JP3760869B2 - Manufacturing method of semiconductor light emitting device - Google Patents

Manufacturing method of semiconductor light emitting device Download PDF

Info

Publication number
JP3760869B2
JP3760869B2 JP2002027162A JP2002027162A JP3760869B2 JP 3760869 B2 JP3760869 B2 JP 3760869B2 JP 2002027162 A JP2002027162 A JP 2002027162A JP 2002027162 A JP2002027162 A JP 2002027162A JP 3760869 B2 JP3760869 B2 JP 3760869B2
Authority
JP
Japan
Prior art keywords
buffer layer
axis direction
zno
constant
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002027162A
Other languages
Japanese (ja)
Other versions
JP2002305324A (en
Inventor
道雄 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002027162A priority Critical patent/JP3760869B2/en
Publication of JP2002305324A publication Critical patent/JP2002305324A/en
Application granted granted Critical
Publication of JP3760869B2 publication Critical patent/JP3760869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体発光素子及びその製造方法、並びにZnO膜の形成方法に関する。特に、III−V族化合物のGaN、InGaN、GaAlN、InGaAlN等を用いた半導体発光素子とその製造方法に関する。また、Si基板やガラス基板等の基板上に成膜されるZnO膜の形成方法に関する。
【0002】
【従来の技術】
青色光ないし紫外線を発生する発光ダイオード(LED)やレーザーダイオード(LD)等の半導体発光素子の材料としては、一般式InxGayAlzN(ただし、x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表わされるIII−V族化合物半導体が知られている。この化合物半導体は、直接遷移型であることから発光効率が高く、また、In濃度によって発光波長を制御できることから、発光素子用材料として注目されている。
【0003】
このInxGayAlzNは大型の単結晶を作製することが困難であるため、その結晶膜の製作にあたっては、異なる材料の基板上に成長させる、いわゆるヘテロエピタキシャル成長法が用いられており、一般にはC面サファイア基板の上で成長させられる。しかし、C面サファイア基板は高価であり、そのうえ大きな格子不整合があり(例えば、GaNとの格子不整合は16.1%にもなる)、成長した結晶中には転移密度108/cm2〜1011/cm2という多数の結晶欠陥が生じてしまい、結晶性に優れた良質の結晶膜を得ることができないという問題があった。
【0004】
そこで、C面サファイア基板上にInxGayAlzNを成長させる際の格子不整合を小さくし、欠陥の少ない結晶を得るため、C面サファイア基板の上に多結晶又は非晶質のAlNバッファ層や低温成長GaNバッファ層を設ける方法が提案されている。この方法によれば、C面サファイア基板とバッファ層の間の格子不整合が小さくなると共にバッファ層とInxGayAlzNの格子不整合も小さくなるので、欠陥の少ない結晶膜を得ることができる。しかし、この方法では、高価なC面サファイア基板に加え、構造が複雑になることから一層コスト高になるという問題があった。
【0005】
また、基板としてSiC基板も検討されており、SiC基板では格子不整合が小さい(例えば、GaNとの格子不整合は3.5%である)。しかし、SiC基板は、C面サファイア基板と比較してもかなり高価につく(C面サファイア基板の価格の10倍程度)という欠点があった。
【0006】
そこで、安価なSi基板やガラス基板を用いて半導体発光素子を製作することが従来より望まれている。そのためには、Si基板やガラス基板の上にZnOバッファ層を成長させ、ZnOバッファ層の上にGaN層を設け、発光のためのInxGayAlzN系半導体層をGaN層の上に(あるいは、GaN層を含むInxGayAlzN系半導体層を)構成することが考えられる。これは、次の表1に示すように、ZnO単結晶のa軸方向の格子定数(以下、a定数という)とc軸方向の格子定数(以下、c定数という)がいずれもGaNのa定数とc定数に近いため、格子欠陥の少ないGaN層ができると考えられるからである。なお、ZnO結晶は六方晶系の結晶であって、c軸方向がSi基板又はガラス基板の表面と垂直な方向を向き、a軸方向がSi基板又はガラス基板と平行な方向を向いて成長する。
【0007】
【表1】

Figure 0003760869
Si基板の上にZnOバッファ層を設けたものでは、C面サファイア基板に比較すると、基板コストは10分の1程度に抑えることができ、コストを安価にすることができる。また、C面サファイア基板は絶縁材料であるのに対し、Si基板は導電性を持たせることができるので、p側電極とn側電極を発光素子の上面と下面に設けることができ、素子構造を簡単にすることができるという利点もある。
【0008】
しかし、GaNとC面サファイア基板やSiC基板との組み合わせにおける格子不整合に比べて小さいものの、上記の表1からも分かるように、Si基板の上に形成されたZnOバッファ層でも、GaN層との間にはa定数で2%の格子不整合が存在し、格子不整合による欠陥が問題となる。
【0009】
【発明が解決しようとする課題】
本発明は上述の技術的問題点を解決するためになされたものであり、その目的とするところは、InxGayAlzN系の半導体発光素子において、ZnOバッファ層とGaN層とのa軸方向の格子定数の差をより小さくすることにより、格子欠陥の少ないGaN層を提供することにある。また、ZnO膜のa軸方向の格子定数を制御するための方法を提供することにある。
【0010】
【発明の開示】
Si基板やガラス基板等の基板上に成膜されるZnO膜のa軸方向の格子定数は、基板の格子定数の影響もあり、直接に制御することは困難であると考えられていたが、本発明のZnO膜の形成方法では、ZnO膜のc軸方向の格子定数によりZnO膜のa軸方向の格子定数を制御することができる。ここで、ZnO膜のc軸方向の格子定数は、ZnO膜を成膜するための成膜時の管理パラメータによって制御することができる。
【0011】
この方法は、InxGayAlzN(ただし、x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表わされる化合物半導体を用いた半導体発光素子の製造方法に適用することができる。すなわち、Si基板またはガラス基板上にc軸方向の格子定数が5.21Å〜5.28Åであるとともにa軸方向の格子定数が3.24Å〜3.17ÅであるZnOバッファ層を多結晶で形成し、ZnOバッファ層上に形成される化合物半導体のa軸方向の格子定数が、ZnO単結晶のa軸方向の格子定数よりも小さい場合には、ZnOバッファ層のc軸方向の格子定数をZnO単結晶のc軸方向の格子定数よりも大きくなるように調整することができる。逆に、ZnOバッファ層上に形成される化合物半導体のa軸方向の格子定数が、ZnO単結晶のa軸方向の格子定数よりも大きい場合には、ZnOバッファ層のc軸方向の格子定数をZnO単結晶のc軸方向の格子定数よりも小さくなるように調整することができる。こうしてZnOバッファ層のa軸方向の格子定数と化合物半導体のa軸方向の格子定数の値を近づけることができるので、ZnOバッファ層の上に結晶性の良好な化合物半導体を結晶成長させることができる。
【0012】
より具体的な用途としては、InxGayAlzN(ただし、x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表わされる化合物半導体を用いた半導体発光素子において、Si基板またはガラス基板上にc軸方向の格子定数が5.21Å〜5.28Åであるとともにa軸方向の格子定数が3.24Å〜3.17ÅであるZnOバッファ層を多結晶で形成し、ZnOバッファ層の上にGaN層を形成することを挙げることができる。
【0013】
ZnOバッファ層のc軸方向の格子定数を5.21Å〜5.28Åにすれば、そのa軸方向の格子定数を3.24Å〜3.17Åにすることができ、ZnOバッファ層のa軸方向の格子定数をZnO単結晶のa軸方向の格子定数よりも小さくすることができる。よって、ZnOバッファ層のa軸方向の格子定数とGaN層の格子定数との差を従来よりも小さくでき、ZnOバッファ層とGaN層との格子不整合を小さくすることができる。
【0014】
特に、ZnOバッファ層のc軸方向の格子定数を5.21Å〜5.28Åとすれば、そのa軸方向の格子定数を3.24Å〜3.17Åにすることができ、GaN層の格子定数に更に近づけることができる。
【0015】
【発明の実施の形態】
図1は本発明の一実施形態によるダブルへテロ接合構造の半導体発光素子1であって、InGaN層6を発光層とする発光ダイオードや面発光型レーザーダイオード等を表わしている。この半導体発光素子1は、導電性Si基板2の上に比抵抗の小さなZnOバッファ層3を成長させ、ZnOバッファ層3の上に順次n型GaN層4、n型AlGaN層5、InGaN層(発光層)6、p型AlGaN層7、p型GaN層8を成長させたものであり、n型GaN層4、n型AlGaN層5、InGaN層(発光層)6、p型AlGaN層7及びp型GaN層8によってダブルへテロ接合構造が構成されている。さらに、Si基板2の下面全面にはn側電極9が設けられ、p型GaN層8の上面には部分的にp側電極10が形成されている。しかして、p側電極10とn側電極9の間に電圧を印加すると、p側電極10からInGaN層6に電流が注入されて発光し、InGaN層6から出た光はp型GaN層8の上面のp側電極10が設けられていない領域から外部へ出射される。
【0016】
このような半導体発光素子1においては、従来例でも説明したように、Si基板2の上に形成されているZnOバッファ層3とn型GaN層4との格子不整合をできるだけ小さくすることが重要となる。そのため、本発明の実施形態においては、以下に説明するようにしてZnOバッファ層3を形成している。
【0017】
ZnOバッファ層3は、蒸着法、CVD、イオンプレーティングなどのうち、特にスパッタ法によりSi基板2上に成長される。ZnOバッファ層3を成膜するためのスパッタ装置11にあっては、図2に示すように、チャンバ12内に陰極13と陽極14が設けられており、陰極13上にはターゲット15としてZn又はZnOが置かれ、Si基板2は陽極14上に置かれている。また、チャンバ12にはArガスを導入するためのパイプ16とO2ガスを導入するためのパイプ17と排気ダクト18が設けられており、ArガスとO2ガスの流量は流量調整弁19,20によって調整できる。また、スパッタ装置11は基板加熱温度Tcを一定に保つための温度制御装置(図示せず)を備えている。
【0018】
しかして、ArガスとO2ガスをチャンバ12内に一定流量で導入する一方、排気ダクトからチャンバ12内のガスを排出してチャンバ12内を一定の気圧に保つ。そして、Si基板2を一定温度に保ちながら、陽極14と陰極13間に高周波電圧を印加すると、両電極13,14間でプラズマが発生し、プラズマのイオン21がターゲットに衝突してZn又はZnO22を弾き出す。ターゲットから弾き出されたZnO、あるいはターゲットから弾き出されたZnがO2ガスと反応することによって生成されたZnOは、Si基板2の表面に堆積して多結晶成長し、ZnOバッファ層3となる。
【0019】
図3は上記のようにしてSi基板2の表面にZnOバッファ層3を形成した場合の、Arガス流量S(Ar)とO2ガス流量S(O2)の比S(O2)/[S(Ar)+S(O2)]に対するZnOバッファ層3のc定数の変化を表わしている。なお、図3中の流量Stはトータル流量S(Ar)+S(O2)を示している。また、図4はSi基板2の上に形成されたZnOバッファ層3のc定数とa定数の関係を表わしている。
【0020】
単結晶ZnOのa定数は3.24982Å、c定数は5.20661Å(単結晶ZnOの格子定数は図4で三角で示している;表1参照)、GaN層4のa定数は3.1860Å(GaNの格子定数は図4で四角で示している;表1参照)であるから、ZnOバッファ層3のa定数を、単結晶ZnOよりもGaN層4のa定数に近づけるためには、図4によれば、ZnOバッファ層3のc定数を5.2070Å以上にすればよいことが分かる。特に、ZnOバッファ層3のa定数を、GaN層4のa定数近傍の値である3.17Å〜3.24Åとするためには、ZnOバッファ層3のc定数は5.21Å〜5.28Åにすればよい。なかでも、ZnOバッファ層3のc定数を約5.26Å程度にすれば、ZnOバッファ層3のa定数をGaN層4のa定数とほぼ等しくすることができる。
【0021】
ついで、図3のデータからは、ZnOバッファ層3のc定数を上記のような所望値にするためには、ガス流量St=S(Ar)+S(O2)、ガス流量比S(O2)/[S(Ar)+S(O2)]及び基板加熱温度Tcをコントロールすればよいことが分かる。例えば、図3のデータを得るのに用いたスパッタ装置11では、例えばガス流量St=S(Ar)+S(O2)=30sccm、基板加熱温度Tc=400℃とすれば、ガス流量比S(O2)/[S(Ar)+S(O2)]を約50%とすることによってZnOバッファ層3のc定数を約5.262Åとすることができ、それに対応してそのa定数を、GaN層4のa定数である3.1860Åの近傍とすることができる。
【0022】
ZnOバッファ層3のc定数と成膜装置の各管理パラメータ値との関係は、装置の種類によって変化するが、ZnOバッファ層3のc定数とa定数との関係は不偏的であるので、ZnOバッファ層3のc定数が所望値となるように成膜装置のパラメータ値を適切に設定すれば、ZnOバッファ層3のa定数をGaN層4のa定数に近づけることができる。
【0023】
(第2の実施形態)本発明は図1に示したようなInGaN層6によるダブルへテロ接合構造の半導体発光素子以外にも適用することができる。例えば、図5に示す半導体発光素子31のように、Si基板32の上にZnOバッファ層33、n型GaN層34及びp型GaN層35を積層し、Si基板32の下面にn側電極36を形成するとともにp側GaN層35の上にp側電極37を設けたものでもよい。また、図示しないが、ガラス基板の上にZnOバッファ層、低温成長GaNバッファ層、n型GaN層及びp型GaN層を積んだ構造の発光素子でもよい。
【0024】
(第3の実施形態)さらには、図6に示すように、Si基板42の上にZnOバッファ層43を形成し、n型GaNクラッド層44、p型GaN活性層45、p型GaNクラッド層46を積層し、p側GaNクラッド層46の上面の中央部を除く領域にSiO2膜47を形成し、SiO2膜47の上からp型GaNクラッド層46の上にp側電極48を設け、Si基板42の下面にn側電極49を設けた、レーザーダイオードや端面出射型の発光ダイオードなどの半導体発光素子41でもよい。
【0025】
(第4の実施形態)以上の実施形態は、ZnO膜上にGaNを形成したものであるが、本発明はZnO膜の上にInGaN、InAlGaN、AlGaN等を直接成膜する場合にも適用することができる。例えば、図7に示すInXGa1-XNの組成とそのa定数との関係から、In0.2Ga0.8Nのa定数は約3.26Åであるから、ZnO膜のa定数をIn0.2Ga0.8Nのa定数に近づけるには、図4のグラフによれば、ZnO膜のc定数を5.155Å〜5.205Åにすればよいことが分かる。
(第5の実施形態)また、図8に示すAlXGa1-XNの組成とそのa定数との関係から、Al0.2Ga0.8Nのa定数は約3.176Åであるから、ZnO膜のa定数をAl0.2Ga0.8Nのa定数に近づけるには、図4のグラフによれば、ZnO膜のc定数を5.27Å〜5.28Åにすればよいことが分かる。
(第6の実施形態)同様に、図9に示すInXAlYGaZN(ただし、X+Y+Z=1)の組成とそのa定数との関係から、In0.2Al0.2Ga0.6Nのa定数は約3.245Åであるから、ZnO膜のa定数をIn0.2Al0.2Ga0.6Nのa定数に近づけるには、図4のグラフによれば、ZnO膜のc定数を5.19Å〜5.22Åにすればよいことが分かる。なお、ここではX=0.2、Y=0.2、Z=0.6の場合を例にとって説明したが、他の値の場合でも、図4及び図9のグラフから、最適なZnOのc軸長が導かれるので、その値となるように制御すればよい。
【図面の簡単な説明】
【図1】本発明の一実施形態による半導体発光素子の構造を示す断面図である。
【図2】スパッタ装置によりSi基板上にZnOバッファ層を成膜するようすを示す概略図である。
【図3】Si基板の表面に形成されたZnOバッファ層のc定数とガス流量比S(O2)/[S(Ar)+S(O2)]の関係を表わした図である。
【図4】Si基板の上に形成されたZnOバッファ層のc定数とa定数の関係を表わす図である。
【図5】本発明の別な実施形態による半導体発光素子の構造を示す斜視図である。
【図6】本発明のさらに別な実施形態による半導体発光素子の構造を示す斜視図である。
【図7】InXGa1-XNの組成とそのa定数との関係を示す図である。
【図8】AlXGa1-XNの組成とそのa定数との関係を示す図である。
【図9】InXAlYGaZNの組成とそのa定数との関係を示す図である。
【符号の説明】
2 Si基板
3 ZnOバッファ層
4 GaN層
11 スパッタ装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device, a method for manufacturing the same, and a method for forming a ZnO film. In particular, the present invention relates to a semiconductor light emitting device using a III-V group compound such as GaN, InGaN, GaAlN, InGaAlN, and the like, and a method for manufacturing the same. The present invention also relates to a method for forming a ZnO film formed on a substrate such as a Si substrate or a glass substrate.
[0002]
[Prior art]
As a material of a semiconductor light emitting element such as a light emitting diode (LED) or a laser diode (LD) that generates blue light or ultraviolet light, a general formula InxGayAlzN (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, A group III-V compound semiconductor represented by 0 ≦ z ≦ 1) is known. Since this compound semiconductor is a direct transition type, its luminous efficiency is high, and its emission wavelength can be controlled by the In concentration.
[0003]
Since it is difficult to produce a large single crystal with this InxGayAlzN, a so-called heteroepitaxial growth method in which the crystal film is grown on a substrate of a different material is used. Grown on. However, the C-plane sapphire substrate is expensive and has a large lattice mismatch (for example, the lattice mismatch with GaN is as much as 16.1%), and a transition density of 10 8 / cm 2 is present in the grown crystal. A large number of crystal defects of ˜10 11 / cm 2 occurred, and there was a problem that a high-quality crystal film excellent in crystallinity could not be obtained.
[0004]
Therefore, in order to reduce the lattice mismatch when growing InxGayAlzN on the C-plane sapphire substrate and obtain a crystal with few defects, a polycrystalline or amorphous AlN buffer layer or low-temperature grown GaN on the C-plane sapphire substrate. A method of providing a buffer layer has been proposed. According to this method, since the lattice mismatch between the C-plane sapphire substrate and the buffer layer is reduced and the lattice mismatch between the buffer layer and InxGayAlzN is also reduced, a crystal film with few defects can be obtained. However, this method has a problem that the cost is further increased because the structure is complicated in addition to the expensive C-plane sapphire substrate.
[0005]
An SiC substrate has also been examined as a substrate, and the lattice mismatch is small in the SiC substrate (for example, the lattice mismatch with GaN is 3.5%). However, the SiC substrate has a drawback that it is considerably more expensive than the C-plane sapphire substrate (about 10 times the price of the C-plane sapphire substrate).
[0006]
Therefore, it has been conventionally desired to manufacture a semiconductor light emitting device using an inexpensive Si substrate or glass substrate. For this purpose, a ZnO buffer layer is grown on a Si substrate or a glass substrate, a GaN layer is provided on the ZnO buffer layer, and an InxGayAlzN-based semiconductor layer for light emission is formed on the GaN layer (or a GaN layer is formed). It is conceivable to form an InxGayAlzN-based semiconductor layer. As shown in Table 1 below, both the lattice constant in the a-axis direction (hereinafter referred to as a constant) and the lattice constant in the c-axis direction (hereinafter referred to as c constant) of the ZnO single crystal are both a constant of GaN. This is because it is considered that a GaN layer with few lattice defects can be formed. The ZnO crystal is a hexagonal crystal, and grows with the c-axis direction facing the direction perpendicular to the surface of the Si substrate or glass substrate and the a-axis direction facing the direction parallel to the Si substrate or glass substrate. .
[0007]
[Table 1]
Figure 0003760869
In the case where the ZnO buffer layer is provided on the Si substrate, the substrate cost can be reduced to about 1/10 compared to the C-plane sapphire substrate, and the cost can be reduced. Further, since the C-plane sapphire substrate is an insulating material, the Si substrate can be made conductive, so that the p-side electrode and the n-side electrode can be provided on the upper surface and the lower surface of the light emitting element, and the element structure There is also an advantage that can be simplified.
[0008]
However, although it is smaller than the lattice mismatch in the combination of GaN and a C-plane sapphire substrate or SiC substrate, as can be seen from Table 1 above, the ZnO buffer layer formed on the Si substrate can be Between them, there is a lattice mismatch of 2% with a constant, and defects due to the lattice mismatch become a problem.
[0009]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described technical problems, and an object of the present invention is to provide a lattice constant in the a-axis direction between a ZnO buffer layer and a GaN layer in an InxGayAlzN-based semiconductor light emitting device. It is to provide a GaN layer with few lattice defects by making the difference smaller. Another object of the present invention is to provide a method for controlling the lattice constant of the ZnO film in the a-axis direction.
[0010]
DISCLOSURE OF THE INVENTION
Although the lattice constant in the a-axis direction of the ZnO film formed on a substrate such as a Si substrate or a glass substrate was also affected by the lattice constant of the substrate, it was considered difficult to control directly. In the ZnO film forming method of the present invention, the lattice constant in the a-axis direction of the ZnO film can be controlled by the lattice constant in the c-axis direction of the ZnO film. Here, the lattice constant in the c-axis direction of the ZnO film can be controlled by a management parameter during film formation for forming the ZnO film.
[0011]
This method can be applied to a method for manufacturing a semiconductor light emitting device using a compound semiconductor represented by InxGayAlzN (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1). . That is, a ZnO buffer layer having a lattice constant in the c-axis direction of 5.21 to 5.28 and a lattice constant in the a-axis direction of 3.24 to 3.17 is formed on a Si substrate or a glass substrate as a polycrystal. When the lattice constant in the a-axis direction of the compound semiconductor formed on the ZnO buffer layer is smaller than the lattice constant in the a-axis direction of the ZnO single crystal, the lattice constant in the c-axis direction of the ZnO buffer layer is changed to ZnO. It can be adjusted to be larger than the lattice constant in the c-axis direction of the single crystal. Conversely, when the lattice constant in the a-axis direction of the compound semiconductor formed on the ZnO buffer layer is larger than the lattice constant in the a-axis direction of the ZnO single crystal, the lattice constant in the c-axis direction of the ZnO buffer layer is It can be adjusted to be smaller than the lattice constant in the c-axis direction of the ZnO single crystal. Thus, the value of the lattice constant in the a-axis direction of the ZnO buffer layer can be made closer to the value of the lattice constant in the a-axis direction of the compound semiconductor, so that a compound semiconductor with good crystallinity can be grown on the ZnO buffer layer. .
[0012]
As a more specific application, in a semiconductor light emitting device using a compound semiconductor represented by InxGayAlzN (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1), A ZnO buffer layer having a lattice constant in the c-axis direction of 5.21? To 5.28? And a lattice constant in the a-axis direction of 3.24? To 3.17? Forming a GaN layer on the substrate.
[0013]
If the lattice constant in the c-axis direction of the ZnO buffer layer is set to 5.21 to 5.28 cm, the lattice constant in the a-axis direction can be set to 3.24 to 3.17. Can be made smaller than the lattice constant of the ZnO single crystal in the a-axis direction. Therefore, the difference between the lattice constant of the ZnO buffer layer in the a-axis direction and the lattice constant of the GaN layer can be made smaller than before, and the lattice mismatch between the ZnO buffer layer and the GaN layer can be reduced.
[0014]
In particular, if the lattice constant in the c-axis direction of the ZnO buffer layer is 5.21 to 5.28 そ の, the lattice constant in the a-axis direction can be 3.24 to 3.17. Can be even closer.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a semiconductor light emitting device 1 having a double heterojunction structure according to an embodiment of the present invention, and represents a light emitting diode, a surface emitting laser diode or the like having an InGaN layer 6 as a light emitting layer. In this semiconductor light emitting device 1, a ZnO buffer layer 3 having a small specific resistance is grown on a conductive Si substrate 2, and an n-type GaN layer 4, an n-type AlGaN layer 5, an InGaN layer ( A light emitting layer) 6, a p-type AlGaN layer 7, and a p-type GaN layer 8, and an n-type GaN layer 4, an n-type AlGaN layer 5, an InGaN layer (light-emitting layer) 6, a p-type AlGaN layer 7, and The p-type GaN layer 8 forms a double heterojunction structure. Further, an n-side electrode 9 is provided on the entire lower surface of the Si substrate 2, and a p-side electrode 10 is partially formed on the upper surface of the p-type GaN layer 8. Thus, when a voltage is applied between the p-side electrode 10 and the n-side electrode 9, a current is injected from the p-side electrode 10 into the InGaN layer 6 to emit light, and the light emitted from the InGaN layer 6 is emitted from the p-type GaN layer 8. The p-side electrode 10 on the top surface is emitted from the region where it is not provided.
[0016]
In such a semiconductor light emitting device 1, it is important to minimize the lattice mismatch between the ZnO buffer layer 3 formed on the Si substrate 2 and the n-type GaN layer 4 as described in the conventional example. It becomes. Therefore, in the embodiment of the present invention, the ZnO buffer layer 3 is formed as described below.
[0017]
The ZnO buffer layer 3 is grown on the Si substrate 2 by a sputtering method among vapor deposition, CVD, ion plating and the like. In the sputtering apparatus 11 for forming the ZnO buffer layer 3, as shown in FIG. 2, a cathode 13 and an anode 14 are provided in a chamber 12. ZnO is placed, and the Si substrate 2 is placed on the anode 14. The chamber 12 is provided with a pipe 16 for introducing Ar gas, a pipe 17 for introducing O 2 gas, and an exhaust duct 18, and the flow rates of Ar gas and O 2 gas are controlled by a flow rate adjusting valve 19, 20 can be adjusted. Further, the sputtering apparatus 11 includes a temperature control device (not shown) for keeping the substrate heating temperature Tc constant.
[0018]
Thus, while Ar gas and O 2 gas are introduced into the chamber 12 at a constant flow rate, the gas in the chamber 12 is discharged from the exhaust duct to keep the chamber 12 at a constant pressure. When a high-frequency voltage is applied between the anode 14 and the cathode 13 while keeping the Si substrate 2 at a constant temperature, plasma is generated between the electrodes 13 and 14, and plasma ions 21 collide with the target to cause Zn or ZnO22. Play out. ZnO ejected from the target or ZnO produced by reaction of Zn ejected from the target with O 2 gas is deposited on the surface of the Si substrate 2 and grows in a polycrystalline manner to become the ZnO buffer layer 3.
[0019]
FIG. 3 shows the ratio S (O 2 ) / [of the Ar gas flow rate S (Ar) to the O 2 gas flow rate S (O 2 ) when the ZnO buffer layer 3 is formed on the surface of the Si substrate 2 as described above. It represents a change in the c constant of the ZnO buffer layer 3 with respect to S (Ar) + S (O 2 )]. The flow rate St in FIG. 3 indicates the total flow rate S (Ar) + S (O 2 ). FIG. 4 shows the relationship between the c constant and the a constant of the ZnO buffer layer 3 formed on the Si substrate 2.
[0020]
The single crystal ZnO has an a constant of 3.24982Å, the c constant is 5.20661Å (the lattice constant of the single crystal ZnO is indicated by a triangle in FIG. 4; see Table 1), and the a constant of the GaN layer 4 is 3.1860Å ( Since the lattice constant of GaN is indicated by a square in FIG. 4 (see Table 1), in order to make the a constant of the ZnO buffer layer 3 closer to the a constant of the GaN layer 4 than the single crystal ZnO, FIG. According to the above, it is understood that the c constant of the ZnO buffer layer 3 may be set to 5.207020 or more. In particular, in order to set the a constant of the ZnO buffer layer 3 to 3.17Å to 3.24Å which is a value in the vicinity of the a constant of the GaN layer 4, the c constant of the ZnO buffer layer 3 is 5.21Å to 5.28Å. You can do it. In particular, if the c constant of the ZnO buffer layer 3 is set to about 5.26Å, the a constant of the ZnO buffer layer 3 can be made substantially equal to the a constant of the GaN layer 4.
[0021]
Next, from the data of FIG. 3, in order to set the c constant of the ZnO buffer layer 3 to the desired value as described above, the gas flow rate St = S (Ar) + S (O 2 ), the gas flow rate ratio S (O 2). ) / [S (Ar) + S (O 2 )] and the substrate heating temperature Tc can be controlled. For example, in the sputtering apparatus 11 used to obtain the data of FIG. 3, for example, if the gas flow rate St = S (Ar) + S (O 2 ) = 30 sccm and the substrate heating temperature Tc = 400 ° C., the gas flow rate ratio S ( By setting O 2 ) / [S (Ar) + S (O 2 )] to about 50%, the c constant of the ZnO buffer layer 3 can be set to about 5.262Å, and the corresponding a constant is It can be in the vicinity of 3.1860 3 which is the a constant of the GaN layer 4.
[0022]
Although the relationship between the c constant of the ZnO buffer layer 3 and each control parameter value of the film forming apparatus varies depending on the type of the apparatus, the relationship between the c constant of the ZnO buffer layer 3 and the a constant is unbiased. If the parameter value of the film forming apparatus is appropriately set so that the c constant of the buffer layer 3 becomes a desired value, the a constant of the ZnO buffer layer 3 can be brought close to the a constant of the GaN layer 4.
[0023]
(Second Embodiment) The present invention can be applied to a semiconductor light emitting device having a double heterojunction structure with an InGaN layer 6 as shown in FIG. For example, a ZnO buffer layer 33, an n-type GaN layer 34, and a p-type GaN layer 35 are stacked on a Si substrate 32 as in the semiconductor light emitting device 31 shown in FIG. The p-side electrode 37 may be provided on the p-side GaN layer 35. Although not shown, a light emitting device having a structure in which a ZnO buffer layer, a low temperature growth GaN buffer layer, an n-type GaN layer, and a p-type GaN layer are stacked on a glass substrate may be used.
[0024]
(Third Embodiment) Further, as shown in FIG. 6, a ZnO buffer layer 43 is formed on a Si substrate 42, and an n-type GaN cladding layer 44, a p-type GaN active layer 45, and a p-type GaN cladding layer. 46, a SiO 2 film 47 is formed in a region excluding the central portion of the upper surface of the p-side GaN cladding layer 46, and a p-side electrode 48 is provided on the p-type GaN cladding layer 46 from above the SiO 2 film 47. Alternatively, a semiconductor light emitting element 41 such as a laser diode or an edge emitting type light emitting diode having an n-side electrode 49 provided on the lower surface of the Si substrate 42 may be used.
[0025]
(Fourth Embodiment) In the above embodiment, GaN is formed on a ZnO film. However, the present invention is also applied to the case where InGaN, InAlGaN, AlGaN or the like is directly formed on a ZnO film. be able to. For example, from the relationship between the composition of In X Ga 1 -XN and its a constant shown in FIG. 7, the a constant of In 0.2 Ga 0.8 N is about 3.26Å, so the a constant of the ZnO film is set to In 0.2 Ga According to the graph of FIG. 4, it can be seen that the c constant of the ZnO film should be set to 5.155 to 5.205 in order to approach the a constant of 0.8 N.
(Fifth Embodiment) Since the a constant of Al 0.2 Ga 0.8 N is about 3.176 from the relationship between the composition of Al X Ga 1-X N and its a constant shown in FIG. According to the graph of FIG. 4, it can be seen that the c constant of the ZnO film should be set to 5.27 to 5.28 に は in order to make the a constant of Al close to that of Al 0.2 Ga 0.8 N.
(Sixth Embodiment) Similarly, from the relationship between the composition of InXAlYGaZN (where X + Y + Z = 1) shown in FIG. 9 and its a constant, the a constant of In 0.2 Al 0.2 Ga 0.6 N is about 3.245Å. Therefore, in order to make the a constant of the ZnO film close to the a constant of In 0.2 Al 0.2 Ga 0.6 N, according to the graph of FIG. 4, the c constant of the ZnO film may be set to 5.19 to 5.22 mm. I understand. Here, the case of X = 0.2, Y = 0.2, and Z = 0.6 has been described as an example. However, even in the case of other values, the optimum ZnO concentration can be determined from the graphs of FIGS. Since the c-axis length is derived, it may be controlled so as to be the value.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a structure of a semiconductor light emitting device according to an embodiment of the present invention.
FIG. 2 is a schematic view showing that a ZnO buffer layer is formed on a Si substrate by a sputtering apparatus.
FIG. 3 is a diagram showing a relationship between a c constant of a ZnO buffer layer formed on the surface of a Si substrate and a gas flow rate ratio S (O 2 ) / [S (Ar) + S (O 2 )].
FIG. 4 is a diagram showing the relationship between c constant and a constant of a ZnO buffer layer formed on a Si substrate.
FIG. 5 is a perspective view illustrating a structure of a semiconductor light emitting device according to another embodiment of the present invention.
FIG. 6 is a perspective view illustrating a structure of a semiconductor light emitting device according to still another embodiment of the present invention.
FIG. 7 is a graph showing the relationship between the composition of In X Ga 1 -XN and its a constant.
FIG. 8 is a diagram showing the relationship between the composition of AlXGa1-XN and its a constant.
FIG. 9 is a diagram showing the relationship between the composition of InXAlYGaZN and its a constant.
[Explanation of symbols]
2 Si substrate 3 ZnO buffer layer 4 GaN layer 11 Sputtering device

Claims (2)

InxGayAlzN(ただし、x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表わされる化合物半導体を用いた半導体発光素子の製造方法であって、
Si基板またはガラス基板上にZnOバッファ層を多結晶で形成するときに、ZnOバッファ層上に形成される化合物半導体のa軸方向の格子定数が、ZnO単結晶のa軸方向の格子定数よりも小さい場合には、ZnOバッファ層のc軸方向の格子定数をZnO単結晶のc軸方向の格子定数よりも大きくなるように、ガス流量St=S(Ar)+S(O2)、ガス流量比S(O2)/[S(Ar)+S(O2)]及び基板加熱温度Tcをコントロールして調整し、
ZnOバッファ層上に形成される化合物半導体のa軸方向の格子定数が、ZnO単結晶のa軸方向の格子定数よりも大きい場合には、ZnOバッファ層のc軸方向の格子定数をZnO単結晶のc軸方向の格子定数よりも小さくなるように、ガス流量St=S(Ar)+S(O2)、ガス流量比S(O2)/[S(Ar)+S(O2)]及び基板加熱温度Tcをコントロールして調整することにより、
ZnOバッファ層のa軸方向の格子定数とZnOバッファ層の上に形成される化合物半導体のa軸方向の格子定数の値を近づけることを特徴とする半導体発光素子の製造方法。
A method of manufacturing a semiconductor light emitting device using a compound semiconductor represented by InxGayAlzN (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1),
When a ZnO buffer layer is formed on a Si substrate or a glass substrate as a polycrystal, the lattice constant in the a-axis direction of the compound semiconductor formed on the ZnO buffer layer is larger than the lattice constant in the a-axis direction of the ZnO single crystal. When it is small, the gas flow rate St = S (Ar) + S (O 2 ), the gas flow rate ratio so that the lattice constant in the c-axis direction of the ZnO buffer layer is larger than the lattice constant in the c-axis direction of the ZnO single crystal. S (O 2 ) / [S (Ar) + S (O 2 )] and the substrate heating temperature Tc are controlled and adjusted,
When the lattice constant in the a-axis direction of the compound semiconductor formed on the ZnO buffer layer is larger than the lattice constant in the a-axis direction of the ZnO single crystal, the lattice constant in the c-axis direction of the ZnO buffer layer is changed to the ZnO single crystal. Gas flow rate St = S (Ar) + S (O 2 ), gas flow rate ratio S (O 2 ) / [S (Ar) + S (O 2 )] and the substrate so as to be smaller than the lattice constant in the c-axis direction of By controlling and adjusting the heating temperature Tc,
A method for manufacturing a semiconductor light emitting device, wherein the value of the lattice constant in the a-axis direction of the ZnO buffer layer is made closer to the value of the lattice constant in the a-axis direction of the compound semiconductor formed on the ZnO buffer layer.
前記ZnOバッファ層のa軸方向の格子定数を、前記ZnOバッファ層の上に形成される化合物半導体のa軸方向の格子定数に近づけたときの前記ZnOバッファ層のa軸方向の格子定数の範囲が、3.24Å〜3.17Åであることを特徴とする半導体発光素子の製造方法。Range of lattice constant in the a-axis direction of the ZnO buffer layer when the lattice constant in the a-axis direction of the ZnO buffer layer is brought close to the lattice constant in the a-axis direction of the compound semiconductor formed on the ZnO buffer layer The manufacturing method of the semiconductor light emitting element characterized by the above-mentioned.
JP2002027162A 2002-02-04 2002-02-04 Manufacturing method of semiconductor light emitting device Expired - Fee Related JP3760869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027162A JP3760869B2 (en) 2002-02-04 2002-02-04 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027162A JP3760869B2 (en) 2002-02-04 2002-02-04 Manufacturing method of semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20512598A Division JP3522114B2 (en) 1998-07-21 1998-07-21 Semiconductor light emitting device, method of manufacturing the same, and method of forming ZnO film

Publications (2)

Publication Number Publication Date
JP2002305324A JP2002305324A (en) 2002-10-18
JP3760869B2 true JP3760869B2 (en) 2006-03-29

Family

ID=19192395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027162A Expired - Fee Related JP3760869B2 (en) 2002-02-04 2002-02-04 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3760869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258599A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing semiconductor device
CN102263370B (en) * 2010-10-09 2013-07-10 吉林大学 p-ZnO and n-GaN combined multi-layer terminal emitting lasers and preparation methods
CN101976800B (en) * 2010-10-09 2012-02-08 吉林大学 ZnO and GaN-combined ZnO-based end surface transmitting laser and preparation method thereof
CN102263369B (en) * 2010-10-09 2013-08-07 吉林大学 p-ZnO and n-GaN combined ZnO-based terminal emitting lasers and preparation methods

Also Published As

Publication number Publication date
JP2002305324A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
US7176479B2 (en) Nitride compound semiconductor element
JP5471440B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP4539752B2 (en) Method for forming quantum well structure and method for manufacturing semiconductor light emitting device
JP5272390B2 (en) Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
US7935955B2 (en) Group III nitride semiconductor multilayer structure
US8227359B2 (en) Method for manufacturing group III nitride semiconductor layer, method for manufacturing group III nitride semiconductor light-emitting device, and group III nitride semiconductor light-emitting device, and lamp
JP2008205514A (en) Iii-v nitride semiconductor device
JP2001160627A (en) Group iii nitride compound semiconductor light emitting element
JPWO2007129773A1 (en) Group III nitride compound semiconductor multilayer structure
US6291258B2 (en) Semiconductor photonic device, method for making the same, and method for forming ZnO film
US7456445B2 (en) Group III nitride semiconductor light emitting device
JP2002313742A (en) Vapor growth method of nitride semiconductor and nitride semiconductor element
JP2008034444A (en) Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp
KR100841269B1 (en) Group ¥² nitride semiconductor multilayer structure
JP2007109713A (en) Group iii nitride semiconductor light emitting element
JP3760869B2 (en) Manufacturing method of semiconductor light emitting device
JP4781028B2 (en) Group III nitride semiconductor laminate and method for manufacturing group III nitride semiconductor light emitting device
JPH07267796A (en) Production of gallium nitride single crystal
JP2000058912A (en) Semiconductor light emitting element
JP2008115463A (en) Layered structure of semiconductor of group iii nitride, production method therefor, semiconductor light-emitting element and lamp
JP2008098224A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JP2008135463A (en) Manufacturing method of group iii nitride semiconductor, manufacturing method of group iii nitride semiconductor light-emitting element, group iii nitride semiconductor light-emitting element and lamp
JP2008098245A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JP2003008059A (en) Nitride-family semiconductor light-emitting element
KR101442809B1 (en) Nitride semiconductor light emitting device and method for manufacturing thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees