受光する側の窓部の外側に、透光性の柔軟な材料からなる部材を配置するので、硬質の窓部の外側に皮膚が密着している箇所に比べて、皮膚の動きが容易になる。よって、例えば赤外光を用いた場合に、体動の変化を検出する能力が高いという効果がある。
【0039】
(4)請求項4の発明では、前記光照射手段によって照射する光は、前記波長が異なるとともに、その強度又は光量が異なる光であることを特徴とする。
本発明は、光照射手段によって照射する光を例示したものである。
(5)請求項5の発明では、前記波長の異なる光は、緑色光及び赤外光であることを特徴とする。
本発明は、光照射手段によって照射する光を例示したものである。
尚、緑色光の波長としては、460nm〜570nmの範囲を採用でき、赤外光の波長としては、780nm〜1000nmの範囲を採用できる。
【0043】
【発明の実施の形態】
次に、本発明のセンサの実施の形態の例(実施例)について、図面に基づいて説明する。
(実施例1)
ここでは、センサとして脈波センサを例に挙げるとともに、脈波センサを用いた生体状態検出方法(脈波検出方法)及び生体状態検出装置(脈波検出装置)を例に挙げて説明する。
【0044】
a)まず、本実施例の脈波検出方法を実施する脈波検出装置を、図1に基づいて説明する。
図1に示す様に、本実施例の脈波検出装置1は、人体の脈拍数を検出する装置であり、主として、データ処理装置3と、データ処理装置3に接続された脈波センサ5及び駆動回路7とから構成されている。
【0045】
このうち、前記データ処理装置3は、脈波センサ5から得られた信号を増幅する検出回路11と、検出回路11からの信号をA/D変換するADC13と、ADC13からのデジタル信号を処理して脈波数の検出等の各種の演算処理を行うマイクロコンピュータ15とを備えている。
【0046】
前記脈波センサ5は、後に詳述するように、発光素子として、赤外LED17と緑色LED19を備えるとともに、受光素子として、フォトダイオード(PD)21を備えている。
前記駆動回路7は、赤外LED17と緑色LED19とに対して、それぞれ異なるタイミングで赤外光又は緑色光を照射させるための駆動信号を出力する。
【0047】
尚、データ処理装置3と駆動回路7とは、脈波検出装置本体9の筐体内に収容されている。
b)次に、前記脈波センサ5について、更に詳細に説明する。
前記脈波センサ5は、図2に示す様に、人体の腕等に、約940nmの波長の赤外光を照射する赤外LED17と、約520nmの緑色光を照射する緑色LED19と、人体に照射された赤外光又は緑色光の反射光をそれぞれ受光するPD21とを備える光学式反射型センサである。
【0048】
この赤外LED17、緑色LED19、PD21は、それぞれ脈波センサ5の筐体23の底部25に、PD21を挟んで左右に赤外LED17と緑色LED19とが位置するように並列して配置され、透明な樹脂製の窓27を介して、赤外光又は緑色光を人体に対して照射できるようにされている。
【0049】
前記脈波センサ5では、赤外LED17又は緑色LED19から人体に向かって光が照射されると、光の一部が人体の内部を通る小・細動脈(毛細動脈)にあたって、毛細動脈を流れる血液中のヘモグロビンに吸収され、残りの光が毛細動脈で反射して散乱し、その一部が受光素子であるPD21に入射する。この時、血液の脈動により毛細動脈にあるヘモグロビンの量が波動的に変化するので、ヘモグロビンに吸収される光も波動的に変化する。また、血管径の変化によっても、ヘモグロビンの量が変化する。その結果、毛細動脈で反射してPD21で検出される受光量が変化し、その受光量の変化を脈波情報(例えば電圧信号)としてデータ処理装置3に出力する。
【0050】
従って、データ処理装置3に入力した(赤外LED17又は緑色LED19から照射された光の反射波に対応した)信号(以下検出信号と記す)を用いることにより、後述する様にして、脈拍数等の生体の状態を求めることができる。
尚、図1及び図2では、毛細動脈に照射されて反射する光を点線で示し、皮膚の表面で反射する光を実線で示している。
【0051】
c)次に、本実施例における脈波検出の原理について説明する。
図3に、データ処理装置3に入力した検出信号を示すが、この検出信号には、毛細動脈に当たって反射した脈波を示す信号(脈波成分)と、皮膚表面又は毛細動脈以外で反射した反射波の成分(反射波成分)との両成分が含まれている。
【0052】
また、図4に示す様に、前記検出信号を周波数解析することにより、その周波数成分が得られるが、この検出信号を周波数領域で考えると、検出信号には、心拍に同期する脈拍成分と、体動を示す(同期する)体動成分と、(体動成分を除いた反射波成分である)概ね直流成分とが、共に現れる。
【0053】
このうち、直流成分は、脈拍成分や体動成分とは大きく異なり、検出回路11などでカットされる(例えば所定の周波数以下をカットするフィルタによりカットされる)ので、以下の説明では省略する。
また、心拍に同期する脈拍成分は脈波に乗り、体動を示す体動成分は脈波と反射波に乗るという特徴がある。
【0054】
一方、図5(a)に示す様に、緑色LED19を用いた計測において、脈拍成分(実線)と体動成分(点線)とのパワーの比率は、概ね1:5であるが、図5(b)に示す様に、赤外LED17を用いた計測において、脈拍成分(実線)と体動成分(点線)とのパワーの比率は、概ね1:50ほどである。
【0055】
この緑色LED19と赤外LED17を用いた場合の特性を踏まえて、本実施例では、赤外LED17の赤外光の強度を、緑色LED19の緑色光の強度に比べて、十分小さくしている。ここでは、赤外LED17の光の強度を、緑色LED19の光の強度より、約1/5と小さくする。
【0056】
この光の強度の調節は、赤外LED17に加える印加電圧を小さくすることにより実現できるが、これ以外に、赤外LED17として光の強度が小さな定格のLEDを使用することによっても実現できる。
そして、上述した光の強度の調節によって、赤外光の反射波における脈拍成分は、S(シグナル)/N(ノイズ)の関係でNに埋もれてしまい、実質的に検出されなくなるので、体動成分のみが検出されることになる。 尚、赤外LED17の光の強度を、緑色LED19の光の強度より、約1/5と小さくすると、体動成分のみの抽出が容易であるので好適である。
【0057】
よって、緑色LED19の反射波の(脈拍成分と体動成分を含む)周波数成分から、赤外LED17の反射波の(体動成分のみを含む)周波数成分とを比較することにより、脈拍成分のみを抽出することができる。
d)次に、本実施例における脈波検出の処理手順について、図6に基づいて説明する。
【0058】
図6に示す様に、まず、ステップ100では、(マイクロコンピュータ15からの制御信号を受けた)駆動回路7により、緑色LED19を1回発光させる。そして、その反射光をPD21にて受光し、PD21からの(緑色光に対応した)信号を検出回路11にて増幅し、ADC13を介して、マイクロコンピュータ15に入力する。
【0059】
続くステップ110では、同様に、緑色LED19の発光後、赤外LED17を1回発光させる。そして、その反射光をPD21にて受光し、PD21からの(赤外光に対応した)信号を検出回路11にて増幅し、ADC13を介して、マイクロコンピュータ15に入力する。
【0060】
つまり、緑色LED19の発光と赤外LED17の発光とを、サンプリング間隔の50msec毎に1回づつ交互に発光させるのである(即ち20Hz毎に発光させる)。これにより、緑色光と赤外光とが同時にPD21に受光されないようにする。
【0061】
特に、赤外LED17の光の強度を、緑色LED19の光の強度より、約1/5と十分に小さくする。ここでは、赤外LED17に加える印加電圧を小さくする。
続くステップ120では、後述する周波数解析に必要なデータが得られるように、一定時間(約25秒)待機し、一定時間経過後に、ステップ130に進む。つまり、過去25秒間の検出信号のデータを周波数解析することにより脈拍成分や体動成分の周波数を求めるので、ここでは、そのためのデータを蓄積するのである。
【0062】
ステップ130では、前記緑色LED19又は赤外LED17を用いて得られた各検出信号の周波数解析を行う。
即ち、各検出信号の時系列データに対して周知の高速フーリエ変換(FFT)等の周波数解析を実施する。これによって、前記図5に示すような周波数のピーク等のデータが得られる。
【0063】
続くステップ140では、図5(a)に示す様に、緑色光に対する(脈拍成分と体動成分を含む)周波数解析結果には有って、図5(b)に示す様に、赤外光に対する(体動成分のみを含む)周波数解析結果に無い周波数、即ち脈拍成分を抽出する。
【0064】
具体的には、緑色光に対する周波数解析結果から、赤外光に対する周波数解析結果にあるピークの周波数をカットし、残る周波数帯のピークを脈拍成分として抽出する。
続くステップ150では、抽出したピークの周波数を脈拍数に換算して、図示しない液晶等のディスプレイに表示する。
【0065】
具体的には、抽出した周波数に60秒をかけて脈波数を算出する。例えば周波数が1[Hz]の場合には、脈拍数は、1[Hz]×60[秒]=60[拍/分]となる。また、脈拍間隔も、抽出した周波数の逆数を取ることにより算出できる。
【0066】
続くステップ160では、体動成分のみを含む赤外光に対する周波数解析結果から、そのピークの周波数を体動成分に換算して、同様にディスプレイに表示し、一旦本処理を終了する。
具体的には、得られた周波数に60秒をかけて体動の回数を算出する。
【0067】
e)ここで、実際に脈波センサ5を人体に装着して運動した場合における検出信号の状態(従って周波数の変化の状態)を、図7に示す。
図7(a)に示す様に、緑色LED19を用いて得られた検出信号を周波数解析した結果、体動成分(点線)と脈拍成分(実線)とによる異なるピークが連続して変化していることが分かる。
【0068】
一方、図7(b)に示す様に、赤外LED17を用いて得られた検出信号を周波数解析した結果、体動成分(実線)のみのピークが連続して変化していることが分かる。
従って、このグラフからも、緑色LED19の反射波の(脈拍成分と体動成分を含む)周波数成分から、赤外LED17の反射波の(体動成分のみを含む)周波数成分とを比較することにより、脈拍成分のみを抽出して、脈拍数を算出することができること、更には、体動成分も抽出できることが分かる。
【0069】
この様に、本実施例では、人体に対して、発光タイミングを切り替えて、赤外LED17からの赤外光の照射と緑色LED19からの緑色光の照射とを交互に行うとともに、赤外光の強度を緑色光の強度の1/5程度に低減している。そして、各照射光の反射光を受光し、その反射光による信号を周波数解析して、脈拍成分と体動成分とを抽出している。
【0070】
このとき、赤外光の反射光の周波数解析の結果には、実質的に体動成分しか現れず、また、緑色光の反射光の周波数解析の結果には、脈拍成分と体動成分とが現れるので、両周波数解析の結果を比較することにより、脈拍成分のみを抽出することができる。
【0071】
そして、脈拍成分から脈拍数や脈拍間隔を求めることができ、体動成分から体動の回数等を求めることができる。
尚、本実施例では、赤外LED17の光の強度を低減するように調節する場合を例に挙げたが、例えば照射する光量の少ない赤外LEDを採用するなどの方法により、赤外LED17の光量を低減するようにしても、同様な効果が得られる。
【0072】
(実施例2)
次に実施例2の脈波検出装置について説明するが、前記実施例1と同様な箇所の説明は省略する。
本実施例では、赤外LED17及び緑色LED19から同じ強度の光を照射する。そして、照射された光の反射光をPD21にて受光し、検出回路11にて増幅するが、その増幅率(即ち感度)が赤外LED17と緑色LED19とで異なるように調整する。
【0073】
具体的には、赤外光の反射光による信号の増幅率を、緑色光の反射光による信号の増幅率より十分に小さく(好ましくは1/5程度に)設定する。
これにより、前記実施例1と同様に、赤外LED17を発光させる場合には、その検出信号における脈拍成分は、S/Nの関係でNに埋もれて検出されないため、体動成分のみが検出される。よって、同様にして、脈拍成分(即ち脈拍数)や体動成分を求めることができる。
【0074】
(実施例3)
次に実施例3の脈波検出装置について説明するが、前記実施例1と同様な箇所の説明は省略する。
本実施例では、赤外LED17及び緑色LED19から同じ強度の光を照射するとともに、同じ感度で検出信号を増幅する。
【0075】
つまり、緑色LED17を用いた場合には、例えば従来の赤外LEDよりS/Nが大きいので、赤外LED17及び緑色LED19の各検出信号を比較することにより、体動成分のみを抽出することが可能である。
例えば赤外LED17を用いた場合には、その検出信号の周波数解析の結果において、脈拍成分に対するピークのパワーは小さいので、所定パワー以下の周波数をカットすることにより、体動成分のみを抽出し、更に、前記実施例1と同様にして、心拍成分を抽出することができる。
【0076】
(実施例4)
次に実施例4の脈波検出装置について説明するが、前記実施例1と同様な箇所の説明は省略する。
本実施例では、図8(a)に示す様に、脈波センサ31は、前記実施例1と同様に、赤外LED33、緑色LED35、PD37を備えるが、特に、赤外LED33の上部の窓(即ち透明の樹脂製の窓部材)39の一部が切り欠かれて、引き下がり部に相当する凹部41が形成されている。
【0077】
つまり、この凹部41により、窓39の上面43は人体に直接接触しないようにされているので、皮膚の表面は体動に伴って揺れやすくなり、体動を強調して検出することができる。
よって、赤外LED33の強度(又は光量)を小さくでき、消費電力を節約することができる。
【0078】
尚、これとは別に、図示しないが、赤外LEDの上部の窓に凹凸を設けてよい。この方法でも、体動を強調して取り出すことができる。
(実施例5)
次に実施例5の脈波検出装置について説明するが、前記実施例1と同様な箇所の説明は省略する。
【0079】
本実施例では、図8(b)に示す様に、脈波センサ51は、前記実施例4と同様に、赤外LED53、緑色LED55、PD57を備え、赤外LED53の上部の窓59の一部が切り欠かれて、凹部61が形成されている。
特に本実施例では、この凹部61に、透明で柔軟な材料(例えばゲル状のシリコン)からなる表面層63が配置されている。
【0080】
よって、本実施例においても、皮膚の表面は体動に伴って揺れやすくなり、体動を強調して検出することができるので、赤外LED53の強度(又は光量)を小さくでき、消費電力を節約することができる。
(実施例6)
次に実施例6の脈波検出装置について説明するが、前記実施例1と同様な箇所の説明は省略する。
【0081】
図9に示す様に、本実施例の脈波センサ71は、2対の素子を備えている。
具体的には、赤外LED73と、その反射光を受光する赤外用PD75と、緑色LED77と、その反射光を受光する緑色用PD79とを備えている。
そして、各素子対の領域を遮蔽して分離するために、各素子対の間には、光を通さない材料からなる分離壁81が設けられている。
【0082】
本実施例は、前記実施例1と同様な効果を奏するとともに、各素子対は光学的に分離されているので、赤外LED73及び緑色LED77から同時に光を照射することができる。
よって、処理時間を節約できるという利点がある。
【0083】
尚、本発明は前記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
(1)例えば、前記実施例では、脈波検出装置について述べたが、脈拍成分や体動成分を抽出する処理等に関しては、上述したアルゴリズムに基づく処理を実行させるプログラムやそのプログラムを記憶している記録媒体にも適用できる。
【0084】
この記録媒体としては、マイクロコンピュータとして構成される電子制御装置、マイクロチップ、フレキシブルディスク、ハードディスク、DVD、光ディスク等の各種の記録媒体が挙げられる。つまり、上述した脈波検出装置の処理を実行させることができるプログラムを記憶したものであれば、特に限定はない。
【0085】
尚、前記プログラムは、単に記録媒体に記憶されたものに限定されることなく、例えばインターネットなどの通信ラインにて送受信されるプログラムにも適用される。
(2)また、前記脈波検出装置は、脈波センサから得られた信号を、すぐそばにあるデータ処理装置に直接に入力する場合だけでなく、脈波センサからの得られたデータを例えばパソコン等の装置に入力し、そのデータを例えばインターネット等を利用して遠隔地にあるデータ処理装置に送信にして、脈拍成分(従って脈拍数)や体動成分を測定する場合に適用することもできる。
【図面の簡単な説明】
【図1】 実施例1の脈波検出装置の主要な構成を示す説明図である。
【図2】 実施例1の脈波センサの使用方法等を示す説明図である。
【図3】 実施例1の脈波センサによって得られる検出信号を示すグラフである。
【図4】 実施例1の検出信号の周波数解析の結果を模式的に示すグラフである。
【図5】 実施例1の検出信号の周波数解析の結果を模式的に示すグラフであり、(a)は緑色光に関する周波数解析結果を示すグラフ、(b)は赤外光に関する周波数解析結果を示すグラフである。
【図6】 実施例1の脈波検出処理を示すフローチャートである。
【図7】 実際の検出信号の周波数解析の結果を示すグラフであり、(a)は緑色光に関する周波数解析結果を示すグラフ、(b)は赤外光に関する周波数解析結果を示すグラフである。
【図8】 (a)は実施例4の脈波センサを示す説明図、(b)は実施例5の脈波センサを示す説明図である。
【図9】 実施例6の脈波センサを示す説明図である。
【図10】 従来技術の説明図である。
【符号の説明】
1…脈波検出装置
3…データ処理装置部
5、31、51、71…脈波センサ
7…駆動回路
17、33、55、73…赤外LED
19、35、57、77…緑色LED
21、37、59、75、79…フォトダイオード(PD)
27…窓
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensor that detects a state of a living body such as a pulse rate.
[0002]
[Prior art]
In recent years, there has been a growing need for monitoring the heart rate (heart rate) in daily life and during exercise such as jogging for health management purposes. In order to detect this heart rate, a general method is to measure the action potential generated with the heartbeat from the chest, that is, to calculate from the peak interval time of the amplitude using an electrocardiogram.
[0003]
However, this method requires electrodes to be attached to the body, and the procedure is cumbersome. Recently, as a simpler method, a method of measuring the pulse wave and detecting the pulse rate has been considered.
The pulse wave is a pressure fluctuation in an artery that occurs as a heart beat is transmitted to a peripheral artery as a wave, and an optical pulse wave sensor is used as a device for measuring the pulse wave.
[0004]
This optical pulse wave sensor measures the volumetric volume change of blood in peripheral arteries using the light absorption characteristics of hemoglobin in the blood, and can be easily applied to the human body (finger, arm, temple, etc.) Since it is possible to measure the pulse wave by wearing it, it is considered that the device will be widely used in the future as a device for detecting the pulse rate.
[0005]
The heart rate and the pulse rate (beats / minute) are values obtained by dividing 60 by the peak interval time (seconds) of the amplitude of the electrocardiogram waveform and the pulse wave waveform, as shown in the following formula (1). .
Heart rate, pulse rate (beats / minute) = 60 / peak interval time (seconds) of amplitude (1)
As shown in FIG. 10, the peak positions of the amplitudes of the electrocardiogram waveform and the pulse wave waveform are normally synchronized, and the heart rate and the pulse rate coincide with each other.
[0006]
However, during daily life and exercise, if body movement occurs at the measurement site where the pulse wave sensor is attached, the blood flow of the peripheral artery is disturbed, and the peak of the amplitude of the pulse wave unrelated to the heartbeat occurs. Pulse rate will not match. If this happens, the original purpose of using the pulse rate as a substitute for the heart rate cannot be achieved.
[0007]
In addition, since the peak of the amplitude of the pulse wave that is not related to the heartbeat is close to the frequency of the peak of the amplitude of the pulse wave that is synchronized with the heartbeat, there is a countermeasure in the filter processing applied to normal noise removal. Impossible.
As a countermeasure against this, a technique has been proposed in which a signal due to motion noise is detected using a motion noise sensor, motion noise is removed from a signal that is a combination of motion noise and a pulse signal, and an accurate pulse is detected even during motion. (See Patent Document 1).
[0008]
In addition, there is a technology that distinguishes between body motion wave components and blood pulsation wave components of a living body by irradiating a living body with light of different wavelengths and processing the signals obtained by each to detect the pulse accurately. It has been proposed (see Patent Document 2).
[0009]
[Patent Document 1]
JP 7-299044 A (2nd page, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 7-088092 (second page, FIG. 1)
[0010]
[Problems to be solved by the invention]
However, the technique of Patent Document 1 has a problem that even if motion noise is detected using a motion noise sensor, it cannot cope with noise generated on the human body, such as skin surface reflection.
[0011]
In the technique of Patent Document 2, the body motion wave component and the blood pulsation wave component are included in both signals, and the relationship between the body motion wave component and the blood pulsation wave component depends on the wearing state of the sensor and individual differences. Therefore, there is a problem that the pulse cannot be accurately obtained by the unique calculation process described in the publication.
The present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the influence of skin surface reflection, sensor mounting state, individual differences, etc., and accurately determine the state of a living body such as a pulse. It is to provide a sensor that can detect.
[0033]
[Means for Solving the Problems and Effects of the Invention]
(1) The invention of claim 1 is directed to a light irradiation means for separately irradiating a living body with light having different wavelengths, and a reflected wave light reception for receiving reflected light of each light emitted from the light irradiation means. In a sensor (for example, a pulse wave sensor) housed in a housing, a window through which each light and its reflected light is transmitted to the light irradiation side and the light receiving side of each of the light irradiation means and the reflected wave light receiving means And is pulled down away from the skin of the human body on the outside of the window on the side irradiating the long wavelength light and / or on the outside of the window on the side receiving the reflected wave of the long wavelength light. A gist is a sensor characterized in that a portion is provided.
[0034]
In the present invention, the outer skin of the long-wavelength light (for example, infrared light) and / or the outer window of the long-wavelength light receiving side is separated from the human skin. Since a pull-down portion (portion serving as a gap) is provided on the skin, the movement of the skin is facilitated as compared with a portion where the skin is in close contact with the outside of the window portion. Therefore, for example, when infrared light is used, there is an effect that the ability to detect a change in body movement is high.
[0035]
(2) The invention of claim 2 is directed to a light irradiating means for separately irradiating a living body with light having different wavelengths, and a reflected wave light receiving for receiving reflected light of each light emitted from the light irradiating means. In a sensor (for example, a pulse wave sensor) housed in a housing, a window through which each light and its reflected light is transmitted to the light irradiation side and the light receiving side of each of the light irradiation means and the reflected wave light receiving means And an unevenness provided on the outside of the window on the side that irradiates the long wavelength light and / or on the outside of the window on the side that receives the reflected wave of the long wavelength light. The gist of the sensor.
[0036]
In the present invention, since the projections and depressions are provided on the outside of the window on the side that irradiates long wavelength light (for example, infrared light) and / or on the outside of the window on the side that receives the reflected wave of long wavelength light, The movement of the skin is facilitated as compared with the part where the skin is in close contact with the outside of the part. Therefore, for example, when infrared light is used, there is an effect that the ability to detect a change in body movement is high.
[0037]
(3) The invention of claim 3 is a light irradiation means for separately irradiating light with different wavelengths to a living body, and a reflected wave reception for receiving reflected light of each light emitted from the light irradiation means. In a sensor (for example, a pulse wave sensor) housed in a housing, a window through which each light and its reflected light is transmitted to the light irradiation side and the light receiving side of each of the light irradiation means and the reflected wave light receiving means And a translucent flexible material is disposed on the outside of the window on the side irradiating the long wavelength light and / or on the outside of the window on the side receiving the reflected wave of the long wavelength light. The gist of the sensor is as follows.
[0038]
In the present invention, on the outside of the window portion on the side that irradiates the long wavelength light (for example, infrared light) and / or on the outside of the window portion on the side that receives the reflected wave of the long wavelength light, the light-transmitting flexible Since the member made of the material is disposed, the movement of the skin is facilitated as compared with the portion where the skin is in close contact with the outside of the hard window portion. Therefore, for example, when infrared light is used, there is an effect that the ability to detect a change in body movement is high.
[0039]
(4) The invention of claim 4 is characterized in that the light irradiated by the light irradiation means is light having different wavelengths and different intensities or light amounts.
The present invention exemplifies light irradiated by the light irradiation means.
(5) The invention according to claim 5 is characterized in that the lights having different wavelengths are green light and infrared light.
The present invention exemplifies light irradiated by the light irradiation means.
The green light wavelength can be in the range of 460 nm to 570 nm, and the infrared light wavelength can be in the range of 780 nm to 1000 nm.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
Next, an example (example) of an embodiment of the sensor of the present invention will be described based on the drawings.
Example 1
Here, a pulse wave sensor is taken as an example of the sensor, and a living body state detecting method (pulse wave detecting method) and a living body state detecting device (pulse wave detecting device) using the pulse wave sensor are described as examples .
[0044]
a) First, a pulse wave detection apparatus that implements the pulse wave detection method of this embodiment will be described with reference to FIG.
As shown in FIG. 1, the pulse wave detection device 1 of the present embodiment is a device that detects the pulse rate of a human body, and mainly includes a data processing device 3, a pulse wave sensor 5 connected to the data processing device 3, and And a drive circuit 7.
[0045]
Among these, the data processing device 3 processes the detection circuit 11 that amplifies the signal obtained from the pulse wave sensor 5, the ADC 13 that performs A / D conversion on the signal from the detection circuit 11, and the digital signal from the ADC 13. And a microcomputer 15 that performs various arithmetic processes such as detection of the pulse wave number.
[0046]
As will be described in detail later, the pulse wave sensor 5 includes an infrared LED 17 and a green LED 19 as light emitting elements, and a photodiode (PD) 21 as a light receiving element.
The drive circuit 7 outputs drive signals for irradiating the infrared LED 17 and the green LED 19 with infrared light or green light at different timings.
[0047]
The data processing device 3 and the drive circuit 7 are housed in the casing of the pulse wave detection device main body 9.
b) Next, the pulse wave sensor 5 will be described in more detail.
As shown in FIG. 2, the pulse wave sensor 5 includes an infrared LED 17 that irradiates a human arm or the like with infrared light having a wavelength of about 940 nm, a green LED 19 that irradiates green light with a wavelength of about 520 nm, and a human body. It is an optical reflection type sensor provided with PD21 which each receives the reflected light of the irradiated infrared light or green light.
[0048]
The infrared LED 17, the green LED 19, and the PD 21 are arranged in parallel on the bottom 25 of the casing 23 of the pulse wave sensor 5 so that the infrared LED 17 and the green LED 19 are positioned on the left and right sides of the PD 21. A human body can be irradiated with infrared light or green light through a resin-made window 27.
[0049]
In the pulse wave sensor 5, when light is irradiated toward the human body from the infrared LED 17 or the green LED 19, a part of the light hits a small arteriole (capillary artery) passing through the inside of the human body, and blood flowing through the capillary artery The remaining light is absorbed by the hemoglobin, and the remaining light is reflected and scattered by the capillary artery, and a part of it is incident on the PD 21 which is a light receiving element. At this time, since the amount of hemoglobin in the capillary artery changes in a wave manner due to blood pulsation, the light absorbed in the hemoglobin also changes in a wave manner. Further, the amount of hemoglobin also changes due to a change in blood vessel diameter. As a result, the amount of received light that is reflected by the capillary artery and detected by the PD 21 changes, and the change in the amount of received light is output to the data processing device 3 as pulse wave information (for example, a voltage signal).
[0050]
Accordingly, by using a signal (corresponding to a reflected wave of light emitted from the infrared LED 17 or the green LED 19) (hereinafter referred to as a detection signal) input to the data processing device 3, as described later, the pulse rate and the like The state of the living body can be obtained.
In FIG. 1 and FIG. 2, the light that is applied to the capillary artery and reflected is indicated by a dotted line, and the light that is reflected by the surface of the skin is indicated by a solid line.
[0051]
c) Next, the principle of pulse wave detection in this embodiment will be described.
FIG. 3 shows a detection signal input to the data processing device 3. This detection signal includes a signal (pulse wave component) indicating a pulse wave reflected on the capillary artery and a reflection reflected on the skin surface or other than the capillary artery. Both components of wave components (reflected wave components) are included.
[0052]
Further, as shown in FIG. 4, the frequency component of the detection signal can be obtained by frequency analysis of the detection signal. When the detection signal is considered in the frequency domain, the detection signal includes a pulse component synchronized with the heartbeat, A body motion component indicating (synchronizing) body motion and a substantially direct current component (which is a reflected wave component excluding the body motion component) appear together.
[0053]
Among them, the direct current component is greatly different from the pulse component and the body motion component, and is cut by the detection circuit 11 or the like (for example, is cut by a filter that cuts a predetermined frequency or less), and thus will be omitted in the following description.
Further, there is a feature that a pulse component synchronized with a heartbeat rides on a pulse wave, and a body motion component indicating body motion rides on a pulse wave and a reflected wave.
[0054]
On the other hand, as shown in FIG. 5A, in the measurement using the green LED 19, the power ratio between the pulse component (solid line) and the body motion component (dotted line) is approximately 1: 5. As shown in b), in the measurement using the infrared LED 17, the power ratio between the pulse component (solid line) and the body motion component (dotted line) is about 1:50.
[0055]
In the present embodiment, the intensity of the infrared light of the infrared LED 17 is made sufficiently smaller than the intensity of the green light of the green LED 19 based on the characteristics when the green LED 19 and the infrared LED 17 are used. Here, the intensity of the light of the infrared LED 17 is set to about 1/5 that of the light of the green LED 19.
[0056]
The adjustment of the light intensity can be realized by reducing the applied voltage applied to the infrared LED 17, but it can also be realized by using a rated LED having a low light intensity as the infrared LED 17.
By adjusting the intensity of light as described above, the pulse component in the reflected wave of infrared light is buried in N due to the relationship of S (signal) / N (noise), and is not substantially detected. Only the component will be detected. Note that it is preferable to make the light intensity of the infrared LED 17 about 1/5 smaller than the light intensity of the green LED 19 because it is easy to extract only body motion components.
[0057]
Therefore, by comparing the frequency component of the reflected wave of the green LED 19 (including the pulse component and the body motion component) with the frequency component of the reflected wave of the infrared LED 17 (including only the body motion component), only the pulse component is obtained. Can be extracted.
d) Next, the processing procedure of pulse wave detection in the present embodiment will be described with reference to FIG.
[0058]
As shown in FIG. 6, first, in step 100, the green LED 19 is caused to emit light once by the drive circuit 7 (received a control signal from the microcomputer 15). Then, the reflected light is received by the PD 21, and a signal (corresponding to green light) from the PD 21 is amplified by the detection circuit 11 and input to the microcomputer 15 via the ADC 13.
[0059]
In subsequent step 110, similarly, after the green LED 19 emits light, the infrared LED 17 emits light once. Then, the reflected light is received by the PD 21, and a signal (corresponding to infrared light) from the PD 21 is amplified by the detection circuit 11 and input to the microcomputer 15 via the ADC 13.
[0060]
That is, the light emitted from the green LED 19 and the light emitted from the infrared LED 17 are alternately emitted once every 50 msec of the sampling interval (that is, emitted every 20 Hz). This prevents green light and infrared light from being simultaneously received by the PD 21.
[0061]
In particular, the intensity of the light of the infrared LED 17 is made sufficiently lower to about 1/5 than the intensity of the light of the green LED 19. Here, the applied voltage applied to the infrared LED 17 is reduced.
In the following step 120, a predetermined time (about 25 seconds) is waited so that data necessary for frequency analysis, which will be described later, is obtained. That is, the frequency of the pulse component and the body motion component is obtained by performing frequency analysis on the detection signal data for the past 25 seconds, and therefore the data for that purpose is accumulated here.
[0062]
In step 130, frequency analysis of each detection signal obtained using the green LED 19 or the infrared LED 17 is performed.
That is, a frequency analysis such as a well-known fast Fourier transform (FFT) is performed on the time series data of each detection signal. As a result, data such as frequency peaks as shown in FIG. 5 is obtained.
[0063]
In the following step 140, as shown in FIG. 5A, there is a frequency analysis result (including a pulse component and a body motion component) for green light, and as shown in FIG. A frequency not included in the frequency analysis result (including only the body motion component), that is, a pulse component is extracted.
[0064]
Specifically, the peak frequency in the frequency analysis result for infrared light is cut from the frequency analysis result for green light, and the remaining frequency band peak is extracted as a pulse component.
In the subsequent step 150, the extracted peak frequency is converted into a pulse rate and displayed on a display such as a liquid crystal (not shown).
[0065]
Specifically, the pulse wave number is calculated by taking 60 seconds for the extracted frequency. For example, when the frequency is 1 [Hz], the pulse rate is 1 [Hz] × 60 [seconds] = 60 [beats / minute]. The pulse interval can also be calculated by taking the reciprocal of the extracted frequency.
[0066]
In the subsequent step 160, the frequency of the peak is converted into the body motion component from the frequency analysis result with respect to the infrared light including only the body motion component, and similarly displayed on the display.
Specifically, the number of body movements is calculated by taking 60 seconds for the obtained frequency.
[0067]
e) FIG. 7 shows the state of the detection signal when the pulse wave sensor 5 is actually attached to the human body and exercised (therefore, the state of frequency change).
As shown in FIG. 7A, as a result of frequency analysis of the detection signal obtained using the green LED 19, different peaks due to the body motion component (dotted line) and the pulse component (solid line) continuously change. I understand that.
[0068]
On the other hand, as shown in FIG. 7B, as a result of frequency analysis of the detection signal obtained using the infrared LED 17, it can be seen that only the peak of the body motion component (solid line) changes continuously.
Therefore, also from this graph, by comparing the frequency component of the reflected wave of the green LED 19 (including the pulse component and the body motion component) with the frequency component of the reflected wave of the infrared LED 17 (including only the body motion component). It can be seen that only the pulse component can be extracted to calculate the pulse rate, and that the body motion component can also be extracted.
[0069]
As described above, in this embodiment, the light emission timing is switched for the human body, and the infrared light irradiation from the infrared LED 17 and the green light irradiation from the green LED 19 are alternately performed, and the infrared light is emitted. The intensity is reduced to about 1/5 of the intensity of green light. And the reflected light of each irradiation light is received, the signal by the reflected light is frequency-analyzed, and the pulse component and the body motion component are extracted.
[0070]
At this time, only the body motion component appears in the result of the frequency analysis of the reflected light of the infrared light, and the pulse component and the body motion component are included in the result of the frequency analysis of the reflected light of the green light. Since it appears, only the pulse component can be extracted by comparing the results of both frequency analyses.
[0071]
And a pulse rate and a pulse interval can be calculated | required from a pulse component, and the frequency | count of a body motion etc. can be calculated | required from a body motion component.
In the present embodiment, the case of adjusting the light intensity of the infrared LED 17 to be reduced was described as an example. However, the infrared LED 17 can be adjusted by a method such as adopting an infrared LED with a small amount of light to be irradiated. Even if the amount of light is reduced, the same effect can be obtained.
[0072]
(Example 2)
Next, the pulse wave detection device of the second embodiment will be described, but the description of the same parts as those of the first embodiment will be omitted.
In this embodiment, the infrared LED 17 and the green LED 19 emit light having the same intensity. The reflected light of the irradiated light is received by the PD 21 and amplified by the detection circuit 11, and the amplification factor (that is, sensitivity) is adjusted to be different between the infrared LED 17 and the green LED 19.
[0073]
Specifically, the amplification factor of the signal by the reflected light of the infrared light is set sufficiently smaller (preferably about 1/5) than the amplification factor of the signal by the reflected light of the green light.
Thus, as in the first embodiment, when the infrared LED 17 is caused to emit light, the pulse component in the detection signal is buried in N due to the S / N relationship and is not detected, so only the body motion component is detected. The Therefore, similarly, a pulse component (that is, a pulse rate) and a body motion component can be obtained.
[0074]
Example 3
Next, the pulse wave detection device of the third embodiment will be described, but the description of the same parts as those of the first embodiment will be omitted.
In this embodiment, the infrared LED 17 and the green LED 19 emit light having the same intensity, and the detection signal is amplified with the same sensitivity.
[0075]
That is, when the green LED 17 is used, for example, since the S / N is larger than that of the conventional infrared LED, it is possible to extract only the body movement component by comparing the detection signals of the infrared LED 17 and the green LED 19. Is possible.
For example, when the infrared LED 17 is used, in the result of the frequency analysis of the detection signal, the peak power with respect to the pulse component is small, so by cutting the frequency below the predetermined power, only the body motion component is extracted, Further, the heartbeat component can be extracted in the same manner as in the first embodiment.
[0076]
(Example 4)
Next, the pulse wave detection device of the fourth embodiment will be described, but the description of the same parts as those of the first embodiment will be omitted.
In this embodiment, as shown in FIG. 8A, the pulse wave sensor 31 includes an infrared LED 33, a green LED 35, and a PD 37, as in the first embodiment. A part of the window 39 (that is, a transparent resin window member) is cut out to form a recess 41 corresponding to the lowered part.
[0077]
In other words, the upper surface 43 of the window 39 is prevented from coming into direct contact with the human body by the recess 41, so that the surface of the skin is easily shaken with the body movement, and the body movement can be emphasized and detected.
Therefore, the intensity (or light amount) of the infrared LED 33 can be reduced, and power consumption can be saved.
[0078]
Apart from this, although not shown in the drawings, the upper window of the infrared LED may be provided with irregularities. Even with this method, body movement can be emphasized and extracted.
(Example 5)
Next, the pulse wave detection device of the fifth embodiment will be described, but the description of the same parts as those of the first embodiment will be omitted.
[0079]
In this embodiment, as shown in FIG. 8B, the pulse wave sensor 51 includes an infrared LED 53, a green LED 55, and a PD 57, as in the fourth embodiment, and a window 59 above the infrared LED 53. The part is cut out to form a recess 61.
Particularly in the present embodiment, a surface layer 63 made of a transparent and flexible material (for example, gel-like silicon) is disposed in the recess 61.
[0080]
Therefore, also in the present embodiment, the skin surface easily shakes with body movement, and the body movement can be emphasized and detected, so that the intensity (or light quantity) of the infrared LED 53 can be reduced, and the power consumption can be reduced. Can be saved.
(Example 6)
Next, the pulse wave detection device of the sixth embodiment will be described, but the description of the same parts as those of the first embodiment will be omitted.
[0081]
As shown in FIG. 9, the pulse wave sensor 71 of this embodiment includes two pairs of elements.
Specifically, it includes an infrared LED 73, an infrared PD 75 that receives the reflected light, a green LED 77, and a green PD 79 that receives the reflected light.
And in order to shield and isolate | separate the area | region of each element pair, between each element pair, the isolation | separation wall 81 which consists of material which does not permeate | transmit light is provided.
[0082]
The present embodiment has the same effect as the first embodiment, and each element pair is optically separated. Therefore, the infrared LED 73 and the green LED 77 can simultaneously emit light.
Therefore, there is an advantage that processing time can be saved.
[0083]
Needless to say, the present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the scope of the present invention.
(1) For example, in the above-described embodiment, the pulse wave detection device has been described. However, with respect to the processing for extracting the pulse component and the body motion component, a program for executing the processing based on the above-described algorithm and the program are stored. It can also be applied to existing recording media.
[0084]
Examples of the recording medium include various recording media such as an electronic control device configured as a microcomputer, a microchip, a flexible disk, a hard disk, a DVD, and an optical disk. That is, there is no particular limitation as long as it stores a program that can execute the processing of the pulse wave detection device described above.
[0085]
The program is not limited to a program stored in a recording medium, but can be applied to a program transmitted / received through a communication line such as the Internet.
(2) Further, the pulse wave detection device not only directly inputs a signal obtained from the pulse wave sensor to a data processing device nearby, but also obtains data obtained from the pulse wave sensor, for example. It can also be applied when measuring pulse components (thus pulse rate) and body motion components by inputting to a device such as a personal computer and transmitting the data to a remote data processing device using the Internet, for example. it can.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a main configuration of a pulse wave detection device according to a first embodiment.
FIG. 2 is an explanatory diagram illustrating a usage method and the like of the pulse wave sensor according to the first embodiment.
3 is a graph showing detection signals obtained by the pulse wave sensor of Example 1. FIG.
4 is a graph schematically showing a result of frequency analysis of a detection signal of Example 1. FIG.
5A and 5B are graphs schematically showing the results of frequency analysis of detection signals in Example 1. FIG. 5A is a graph showing the frequency analysis results for green light, and FIG. 5B is the frequency analysis result for infrared light. It is a graph to show.
FIG. 6 is a flowchart illustrating a pulse wave detection process according to the first embodiment.
7A and 7B are graphs showing the results of frequency analysis of actual detection signals, where FIG. 7A is a graph showing the results of frequency analysis for green light, and FIG. 7B is a graph showing the results of frequency analysis for infrared light.
8A is an explanatory diagram showing a pulse wave sensor of Example 4, and FIG. 8B is an explanatory diagram showing a pulse wave sensor of Example 5. FIG.
FIG. 9 is an explanatory diagram showing a pulse wave sensor according to a sixth embodiment.
FIG. 10 is an explanatory diagram of a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pulse wave detection apparatus 3 ... Data processing apparatus part 5, 31, 51, 71 ... Pulse wave sensor 7 ... Drive circuit 17, 33, 55, 73 ... Infrared LED
19, 35, 57, 77 ... Green LED
21, 37, 59, 75, 79 ... Photodiode (PD)
27 ... window

Claims (5)

生体に対して、波長の異なる光を、それぞれ別個に照射する光照射手段と、
前記光照射手段から照射された各光の反射光を受光する反射波受光手段と、
を、筐体内に収容したセンサにおいて、
前記光照射手段及び前記反射波受光手段の各光の照射側及び受光側に、各光及びその反射光が透過する窓部を備えるとともに、前記長波長の光を照射する側の窓部の外側及び/又は前記長波長の光の反射波を受光する側の窓部の外側に、前記人体の皮膚から離すように引き下がり部を設けたことを特徴とするセンサ。
A light irradiating means for separately irradiating the living body with light having different wavelengths;
Reflected wave light receiving means for receiving reflected light of each light emitted from the light irradiating means;
In a sensor housed in a housing,
The light irradiating means and the reflected wave light receiving means are provided on the light irradiation side and the light receiving side with a window portion through which each light and its reflected light are transmitted, and outside the window portion on the side where the long wavelength light is irradiated And / or a sensor having a pull-down portion outside the window on the side receiving the reflected wave of the long-wavelength light so as to be separated from the skin of the human body.
生体に対して、波長の異なる光を、それぞれ別個に照射する光照射手段と、A light irradiating means for separately irradiating the living body with light having different wavelengths;
前記光照射手段から照射された各光の反射光を受光する反射波受光手段と、  Reflected wave light receiving means for receiving reflected light of each light emitted from the light irradiating means;
を、筐体内に収容したセンサにおいて、  In a sensor housed in a housing,
前記光照射手段及び前記反射波受光手段の各光の照射側及び受光側に、各光及びその反射光が透過する窓部を備えるとともに、前記長波長の光を照射する側の窓部の外側及び/又は前記長波長の光の反射波を受光する側の窓部の外側に、凹凸を設けたことを特徴とするセンサ。  The light irradiating means and the reflected wave light receiving means are provided on the light irradiation side and the light receiving side with a window portion through which each light and its reflected light are transmitted, and outside the window portion on the side where the long wavelength light is irradiated. And / or a sensor provided with irregularities on the outside of the window on the side of receiving the reflected wave of the light having the long wavelength.
生体に対して、波長の異なる光を、それぞれ別個に照射する光照射手段と、A light irradiating means for separately irradiating the living body with light having different wavelengths;
前記光照射手段から照射された各光の反射光を受光する反射波受光手段と、  Reflected wave light receiving means for receiving reflected light of each light emitted from the light irradiating means;
を、筐体内に収容したセンサにおいて、  In a sensor housed in a housing,
前記光照射手段及び前記反射波受光手段の各光の照射側及び受光側に、各光及びその反射光が透過する窓部を備えるとともに、前記長波長の光を照射する側の窓部の外側及び/又は前記長波長の光の反射波を受光する側の窓部の外側に、透光性の柔軟な材料を配置したことを特徴とするセンサ。  The light irradiating means and the reflected wave light receiving means are provided on the light irradiation side and the light receiving side with a window portion through which each light and its reflected light are transmitted, and outside the window portion on the side where the long wavelength light is irradiated. And / or a light-transmitting flexible material disposed outside the window on the side of receiving the reflected wave of the long-wavelength light.
前記光照射手段によって照射する光は、前記波長が異なるとともに、その強度又は光量が異なる光であることを特徴とする前記請求項1〜3のいずれかに記載のセンサ。4. The sensor according to claim 1, wherein the light irradiated by the light irradiation means is light having different wavelengths and different in intensity or light amount. 前記波長の異なる光は、緑色光及び赤外光であることを特徴とする前記請求項1〜4のいずれかに記載のセンサ。The sensor according to any one of claims 1 to 4, wherein the lights having different wavelengths are green light and infrared light.
JP2003054581A 2003-02-28 2003-02-28 Sensor Expired - Fee Related JP3760920B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003054581A JP3760920B2 (en) 2003-02-28 2003-02-28 Sensor
US10/786,156 US7252639B2 (en) 2003-02-28 2004-02-26 Method and apparatus for measuring biological condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054581A JP3760920B2 (en) 2003-02-28 2003-02-28 Sensor

Publications (2)

Publication Number Publication Date
JP2004261366A JP2004261366A (en) 2004-09-24
JP3760920B2 true JP3760920B2 (en) 2006-03-29

Family

ID=32984369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054581A Expired - Fee Related JP3760920B2 (en) 2003-02-28 2003-02-28 Sensor

Country Status (2)

Country Link
US (1) US7252639B2 (en)
JP (1) JP3760920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132012A (en) * 2006-11-27 2008-06-12 Denso Corp Pulse wave detector
JP2008220723A (en) * 2007-03-14 2008-09-25 Seiko Epson Corp Pulse measuring apparatus and its controlling method
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846488B1 (en) * 2004-03-23 2008-07-17 삼성전자주식회사 Apparatus and method for detecting heart beat rate and recordable medium thereof
JP4760342B2 (en) * 2005-11-30 2011-08-31 株式会社デンソー Biological condition detection device
US20070185393A1 (en) * 2006-02-03 2007-08-09 Triage Wireless, Inc. System for measuring vital signs using an optical module featuring a green light source
US7993275B2 (en) * 2006-05-25 2011-08-09 Sotera Wireless, Inc. Bilateral device, system and method for monitoring vital signs
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
GB0705033D0 (en) * 2007-03-15 2007-04-25 Imp Innovations Ltd Heart rate measurement
JP4914916B2 (en) * 2007-03-20 2012-04-11 パイオニア株式会社 Biological information measuring device
US11607152B2 (en) 2007-06-12 2023-03-21 Sotera Wireless, Inc. Optical sensors for use in vital sign monitoring
US8602997B2 (en) 2007-06-12 2013-12-10 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US8554297B2 (en) 2009-06-17 2013-10-08 Sotera Wireless, Inc. Body-worn pulse oximeter
US8419649B2 (en) * 2007-06-12 2013-04-16 Sotera Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
US11330988B2 (en) 2007-06-12 2022-05-17 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US20080312542A1 (en) * 2007-06-13 2008-12-18 Triage Wireless, Inc. Multi-sensor array for measuring blood pressure
US20080319327A1 (en) * 2007-06-25 2008-12-25 Triage Wireless, Inc. Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure
US8251903B2 (en) * 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
KR101460119B1 (en) * 2008-01-10 2014-11-11 삼성전자주식회사 Card type handheld terminal for measuring physiological signal
DE102008002741B4 (en) 2008-06-27 2019-07-11 CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Optoelectronic perfusion measuring device for functional circulatory diagnostics
WO2010003134A2 (en) 2008-07-03 2010-01-07 Masimo Laboratories, Inc. Protrusion, heat sink, and shielding for improving spectroscopic measurement of blood constituents
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
US8700111B2 (en) 2009-02-25 2014-04-15 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US8738118B2 (en) 2009-05-20 2014-05-27 Sotera Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US8956293B2 (en) * 2009-05-20 2015-02-17 Sotera Wireless, Inc. Graphical ‘mapping system’ for continuously monitoring a patient's vital signs, motion, and location
US11896350B2 (en) 2009-05-20 2024-02-13 Sotera Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US11253169B2 (en) 2009-09-14 2022-02-22 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US20110066008A1 (en) * 2009-09-14 2011-03-17 Matt Banet Body-worn monitor for measuring respiration rate
US20110066044A1 (en) 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US10420476B2 (en) 2009-09-15 2019-09-24 Sotera Wireless, Inc. Body-worn vital sign monitor
US10806351B2 (en) 2009-09-15 2020-10-20 Sotera Wireless, Inc. Body-worn vital sign monitor
US8591411B2 (en) * 2010-03-10 2013-11-26 Sotera Wireless, Inc. Body-worn vital sign monitor
US8979765B2 (en) 2010-04-19 2015-03-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173593B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8747330B2 (en) 2010-04-19 2014-06-10 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8888700B2 (en) 2010-04-19 2014-11-18 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9339209B2 (en) 2010-04-19 2016-05-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173594B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US10216893B2 (en) 2010-09-30 2019-02-26 Fitbit, Inc. Multimode sensor devices
CN102457712A (en) * 2010-10-28 2012-05-16 鸿富锦精密工业(深圳)有限公司 System and method for identifying and tracking suspicious target
JP5327194B2 (en) * 2010-10-29 2013-10-30 株式会社デンソー Biological condition detection device
US9113793B2 (en) 2010-12-10 2015-08-25 Rohm Co., Ltd. Pulse wave sensor
JP2012143316A (en) * 2011-01-07 2012-08-02 Rohm Co Ltd Pulse wave sensor
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
WO2013016007A2 (en) 2011-07-25 2013-01-31 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
EP2739207B1 (en) 2011-08-02 2017-07-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US20140073486A1 (en) 2012-09-04 2014-03-13 Bobo Analytics, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
US11185241B2 (en) 2014-03-05 2021-11-30 Whoop, Inc. Continuous heart rate monitoring and interpretation
KR101975090B1 (en) 2012-10-26 2019-05-03 나이키 이노베이트 씨.브이. Athletic performance monitoring system utilizing heart rate information
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
CN110013240A (en) 2013-01-28 2019-07-16 瓦伦赛尔公司 Physiological monitoring device with the sensing element disengaged with body kinematics
TW201429447A (en) * 2013-01-29 2014-08-01 Hon Hai Prec Ind Co Ltd Portable electronic device having heart rate monitoring function
JP6004995B2 (en) * 2013-06-21 2016-10-12 拓則 島崎 Beat detector
US10512407B2 (en) 2013-06-24 2019-12-24 Fitbit, Inc. Heart rate data collection
JP2015039421A (en) * 2013-08-20 2015-03-02 セイコーエプソン株式会社 Pulse wave measurement apparatus
JP2015039542A (en) 2013-08-22 2015-03-02 セイコーエプソン株式会社 Pulse wave measurement apparatus
JP6126231B2 (en) * 2013-09-27 2017-05-10 パイオニア株式会社 Measuring instrument
JP5929952B2 (en) * 2014-03-27 2016-06-08 セイコーエプソン株式会社 Biological information detection apparatus and electronic device
JP6519978B2 (en) * 2014-03-27 2019-05-29 セイコーエプソン株式会社 Biological information detection apparatus and electronic device
US20160029898A1 (en) 2014-07-30 2016-02-04 Valencell, Inc. Physiological Monitoring Devices and Methods Using Optical Sensors
JP6603872B2 (en) * 2014-08-05 2019-11-13 パナソニックIpマネジメント株式会社 Pulse wave sensor
WO2016022295A1 (en) 2014-08-06 2016-02-11 Valencell, Inc. Optical physiological sensor modules with reduced signal noise
JP5862731B1 (en) 2014-08-27 2016-02-16 セイコーエプソン株式会社 Sensor and biological information detection apparatus
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
CN104224144B (en) * 2014-09-28 2016-08-24 成都维客亲源健康科技有限公司 Photoplethysmographic photoelectric testing sensor
JP2016083030A (en) * 2014-10-23 2016-05-19 ローム株式会社 Pulse wave sensor, and semi-conductor module
WO2016092750A1 (en) * 2014-12-12 2016-06-16 セイコーエプソン株式会社 Sensor unit, biological information detection apparatus, electronic device, and biological information detection method
JP5930011B1 (en) * 2014-12-12 2016-06-08 セイコーエプソン株式会社 Biological information detection apparatus, electronic device, and biological information detection method
JP5930012B1 (en) * 2014-12-12 2016-06-08 セイコーエプソン株式会社 Sensor unit, biological information detection device, electronic equipment
WO2016111696A1 (en) * 2015-01-09 2016-07-14 Lifeq Global Limited A ppg-based physiological sensing system with a spatio-temporal sampling approach towards identifying and removing motion artifacts from optical signals
JP6480260B2 (en) 2015-05-21 2019-03-06 ローム株式会社 Biological information sensor
US20170035333A1 (en) * 2015-08-04 2017-02-09 Osram Opto Semiconductors Gmbh Apparatus for Measuring a Vital Function of a Living Creature
WO2017031665A1 (en) * 2015-08-24 2017-03-02 深圳还是威健康科技有限公司 Method and apparatus for detecting heart rate by means of photoelectric reflection
US10595785B2 (en) * 2015-10-01 2020-03-24 Silicon Laboratories Inc. Plethysmography heart rate monitor noise reduction using differential sensors
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
WO2017070463A1 (en) 2015-10-23 2017-04-27 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US11206989B2 (en) 2015-12-10 2021-12-28 Fitbit, Inc. Light field management in an optical biological parameter sensor
US10568525B1 (en) 2015-12-14 2020-02-25 Fitbit, Inc. Multi-wavelength pulse oximetry
US10433739B2 (en) 2016-04-29 2019-10-08 Fitbit, Inc. Multi-channel photoplethysmography sensor
JP2016163731A (en) * 2016-05-02 2016-09-08 セイコーエプソン株式会社 Biological information detector, electronic apparatus, and biological information detection method
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
US10524735B2 (en) * 2017-03-28 2020-01-07 Apple Inc. Detecting conditions using heart rate sensors
US11051706B1 (en) 2017-04-07 2021-07-06 Fitbit, Inc. Multiple source-detector pair photoplethysmography (PPG) sensor
CN108926340B (en) * 2017-05-23 2023-04-28 松下知识产权经营株式会社 Measuring device
KR102408028B1 (en) * 2017-09-06 2022-06-13 삼성전자 주식회사 Method for acquiring biometric information based on wering state and electronic device thereof
JP7171193B2 (en) * 2018-01-16 2022-11-15 フクダ電子株式会社 BIOLOGICAL SIGNAL PROCESSING DEVICE AND CONTROL METHOD THEREOF
CN209186689U (en) * 2018-06-04 2019-08-02 歌尔科技有限公司 Heart rate mould group

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2213761B1 (en) * 1973-01-17 1976-05-14 Rambert Andre
CA1112401A (en) * 1979-05-24 1981-11-17 Roland Dore Deformable high energy storage tension spring
GB2084468B (en) * 1980-09-25 1984-06-06 South African Inventions Surgical implant
US4400833A (en) * 1981-06-10 1983-08-30 Kurland Kenneth Z Means and method of implanting bioprosthetics
US4467478A (en) * 1982-09-20 1984-08-28 Jurgutis John A Human ligament replacement
GB8304264D0 (en) * 1983-02-16 1983-03-23 Seedhom B B Prosthetic ligament
DE3325650A1 (en) * 1983-07-15 1985-01-24 Eckart Dr.med. 8000 München Frimberger STiffening probe and tensioning device for this
US4605414A (en) * 1984-06-06 1986-08-12 John Czajka Reconstruction of a cruciate ligament
US4597766A (en) * 1984-10-26 1986-07-01 American Hospital Supply Corporation Implantable bioprosthetic tendons and ligaments
US4744793A (en) * 1985-09-06 1988-05-17 Zimmer, Inc. Prosthetic ligament connection assembly
US4759765A (en) * 1986-03-17 1988-07-26 Minnesota Mining And Manufacturing Company Tissue augmentation device
US4712542A (en) * 1986-06-30 1987-12-15 Medmetric Corporation System for establishing ligament graft orientation and isometry
US4922897A (en) * 1986-10-03 1990-05-08 Temple University Apparatus and method for reconstructive surgery
US4739751A (en) * 1986-10-03 1988-04-26 Temple University Apparatus and method for reconstructive surgery
US4773417A (en) * 1987-01-05 1988-09-27 Moore Robert R Method for using a tendon stripper and leader set
US4772286A (en) * 1987-02-17 1988-09-20 E. Marlowe Goble Ligament attachment method and apparatus
USRE34293F1 (en) * 1987-02-17 1998-04-07 Globe Marlowe E Ligament attachment method and apparatus
US5037426A (en) * 1988-09-19 1991-08-06 Marlowe Goble E Procedure for verifying isometric ligament positioning
US4870957A (en) * 1988-12-27 1989-10-03 Marlowe Goble E Ligament anchor system
US4969895A (en) * 1989-01-23 1990-11-13 Richards Medical Company Apparatus and method for determining the tension on a ligament graft
US4950270A (en) * 1989-02-03 1990-08-21 Boehringer Mannheim Corporation Cannulated self-tapping bone screw
US4950271A (en) * 1989-02-06 1990-08-21 Regents Of The University Of Minnesota Ligament graft apparatus and method
US4927421A (en) * 1989-05-15 1990-05-22 Marlowe Goble E Process of endosteal fixation of a ligament
US5108433A (en) * 1989-08-18 1992-04-28 Minnesota Mining And Manufacturing Company Tensioning means for prosthetic devices
US4997433A (en) * 1990-01-16 1991-03-05 Marlowe Goble E Endosteal fixation stud and system
US5139520A (en) * 1990-01-31 1992-08-18 American Cyanamid Company Method for acl reconstruction
US5129902A (en) * 1990-04-20 1992-07-14 Marlowe Goble E Endosteal ligament retainer and process
US5562668A (en) * 1990-07-31 1996-10-08 Johnson; David P. Tension device for anchoring ligament grafts
US5046494A (en) * 1990-08-27 1991-09-10 John Searfoss Phototherapy method
US5291884A (en) * 1991-02-07 1994-03-08 Minnesota Mining And Manufacturing Company Apparatus for measuring a blood parameter
US5490505A (en) * 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US5147362A (en) * 1991-04-08 1992-09-15 Marlowe Goble E Endosteal ligament fixation device
US5071420A (en) * 1991-04-25 1991-12-10 Depuy Du Pont Orthopaedics Isometry testing device
US5507750A (en) * 1993-09-16 1996-04-16 Goble; E. Marlowe Method and apparatus for tensioning grafts or ligaments
JP3387171B2 (en) 1993-09-28 2003-03-17 セイコーエプソン株式会社 Pulse wave detection device and exercise intensity measurement device
US5788697A (en) * 1994-02-24 1998-08-04 Pioneer Laboratories, Inc. Cable tensioning device
JP3459463B2 (en) 1994-05-10 2003-10-20 三洋電機株式会社 Pulse detection device
US5630820A (en) * 1994-12-05 1997-05-20 Sulzer Orthopedics Inc. Surgical bicompartmental tensiometer for revision knee surgery
US5830137A (en) * 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
US5713897A (en) * 1997-03-06 1998-02-03 Goble; E. Marlowe Anterior cruciate ligament tensioning device and method for its use
US5980473A (en) * 1997-04-08 1999-11-09 Barnes-Jewish Hospital Surgical apparatus for determining ligament and tendon tension
US6001106A (en) * 1997-09-03 1999-12-14 M & R Medical, Inc. System for tensioning ligament grafts
JP3790030B2 (en) 1997-10-30 2006-06-28 コーリンメディカルテクノロジー株式会社 Reflective photoelectric pulse wave detector
JP3547968B2 (en) 1998-01-19 2004-07-28 株式会社日本自動車部品総合研究所 Pulse waveform detector
US5964764A (en) * 1998-03-24 1999-10-12 Hugh S. West, Jr. Apparatus and methods for mounting a ligament graft to a bone
JPH11276448A (en) 1998-03-31 1999-10-12 Seiko Epson Corp Signal extract device and signal extract method
DE29805908U1 (en) * 1998-04-01 1998-05-28 Aesculap Ag & Co Kg Device for handling an implant covering a bone canal
US6036694A (en) * 1998-08-03 2000-03-14 Innovasive Devices, Inc. Self-tensioning soft tissue fixation device and method
AU7466300A (en) 1999-09-08 2001-04-10 Optoq Ab Method and apparatus for detecting blood characteristics including hemoglobin
JP2001112728A (en) 1999-10-15 2001-04-24 Advanced Medical Kk Pulsimeter
US6279415B1 (en) * 1999-10-27 2001-08-28 Visteon Global Tech., Inc. Method and apparatus for providing tension within a cable
US7171251B2 (en) * 2000-02-01 2007-01-30 Spo Medical Equipment Ltd. Physiological stress detector device and system
JP2001344352A (en) * 2000-05-31 2001-12-14 Toshiba Corp Life assisting device, life assisting method and advertisement information providing method
JP2002051996A (en) 2000-08-10 2002-02-19 Tanita Corp Pulsimeter
JP2002330934A (en) 2001-05-08 2002-11-19 Tanita Corp Autonomic nerve activity measuring instrument
US6731967B1 (en) * 2001-07-16 2004-05-04 Pacesetter, Inc. Methods and devices for vascular plethysmography via modulation of source intensity
US6709402B2 (en) * 2002-02-22 2004-03-23 Datex-Ohmeda, Inc. Apparatus and method for monitoring respiration with a pulse oximeter
US6997879B1 (en) * 2002-07-09 2006-02-14 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
US7202793B2 (en) * 2002-10-11 2007-04-10 Attention Technologies, Inc. Apparatus and method of monitoring a subject and providing feedback thereto

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132012A (en) * 2006-11-27 2008-06-12 Denso Corp Pulse wave detector
JP2008220723A (en) * 2007-03-14 2008-09-25 Seiko Epson Corp Pulse measuring apparatus and its controlling method
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector

Also Published As

Publication number Publication date
US7252639B2 (en) 2007-08-07
JP2004261366A (en) 2004-09-24
US20040193063A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3760920B2 (en) Sensor
US9480407B2 (en) Device and method for removal of ambient noise signal from a photoplethysmograph
US8868149B2 (en) Photoplethysmography device and method
US9066660B2 (en) Systems and methods for high-pass filtering a photoplethysmograph signal
US20110082355A1 (en) Photoplethysmography device and method
US20030032887A1 (en) Heartbeat synchronous information acquiring apparatus and pulse wave propagation velocity related information acquiring apparatus, blood pressure monitoring apparatus and preejection period measuring apparatus utilizing heartbeat synchronous information
JP2015039542A (en) Pulse wave measurement apparatus
JP2004121668A (en) System for detecting and measuring abnormal respiration, and method for detecting abnormal respiration
JP2004202190A (en) Biological information measuring device
JP2005160640A (en) Biological state detector
JP2017153874A (en) Biological information measurement device and biological information measurement method
JP2007151579A (en) Biological state detector
JP4385677B2 (en) Biological information measuring device
JP4731031B2 (en) Sleep analysis device, program, and recording medium
JP5866776B2 (en) Pulse wave measuring device and pulse wave measuring method
JP2006006897A (en) Method and apparatus for measurement of blood pressure
JP5471736B2 (en) Pulse wave measuring device and pulse wave measuring method
JP2002017694A (en) Pulse rate sensor
JP5327194B2 (en) Biological condition detection device
KR101661287B1 (en) Method For Non-Invasive Glucose Measurement And Non-Invasive Glucose Measuring Apparatus using the same Method
JP2018068556A (en) Intrathoracic pressure estimation device
JP2013202077A (en) Pulse meter and program
WO2020239920A1 (en) Apparatus for measuring optical or physiological parameters in scattering media featuring an optical contact detector
KR101030443B1 (en) Device for measuring heart rate using air cell
JP4320925B2 (en) Pulse rate detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3760920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees