JP3760069B2 - Waste melting furnace operation method - Google Patents

Waste melting furnace operation method Download PDF

Info

Publication number
JP3760069B2
JP3760069B2 JP34800899A JP34800899A JP3760069B2 JP 3760069 B2 JP3760069 B2 JP 3760069B2 JP 34800899 A JP34800899 A JP 34800899A JP 34800899 A JP34800899 A JP 34800899A JP 3760069 B2 JP3760069 B2 JP 3760069B2
Authority
JP
Japan
Prior art keywords
fuel
furnace
waste
melting furnace
waste melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34800899A
Other languages
Japanese (ja)
Other versions
JP2001108212A (en
Inventor
健 高宮
秀治 芝池
宏和 田中
也寸彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34800899A priority Critical patent/JP3760069B2/en
Publication of JP2001108212A publication Critical patent/JP2001108212A/en
Application granted granted Critical
Publication of JP3760069B2 publication Critical patent/JP3760069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般廃棄物、産業廃棄物等の廃棄物を熱分解溶融処理する廃棄物溶融炉の操業方法に関する。
【0002】
【従来の技術】
一般廃棄物、産業廃棄物等の処理方法の一つとして、シャフト炉型の廃棄物溶融炉で廃棄物を乾燥、熱分解、燃焼、溶融してスラグとメタルにする廃棄物溶融処理方法がある。この廃棄物溶融処理方法は、廃棄物をガス化・高温溶融して一括処理することが可能である。
【0003】
図6は従来のシャフト炉型の廃棄物溶融炉を備えた廃棄物溶融設備の説明図で、廃棄物溶融炉1には、廃棄物、副資材であるコークス、石灰石を炉上部から2重シール弁機構の装入装置2を介して装入し、乾燥、熱分解、燃焼、溶融する。一方、炉内からの可燃分は、熱分解ガスとして炉上部のダクト3から排出され、燃焼室4で完全燃焼後、ボイラ5、タービン発電機などの付帯設備により熱及び電気エネルギーとして利用される。その後、排ガスは、ガス冷却器6で冷却され、集じん装置7を経た後、誘引送風機8により煙突9から放出する。
【0004】
廃棄物溶融炉の下部には空気と酸素を混合した酸素富化空気を吹き込む送風羽口10が設けられ、灰分はスラグ及びメタルとして出滓口11から取り出す。送風羽口10から吹き込んだ酸素富化空気は炉内のコークス及び熱分解で発生したチャーを燃焼させ、その燃焼熱は炉内に投入された廃棄物の乾燥、熱分解、及び不燃物の溶融に利用される。
【0005】
廃棄物溶融炉内の下部には、熱分解完了後の乾留残さ(粗粒チャー)により充填層が形成されている。この乾留残さによる充填層は、固定炭素と灰分を主としており、空隙も少なく通気抵抗が大きい。そのため、燃焼ガスの分散効果が大きく、この分散効果により羽口前から上昇したガスが炉内に均等に流れて、熱交換効率を高めることができる。
【0006】
また、炉内のコークスは、燃料としての役割を有しつつ且つ2000℃を超える高温中でもその形状を維持し、炉内の灰分を完全に溶融する機能を持つ火格子の役割も有している。その結果、炉内に投入された廃棄物には炭素、水素、酸素、窒素、硫黄、塩素等だけでなく、Na、K等の塩類、あるいはZn、Pb、Cr、Cd、As等の有害成分が含まれているが、これらの有害物の一部は、スラグ中に移行するものの、炉内が高温・還元雰囲気であるため、大部分が炉外に還元揮発し、スラグ中に含有されるZn、Pb、Cr、Cd、As等は極微量に低減される。
【0007】
【発明が解決しようとする課題】
廃棄物溶融処埋技術では、単にごみを溶融処理するだけでなく、廃棄物溶融炉の運転の安定性、再資源化できる溶融物(スラグ・メタル)の品質、熱及び電気エネルギー回収のための安定した蒸気発生量の確保が求められている。また、溶融処理対象物には、一般の都市ごみだけでなく、高水分、高灰分、異形ごみ等様々な種類のごみがあり、これらを安定処理することも求められている。
【0008】
運転の安定性、溶融物の品質、安定した蒸気発生量の確保のために、乾留残さの均一な通気抵抗層の確保が重要であることは前述のとおりであるが、高水分や異形等の変動の大きい様々な種類のごみを一括処理する場合には、熱分解が完了しないまま炉底部へ降下することがある。この場合、それが羽口前で直接燃焼すると、体積縮小が大きいため、空間部が生じ、乾留残さの通気抵抗層の変動が発生することがあった。その結果、炉内ガスと炉内装入物との熱交換効率が低下し、炉内における固体温度の低下が起こって熱分解量が低下し、そのため、ごみ処理量の低下、蒸気発生量の低下、あるいはスラグ温度の低下等が起こることがあった。
【0009】
前述のとおり、廃棄物溶融処埋技術では、溶融物の再資源化つまりスラグ・メタル等の有効利用も重要である。特に、スラグは、天然資材に匹敵する良好な特性を持っていることから、多くの方面で有効利用が試行されている。有効利用が進行すると、最終処分場不足に対してだけでなく、天然資源の節約にも大きく貢献する。スラグは、その物理的性状や特性から、主に土木資材として利用され、例えば、インターロッキングやアスファルト骨材として利用されているが、その利用に際しては、Pb等の有害物質の溶出性能は厳しく問われており、安全性の向上と環境への負荷を少なくすることから、有害物質の溶出はできる限り少なく、零にすることが望ましい。
【0010】
一般的に有害物質の溶出性能は、環境庁告示46号に従って測定されており、土壌環境基準で評価されている。その基準を満足することはもちろんであるが、実際の環境中では酸性雨等が存在することから、環境状況が現在の試験法より厳しい場合が考えられるので、含有量を極限まで低減することが有効である。
【0011】
ところで、重金属を含む廃棄物を溶融処理する場合、溶融部の雰囲気は、大きく酸化雰囲気と還元雰囲気とに分けられる。表面溶融のような酸化雰囲気の溶融方法では、重金属類は酸化物として存在し、例えば、Pbは沸点が高いためスラグ中に高濃度で残留しやすい(数十〜数百ppm程度)。
【0012】
一方、高温・還元雰囲気では、ごみ中のPb、Zn等の重金属は、主として還元揮発してスラグ中にはほとんど残留しない。特に、コークスベッドを形成する廃棄物溶融炉の場合、炉内が2000℃程度に上昇するため、例えば、通常の経済的な運転条件では、ほぼスラグ中のPbが20〜30ppm程度以下になっており、投入されたごみ中のPbの約80%以上が溶融炉から揮発することがわかっている。
【0013】
しかし、炉底部の熱レベルの低下によって炉内還元雰囲気が低下し、Pb等の重金属の揮発が抑制され、スラグ中の含有量が若干上昇する傾向があった。
【0014】
炉底部の熱レベル低下は、従来、スラグ温度の低下や蒸気発生量の低下をセンサーで検知して対処していた。その対策としては、乾留残さの通気抵抗層の変動原因となるごみの直接燃焼による体積縮小を抑制する理由から、具体的には固定炭素割合の大きいコークス等の炭素塊を炉頂部より投入し、優先的に燃焼させることでごみの直接燃焼を抑制する方法があった。
【0015】
また、更にスラグ中のPb等重金属を低減するためには、炉内を更に高温にしたり、還元雰囲気を強化する必要があった。前者の場合は、送風酸素濃度を上げて炉内温度を上げる必要があり、後者の場合は、コークス等の塊状燃料の使用量を増加させる必要があるが、いずれも、ランニングコストが上昇する問題があった。
【0016】
しかも、炉底部の熱レベル上昇や炉内還元雰囲気強化のために、コークス等の炭素塊を炉頂から投入しても、炉底に到達するまで時間がかかるために即効性が弱く、蒸発量の低下やスラグ温度低下がしばらく継続していた。そのため、炉内熱レベル変化を極力早く検知し、対処する操業方法が望まれていた。
【0017】
本発明は、廃棄物をコークス・石灰石とともに装入し、乾燥、熱分解、燃焼、溶融して排出する廃棄物溶融炉の操業において、熱レベルの変動を、従来より早期に検知し、そして、その検出値により、羽口を介したコークスベッド内への燃料吹込量を制御し、炉底熱レべルを速やかに安定させて、蒸気発生量の高位安定やスラグ中のPb含有量を低位で安定させることができる廃棄物溶融炉の操業方法を提供するものである。
【0018】
【課題を解決するための手段】
本発明の廃棄物溶融炉の操業方法は、廃棄物溶融炉に廃棄物をコークス、石灰石とともに装入し、乾燥、熱分解、燃焼、溶融して排出する際に、廃棄物溶融炉の送風羽口からコークスベッドヘ常温の酸素富化空気又は高温空気とともに、燃料をコークスベッドヘ吹き込む方法において、廃棄物溶融炉の炉頂ガス温度を測定し、測定結果が設定温度を超えると、炉頂ガス温度が設定値以下になるように燃料を吹き込み、燃料吹き込み後、炉頂ガス温度が前記設定温度以下になると燃料吹き込み量を減らしていくように制御することを特徴とする。
【0019】
また、本発明の廃棄物溶融炉の操業方法は、廃棄物溶融炉に廃棄物をコークス・石灰石とともに装入し、乾燥、熱分解、燃焼、溶融して排出する際に、廃棄物溶融炉の送風羽口からコークスベッドヘ常温の酸素富化空気又は高温空気とともに、燃料をコークスベッドヘ吹き込む方法において、廃棄物溶融炉の炉頂ガス中のCO濃度(%)及びCO2濃度(%)を測定してηCO=CO2/(CO2+CO)を演算し、演算されたηCO設定値を超えると、η CO が設定値以下になるように燃料を吹き込み、燃料吹き込み後、η CO が設定値以下になると燃料吹き込み量を減らしていくように制御することを特徴とする。
【0020】
更に、本発明は、廃棄物溶融炉に廃棄物をコークス、石灰石とともに装入し、乾燥、熱分解、燃焼、溶融して排出する際に、廃棄物溶融炉の送風羽口からコークスベッドヘ常温の酸素富化空気又は高温空気とともに、燃料をコークスベッドヘ吹き込む方法において、廃棄物溶融炉の炉頂ガス温度を測定するとともに、CO濃度(%)及びCO濃度(%)を測定してηCOC=CO/(CO+CO)を演算し、炉頂ガス温度が設定値を超えても、演算されたη CO が設定値以下の場合は燃料を吹き込まず、炉頂ガス温度が設定値を超え、かつ演算されたη CO が設定値を超える場合に燃料を吹き込み、燃料吹き込み後、炉頂ガス温度が設定値以下あるいはη CO が設定値以下になると燃料吹き込み量を減らしていくように制御することを特徴とする。
【0022】
【発明の実施の形態】
羽口から吹き込む燃料は、ガス燃料、液体燃料、固形燃料で単独で炉内に吹き込んだり、空気等のキャリアガスで気流搬送可能な性状であれば、いずれでも利用可能である。また、従来、その処埋に困っていた廃プラスチック、廃油等も利用可能である。更に、廃棄物溶融炉から飛散し、燃焼室前で集じん機で捕集した可燃性ダストでも可能である。
【0023】
前述のとおり、高水分ごみや異形ごみ等の変動の大きい様々なごみを処理する場合に、ごみの熱分解が完了しないまま炉底部へ降下する場合があり、熱分解未完了のごみが羽口前で直接燃焼することによる体積縮小が大きいために空間部が生じ、断面方向における通気抵抗の差が生じ、熱交換効率が低下することがあった。しかし、本発明により、コークスベッド充填層内に吹き込まれた燃料は、コークスベッド充填層内で適当に混合され、熱分解未完了のごみよりも、羽口を介して吹き込んだ酸素富化空気もしくは高温空気と優先的に反応し燃焼する。従って、燃料吹き込み時には、吹き込み燃料とコークスが優先的に燃焼し、熱分解未完了のごみが炉底部に降下してもごみの直接燃焼を抑制し、横断面方向における均一な通気抵抗層を維持する。その結果、ガスが均一に流れ、炉内の熱交換効率が上昇する。
【0024】
また、燃料吹き込みの時には、吹き込みなしの時と比較して吹き込み酸素の燃焼完了点が速く、800℃〜1000℃の高温域で起こる吸熱反応(CO2+C→2CO)が始まる位置が速くなり、還元雰囲気域が拡がる。その結果、Pb、Zn等の重金属の還元揮発が促進される。
【0025】
特に、燃焼速度の遅い固体物質については、粒径は30mm以下、発熱量は2000kcal/kg以上が好適である。但し、燃焼温度が高くなりすぎ、耐火物を痛めるので発熱量は10000kcal/kg以下が望ましい。
【0026】
一方、炉内に投入されたごみが、熱分解末完了のまま炉底部に降下すると、横断面方向における通気抵抗の差が生じ、熱交換効率が低下するため、固体温度が低下し、ごみの熱分解速度も抑制される。その結果、炉底部の熱レベルが低下し、最終的にスラグ温度や処理量の低下が起こる。この場合、まずはじめに固体の温度低下に伴いCO2+C→2CO−Q(吸熱反応)に代表される吸熱反応も低下する。その結果、熱分解ガス温度が上昇し、可燃性熱分解ガス(CO等)割合が低下するため、炉頂温度・ガス組成を管埋することで、従来のスラグ温度等による熱レベルの把握より傾向をいち早く検知できる。
【0027】
図1は本発明のシャフト炉型の廃棄物溶融炉を備えた廃棄物溶融設備の説明図で、図6に示す従来の廃棄物溶融設備と同一の構成については、同一符号を付し、その説明は省略する。
【0028】
廃棄物溶融炉1の炉頂ガスダクト3には、炉頂ガス中のCO濃度(%)及びCO2濃度(%)を測定するCO濃度計及びCO2濃度が設けられ、測定結果は、ηCO演算装置へ送られ、ηCO=CO2/(CO2+CO)が演算される。演算されたηCOは、燃料吹込量演算装置へ送られる。また、廃棄物溶融炉1の炉頂部には、炉頂温度を測定する温度計(TI)が設けられ、測定結果は、燃料吹込量演算装置へ送られる。
【0029】
具体的には、炉頂温度が高くなり、炉頂ガス中CO%が低下した場合、吹き込み量を増加させる。
【0030】
図2は炉頂温度による燃料吹き込み制御のフローチャート、図3はηCOによる燃料吹き込み制御のフローチャート、図4は炉頂温度及びηCOによる燃料吹き込み制御のフローチャートである。
【0031】
図2において、温度計(TI)の測定結果が炉頂温度の設定値を超えると、炉頂温度が設定値以下になるように燃料が吹き込まれる。炉頂温度は、通常400±50℃に入るように燃料吹込量を流量調節計(FIC)で調節する。図2(a)は吹込量増減用の設定値を一つ設けたものであり、燃料吹き込み後、炉頂温度が設定値以下になると、燃料吹き込み量を減らしていく。一方、図2(b)は、吹込量増減用に設定値が各一つの計二つ設け、その間の温度では、吹込量を維持したままとするものである。
【0032】
図3において、演算されたηCOが設定値を超える場合、ηCOが設定値以下になるように燃料が吹き込まれる。ηCOは、通常40±5%に入るように燃料吹込量を流量調節計(FIC)で調節する。図3(a)は吹込量増減用の設定値を一つ設けたものであり、燃料吹き込み後、ηCOが設定値以下になると、燃料吹き込み量を減らしていく。一方、図3(b)は、吹込量増減用に設定値が各一つの計二つ設け、その間の温度では、吹込量を維持したままとするものである。
【0033】
図4において、温度計(TI)の測定結果が炉頂温度の設定値を超えても、演算されたηCOが設定値以下の場合は、燃料は吹き込まず、炉頂温度が設定値を超えるとともに、演算されたηCOが設定値を超える場合に、燃料が吹き込まれる。図4(a)は、燃料吹き込み後、炉頂温度が設定値以下あるいはηCOが設定値以下になると、燃料吹き込み量を減らしていく。図4(b)では、設定値を三つ設け、ある範囲においては、吹き込み量を増減せず維持することを特徴としたものである。
【0034】
表1は本発明の燃料吹き込みの実施例、及び吹き込まない比較例との比較表である。
【0035】
【表1】

Figure 0003760069
表1から、本発明では、燃料を吹き込まない場合に比較して、ごみ処理量が増加するとともに、蒸気発生量が安定しており、またスラグ温度が高くスラグ中のPb、Zn量が低減され、更にコークス比も低減することが分かる。
【0036】
図5(a)は本発明の燃料吹き込みの例及び吹き込まない例とのCO濃度と炉頂温度の変化、(b)はスラグ温度の変化を示すグラフである。燃料として排プラスチックを5mm程度に粉砕したものを用いた。燃料吹き込みを行う本発明では、CO濃度及び炉頂温度が設定値の範囲内に制御でき、その結果、スラグ温度が高く温度低下が少ないことが分かる。
【0037】
従って、炉頂温度やガス組成を検出して、吹き込み量を制御させることで、素早く炉内熱レベルを検知でき、羽口吹き込みによる素早い回復アクションが可能となる。
【0038】
【発明の効果】
本発明により、炉内熱レベル低下を従来より早期に検知することが可能となり、また羽口からの可燃物吹き込み量を制御することで、従来より速やかな対応が可能となった。そのため、乾留残さによる通気抵抗層の確保が容易となり、炉内での乾留残さの通気抵抗層の変動が抑制され、炉内ガスと投入した廃棄物との熱交換効率が上昇した。その結果、ごみ処理量が増加し、蒸気発生量が高位で安定した。種々のごみを溶融処埋する上で、操業成績の安定化を達成した。また、溶融炉の炉頂排ガスCO(%)を安定化させるため、後段に設置した燃焼室での燃焼が更に安定し、ダイオキシン類の発生も抑制された。
【0039】
また、炉下部熱レベル及び還元雰囲気を制御・安定化が可能となり、その結果、スラグに含有されるPbの量が極端に低減(数ppmレベル)した。
【0040】
更に、炉況が安定し、スラグ温度が高位で安定したため、コークス等の捕助燃料の使用量が低減した。
【図面の簡単な説明】
【図1】本発明のシャフト炉型の廃棄物溶融炉を備えた廃棄物溶融設備の説明図である。
【図2】炉頂温度による燃料吹き込み制御のフローチャートである。
【図3】ηCOによる燃料吹き込み制御のフローチャートである。
【図4】炉頂温度及びηCOによる燃料吹き込み制御のフローチャートである。
【図5】(a)は本発明の燃料吹き込みの例及び吹き込まない例とのCO濃度と炉頂温度の変化、(b)はスラグ温度の変化を示すグラフである。
【図6】従来のシャフト炉型の廃棄物溶融炉を備えた廃棄物溶融設備の説明図である。
【符号の説明】
1:廃棄物溶融炉 2:装入装置 3:ダクト 4:燃焼室
5:ボイラ 6:ガス冷却器 7:集じん装置 8:誘引送風機
9:煙突 10:送風羽口 11:出滓口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a waste melting furnace for pyrolyzing and melting waste such as general waste and industrial waste.
[0002]
[Prior art]
As one of the processing methods for general waste, industrial waste, etc., there is a waste melting method for drying, pyrolyzing, burning and melting waste into slag and metal in a shaft furnace type waste melting furnace. . In this waste melting method, waste can be gasified and melted at a high temperature for batch processing.
[0003]
FIG. 6 is an explanatory diagram of a waste melting facility equipped with a conventional shaft furnace type waste melting furnace. In the waste melting furnace 1, waste, auxiliary materials such as coke and limestone are double sealed from the top of the furnace. It is charged via the charging device 2 of the valve mechanism, and is dried, pyrolyzed, burned and melted. On the other hand, combustible matter from the furnace is discharged as a pyrolysis gas from the duct 3 at the upper part of the furnace, and after complete combustion in the combustion chamber 4, is used as heat and electric energy by auxiliary equipment such as a boiler 5 and a turbine generator. . Thereafter, the exhaust gas is cooled by the gas cooler 6, passes through the dust collecting device 7, and is then discharged from the chimney 9 by the induction blower 8.
[0004]
A blower tuyere 10 for blowing oxygen-enriched air mixed with air and oxygen is provided at the lower part of the waste melting furnace, and ash is taken out from the outlet 11 as slag and metal. The oxygen-enriched air blown from the blower tuyre 10 burns coke in the furnace and char generated by pyrolysis, and the combustion heat is used to dry, decompose, and melt incombustible waste in the furnace. Used for
[0005]
In the lower part of the waste melting furnace, a packed bed is formed by dry distillation residue (coarse grain char) after completion of thermal decomposition. The packed bed of the carbonization residue is mainly composed of fixed carbon and ash, has few voids, and has a high ventilation resistance. Therefore, the combustion gas has a large dispersion effect, and the gas that has risen from the tuyere due to this dispersion effect flows evenly into the furnace, thereby improving the heat exchange efficiency.
[0006]
In addition, the coke in the furnace has a role as a fuel, and also has a role of a grate having a function of completely melting the ash in the furnace while maintaining its shape even at a high temperature exceeding 2000 ° C. . As a result, not only carbon, hydrogen, oxygen, nitrogen, sulfur, chlorine, etc., but also Na, K, etc., or Zn, Pb, Cr, Cd, As, etc. Although some of these harmful substances are transferred into the slag, most of them are reduced and volatilized outside the furnace because they are in a high temperature / reducing atmosphere, and are contained in the slag. Zn, Pb, Cr, Cd, As, etc. are reduced to a very small amount.
[0007]
[Problems to be solved by the invention]
Waste melting treatment technology is not only for melting waste, but also for stability of waste melting furnace operation, quality of recyclable melt (slag metal), heat and electric energy recovery. It is required to secure a stable steam generation amount. In addition, not only general municipal waste but also various types of waste such as high moisture, high ash content, and irregular shaped waste are included in the objects to be melted, and it is also required to stably treat these.
[0008]
As mentioned above, it is important to secure a ventilation resistance layer with uniform dry distillation residue in order to ensure operational stability, melt quality, and stable steam generation. When various types of garbage with large fluctuations are processed at once, they may fall to the bottom of the furnace without completing thermal decomposition. In this case, when it burns directly in front of the tuyere, the volume reduction is large, so that a space is generated, and the ventilation resistance layer of the dry distillation residue may fluctuate. As a result, the heat exchange efficiency between the gas in the furnace and the furnace interior decreases, the solid temperature in the furnace decreases, the amount of pyrolysis decreases, and therefore the amount of waste treatment and steam generation decrease. Or, a decrease in the slag temperature may occur.
[0009]
As described above, in the waste melting treatment technique, it is also important to recycle the molten material, that is, to effectively use slag metal or the like. In particular, since slag has good characteristics comparable to natural materials, effective use has been tried in many fields. As effective utilization progresses, not only will there be a shortage of final disposal sites, but it will also contribute greatly to saving natural resources. Slag is mainly used as civil engineering materials because of its physical properties and characteristics. For example, slag is used as interlocking and asphalt aggregates. In order to improve safety and reduce the burden on the environment, it is desirable to eliminate toxic substances as little as possible.
[0010]
In general, the leaching performance of harmful substances is measured in accordance with Notification No. 46 of the Environment Agency, and is evaluated according to soil environmental standards. In addition to satisfying that standard, there are acid rains in the actual environment, so the environment may be more severe than the current test method, so the content can be reduced to the limit. It is valid.
[0011]
By the way, when the waste containing heavy metal is melt-processed, the atmosphere of the melting part is roughly divided into an oxidizing atmosphere and a reducing atmosphere. In a melting method in an oxidizing atmosphere such as surface melting, heavy metals exist as oxides. For example, Pb has a high boiling point, and thus tends to remain in slag at a high concentration (about several tens to several hundred ppm).
[0012]
On the other hand, in a high temperature / reducing atmosphere, heavy metals such as Pb and Zn in the garbage are mainly reduced and volatilized and hardly remain in the slag. In particular, in the case of a waste melting furnace that forms a coke bed, the inside of the furnace rises to about 2000 ° C. Therefore, for example, under normal economic operating conditions, Pb in the slag is approximately 20 to 30 ppm or less. In addition, it is known that about 80% or more of Pb in the charged waste is volatilized from the melting furnace.
[0013]
However, the reducing atmosphere in the furnace is lowered due to a decrease in the heat level at the bottom of the furnace, volatilization of heavy metals such as Pb is suppressed, and the content in the slag tends to increase slightly.
[0014]
Conventionally, a decrease in the heat level at the bottom of the furnace has been dealt with by detecting a decrease in the slag temperature and a decrease in the amount of steam generated by a sensor. As a countermeasure, for the reason of suppressing the volume reduction due to direct combustion of the garbage that causes the fluctuation of the ventilation resistance layer of the carbonization residue, specifically, a carbon lump such as coke with a large fixed carbon ratio is introduced from the top of the furnace, There was a method of suppressing direct combustion of garbage by preferentially burning.
[0015]
Further, in order to further reduce heavy metals such as Pb in the slag, it is necessary to further increase the temperature in the furnace or strengthen the reducing atmosphere. In the former case, it is necessary to increase the temperature of the furnace by increasing the blast oxygen concentration, and in the latter case, it is necessary to increase the amount of use of bulk fuel such as coke. was there.
[0016]
Moreover, in order to increase the heat level at the bottom of the furnace and strengthen the reducing atmosphere in the furnace, even if carbon blocks such as coke are added from the top of the furnace, it takes time to reach the bottom of the furnace, so the immediate effect is weak and the amount of evaporation Decrease and slag temperature decrease continued for a while. Therefore, an operation method for detecting and dealing with a change in the heat level in the furnace as soon as possible has been desired.
[0017]
In the operation of the waste melting furnace in which the waste is charged together with coke and limestone, dried, pyrolyzed, combusted, melted and discharged, the fluctuation of the heat level is detected earlier than before, and The detected value controls the amount of fuel injected into the coke bed via the tuyere, stabilizes the furnace bottom heat level quickly, and stabilizes the steam generation at a high level and lowers the Pb content in the slag. The operation method of the waste melting furnace which can be stabilized by is provided.
[0018]
[Means for Solving the Problems]
The operation method of the waste melting furnace of the present invention is that when the waste is charged into the waste melting furnace together with coke and limestone, dried, pyrolyzed, burned, melted and discharged, the blower blade of the waste melting furnace In the method in which fuel is blown into the coke bed with oxygen-enriched air or high-temperature air from the mouth into the coke bed, the top gas temperature of the waste melting furnace is measured, and if the measured result exceeds the set temperature, the top gas The fuel is injected so that the temperature is lower than a set value, and after the fuel is injected, control is performed so that the amount of injected fuel is reduced when the furnace top gas temperature becomes lower than the set temperature .
[0019]
In addition, the method of operating a waste melting furnace according to the present invention, when waste is charged into a waste melting furnace together with coke and limestone, dried, pyrolyzed, combusted, melted and discharged, In the method in which fuel is blown into the coke bed together with oxygen-enriched air or high-temperature air from the blower tuyere into the coke bed, the CO concentration (%) and CO 2 concentration (%) in the furnace top gas of the waste melting furnace measured and η CO = CO 2 / (CO 2 + CO) is calculated, and the computed eta CO exceeds the set value, blowing fuel so eta CO falls below a specified value, after blowing fuel, eta CO It is characterized in that control is performed so that the amount of fuel injected is reduced when becomes below a set value .
[0020]
Furthermore, the present invention is a method in which waste is charged into a waste melting furnace together with coke and limestone, dried, pyrolyzed, combusted, melted and discharged from the blower tuyeres of the waste melting furnace to the coke bed at room temperature. In the method in which fuel is blown into the coke bed together with oxygen-enriched air or high-temperature air, the top gas temperature of the waste melting furnace is measured , and the CO concentration (%) and the CO 2 concentration (%) are measured, and η CO C = CO 2 / (CO 2 + CO) is calculated, and even if the furnace top gas temperature exceeds the set value, if the calculated η CO is less than the set value, no fuel is injected and the furnace top gas temperature is set. When the calculated η CO exceeds the set value, fuel is injected. After the fuel is injected, the fuel injection amount is reduced when the furnace top gas temperature is lower than the set value or η CO is lower than the set value. It is characterized by controlling .
[0022]
DETAILED DESCRIPTION OF THE INVENTION
As the fuel blown from the tuyere, any gas fuel, liquid fuel, or solid fuel can be used as long as it can be blown into the furnace alone, or can be transported by a carrier gas such as air. In addition, waste plastics, waste oils, etc., which have conventionally been difficult to bury, can also be used. Further, flammable dust scattered from the waste melting furnace and collected by a dust collector in front of the combustion chamber is also possible.
[0023]
As described above, when processing various types of waste with large fluctuations such as high moisture waste and irregular waste, the waste may not be completely decomposed and fall to the bottom of the furnace. Since the volume reduction due to direct combustion is large, a space is generated, a difference in ventilation resistance in the cross-sectional direction occurs, and the heat exchange efficiency may be lowered. However, according to the present invention, the fuel blown into the coke bed packed bed is appropriately mixed in the coke bed packed bed, and the oxygen-enriched air blown through the tuyere rather than the uncompleted pyrolysis waste or Reacts preferentially with hot air and burns. Therefore, when fuel is injected, the injected fuel and coke are preferentially combusted, and even if unresolved waste falls to the bottom of the furnace, direct combustion of the waste is suppressed, and a uniform ventilation resistance layer in the cross-sectional direction is maintained. To do. As a result, the gas flows uniformly and the heat exchange efficiency in the furnace increases.
[0024]
In addition, when the fuel is injected, the combustion completion point of the injected oxygen is quicker than when no fuel is injected, and the position where the endothermic reaction (CO 2 + C → 2CO) that occurs in the high temperature range of 800 ° C. to 1000 ° C. starts faster. The reducing atmosphere is expanded. As a result, reduction volatilization of heavy metals such as Pb and Zn is promoted.
[0025]
In particular, for a solid substance having a low burning rate, the particle size is preferably 30 mm or less and the calorific value is preferably 2000 kcal / kg or more. However, since the combustion temperature becomes too high and the refractory is damaged, the calorific value is preferably 10,000 kcal / kg or less.
[0026]
On the other hand, if the waste thrown into the furnace falls to the bottom of the furnace after completion of pyrolysis, a difference in ventilation resistance occurs in the cross-sectional direction and heat exchange efficiency decreases, so the solid temperature decreases, The thermal decomposition rate is also suppressed. As a result, the heat level at the bottom of the furnace is lowered, and finally the slag temperature and the throughput are lowered. In this case, first, the endothermic reaction represented by CO 2 + C → 2CO-Q (endothermic reaction) is also reduced as the temperature of the solid decreases. As a result, the pyrolysis gas temperature rises and the combustible pyrolysis gas (CO, etc.) ratio decreases, so it is better to grasp the heat level based on the conventional slag temperature etc. by embedding the furnace top temperature and gas composition The trend can be detected quickly.
[0027]
FIG. 1 is an explanatory view of a waste melting facility equipped with a shaft furnace type waste melting furnace of the present invention. The same components as those of the conventional waste melting facility shown in FIG. Description is omitted.
[0028]
The furnace top gas duct 3 waste melting furnace 1, CO concentration (%) in the top gas and CO 2 concentration (%) CO concentration meter and the CO 2 concentration is arranged to measure, measurement results, eta CO It is sent to the arithmetic unit and η CO = CO 2 / (CO 2 + CO) is calculated. The calculated η CO is sent to the fuel injection amount calculation device. Further, a thermometer (TI) for measuring the furnace top temperature is provided at the furnace top of the waste melting furnace 1, and the measurement result is sent to the fuel injection amount calculation device.
[0029]
Specifically, when the furnace top temperature increases and the CO% in the furnace top gas decreases, the blowing amount is increased.
[0030]
FIG. 2 is a flowchart of fuel injection control by furnace top temperature, FIG. 3 is a flowchart of fuel injection control by η CO , and FIG. 4 is a flowchart of fuel injection control by furnace temperature and η CO .
[0031]
In FIG. 2, when the measurement result of the thermometer (TI) exceeds the set value of the furnace top temperature, the fuel is injected so that the furnace top temperature becomes equal to or lower than the set value. The fuel injection amount is adjusted with a flow rate controller (FIC) so that the furnace top temperature is usually within 400 ± 50 ° C. FIG. 2 (a) is provided with one set value for increasing / decreasing the injection amount. When the furnace top temperature becomes equal to or lower than the set value after fuel injection, the fuel injection amount is decreased. On the other hand, FIG. 2 (b) is provided with a total of two set values each for increasing / decreasing the blowing amount, and the blowing amount is maintained at the temperature in between.
[0032]
In FIG. 3, when the calculated η CO exceeds the set value, the fuel is injected so that η CO becomes equal to or less than the set value. eta CO is to enter the normal 40 ± 5% for adjusting the fuel blowing amount at a flow rate adjusting meter (FIC). FIG. 3A shows one set value for increasing / decreasing the injection amount. When η CO becomes equal to or less than the set value after fuel injection, the fuel injection amount is decreased. On the other hand, FIG. 3B shows a case where two set values are provided for each increase / decrease of the blowing amount, and the blowing amount is maintained at the temperature in between.
[0033]
In FIG. 4, even if the measurement result of the thermometer (TI) exceeds the set value of the furnace top temperature, if the calculated η CO is equal to or less than the set value, the fuel is not injected and the top temperature exceeds the set value. At the same time, fuel is injected when the calculated η CO exceeds the set value. In FIG. 4A, after the fuel is injected, when the furnace top temperature is lower than the set value or η CO is lower than the set value, the amount of injected fuel is decreased. In FIG. 4B, three set values are provided, and in a certain range, the blowing amount is maintained without being increased or decreased.
[0034]
Table 1 is a comparison table of fuel injection examples of the present invention and comparative examples without injection.
[0035]
[Table 1]
Figure 0003760069
From Table 1, according to the present invention, compared with the case where fuel is not blown, the amount of waste is increased, the amount of generated steam is stable, the slag temperature is high, and the amounts of Pb and Zn in the slag are reduced. It can be seen that the coke ratio is further reduced.
[0036]
FIG. 5A is a graph showing changes in the CO concentration and the top temperature of the fuel injection example and the non-injection example of the present invention, and FIG. 5B is a graph showing changes in the slag temperature. As the fuel, waste plastic crushed to about 5 mm was used. In the present invention in which fuel is injected, the CO concentration and the furnace top temperature can be controlled within the range of the set values, and as a result, the slag temperature is high and the temperature drop is small.
[0037]
Therefore, by detecting the furnace top temperature and gas composition and controlling the blowing amount, the heat level in the furnace can be detected quickly, and a quick recovery action by blowing tuyere becomes possible.
[0038]
【The invention's effect】
According to the present invention, it is possible to detect a decrease in the heat level in the furnace earlier than before, and it is possible to respond more quickly than before by controlling the amount of combustible material blown from the tuyere. For this reason, it is easy to secure the ventilation resistance layer due to the dry distillation residue, the fluctuation of the ventilation resistance layer of the dry distillation residue in the furnace is suppressed, and the heat exchange efficiency between the gas in the furnace and the input waste is increased. As a result, the amount of waste increased and the amount of steam generated was stable at a high level. Stabilization of operation results was achieved when various types of waste were melted and buried. Moreover, in order to stabilize the furnace top exhaust gas CO (%) of the melting furnace, the combustion in the combustion chamber installed in the subsequent stage was further stabilized, and the generation of dioxins was also suppressed.
[0039]
In addition, it became possible to control and stabilize the furnace bottom heat level and the reducing atmosphere. As a result, the amount of Pb contained in the slag was extremely reduced (a few ppm level).
[0040]
Furthermore, because the furnace conditions were stable and the slag temperature was stable at a high level, the amount of supplemental fuel such as coke was reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a waste melting facility equipped with a shaft furnace type waste melting furnace of the present invention.
FIG. 2 is a flowchart of fuel injection control by furnace top temperature.
3 is a flowchart of a fuel blowing control by eta CO.
FIG. 4 is a flowchart of fuel injection control by furnace top temperature and η CO .
FIG. 5A is a graph showing changes in CO concentration and top temperature of an example of fuel injection according to the present invention and an example where fuel is not injected, and FIG. 5B is a graph showing changes in slag temperature.
FIG. 6 is an explanatory diagram of a waste melting facility equipped with a conventional shaft furnace type waste melting furnace.
[Explanation of symbols]
1: Waste melting furnace 2: Charger 3: Duct 4: Combustion chamber 5: Boiler 6: Gas cooler 7: Dust collector 8: Induction fan 9: Chimney 10: Blower tuyere 11: Outlet

Claims (3)

廃棄物溶融炉に廃棄物をコークス、石灰石とともに装入し、乾燥、熱分解、燃焼、溶融して排出する際に、廃棄物溶融炉の送風羽口からコークスベッドヘ常温の酸素富化空気又は高温空気とともに、燃料をコークスベッドヘ吹き込む方法において、廃棄物溶融炉の炉頂ガス温度を測定し、測定結果が設定温度を超えると、炉頂ガス温度が設定値以下になるように燃料を吹き込み、燃料吹き込み後、炉頂ガス温度が前記設定温度以下になると燃料吹き込み量を減らしていくように制御することを特徴とする廃棄物溶融炉の操業方法。When waste is charged into the waste melting furnace together with coke and limestone, and dried, pyrolyzed, combusted, melted and discharged, the oxygen-enriched air at room temperature from the blower tuyeres of the waste melting furnace to the coke bed or In the method in which fuel is blown into the coke bed together with high-temperature air, the furnace top gas temperature of the waste melting furnace is measured, and when the measurement result exceeds the set temperature , the fuel is injected so that the furnace top gas temperature is below the set value. A method for operating a waste melting furnace, wherein after the fuel is blown, control is performed so that the amount of fuel blown is reduced when the furnace top gas temperature becomes equal to or lower than the set temperature . 廃棄物溶融炉に廃棄物をコークス・石灰石とともに装入し、乾燥、熱分解、燃焼、溶融して排出する際に、廃棄物溶融炉の送風羽口からコークスベッドヘ常温の酸素富化空気又は高温空気とともに、燃料をコークスベッドヘ吹き込む方法において、廃棄物溶融炉の炉頂ガス中のCO濃度(%)及びCO2濃度(%)を測定してηCO=CO2/(CO2+CO)を演算し、演算されたηCO設定値を超えると、η CO が設定値以下になるように燃料を吹き込み、燃料吹き込み後、η CO が設定値以下になると燃料吹き込み量を減らしていくように制御することを特徴とする廃棄物溶融炉の操業方法。When waste is charged into the waste melting furnace together with coke and limestone, and dried, pyrolyzed, burned, melted and discharged, the oxygen-enriched air at room temperature from the blower tuyeres of the waste melting furnace to the coke bed or In a method in which fuel is blown into a coke bed together with high-temperature air, the CO concentration (%) and CO 2 concentration (%) in the top gas of the waste melting furnace are measured and η CO = CO 2 / (CO 2 + CO) calculates a and computed eta CO exceeds the set value, eta CO is blown fuel to be equal to or less than the set value, after blowing fuel, eta as CO is reduce the becomes below the set value fuel blowing amount A method for operating a waste melting furnace, characterized in that it is controlled by 廃棄物溶融炉に廃棄物をコークス、石灰石とともに装入し、乾燥、熱分解、燃焼、溶融して排出する際に、廃棄物溶融炉の送風羽口からコークスベッドヘ常温の酸素富化空気又は高温空気とともに、燃料をコークスベッドヘ吹き込む方法において、廃棄物溶融炉の炉頂ガス温度を測定するとともに、CO濃度(%)及びCO濃度(%)を測定してηCOC=CO/(CO+CO)を演算し、炉頂ガス温度が設定値を超えても、演算されたη CO が設定値以下の場合は燃料を吹き込まず、炉頂ガス温度が設定値を超え、かつ演算されたη CO が設定値を超える場合に燃料を吹き込み、燃料吹き込み後、炉頂ガス温度が設定値以下あるいはη CO が設定値以下になると燃料吹き込み量を減らしていくように制御することを特徴とする廃棄物溶融炉の操業方法。When waste is charged into the waste melting furnace together with coke and limestone, and dried, pyrolyzed, combusted, melted and discharged, the oxygen-enriched air at room temperature from the blower tuyeres of the waste melting furnace to the coke bed or In a method in which fuel is blown into a coke bed together with hot air, the top gas temperature of the waste melting furnace is measured , and the CO concentration (%) and the CO 2 concentration (%) are measured to obtain η CO C = CO 2 / (CO 2 + CO) is calculated, and even if the furnace top gas temperature exceeds the set value, if the calculated η CO is less than the set value, fuel is not injected, and the furnace top gas temperature exceeds the set value and is calculated. The fuel is injected when the η CO exceeds the set value, and after the fuel is injected, the fuel injection amount is controlled to decrease when the furnace top gas temperature is lower than the set value or when η CO is lower than the set value. Waste melting furnace operation Work method.
JP34800899A 1999-07-30 1999-12-07 Waste melting furnace operation method Expired - Fee Related JP3760069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34800899A JP3760069B2 (en) 1999-07-30 1999-12-07 Waste melting furnace operation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21799799 1999-07-30
JP11-217997 1999-07-30
JP34800899A JP3760069B2 (en) 1999-07-30 1999-12-07 Waste melting furnace operation method

Publications (2)

Publication Number Publication Date
JP2001108212A JP2001108212A (en) 2001-04-20
JP3760069B2 true JP3760069B2 (en) 2006-03-29

Family

ID=26522338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34800899A Expired - Fee Related JP3760069B2 (en) 1999-07-30 1999-12-07 Waste melting furnace operation method

Country Status (1)

Country Link
JP (1) JP3760069B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349818A (en) * 2001-05-30 2002-12-04 Ibarakishi Method of blowing combustible dust in waste melting furnace
JP4520673B2 (en) * 2001-08-20 2010-08-11 新日鉄エンジニアリング株式会社 Method of injecting combustible dust into a waste melting furnace
JP5574475B2 (en) * 2009-09-16 2014-08-20 新日鉄住金エンジニアリング株式会社 Waste melting treatment method and waste melting treatment apparatus
JP5510782B2 (en) * 2009-09-16 2014-06-04 新日鉄住金エンジニアリング株式会社 Waste melting treatment method and waste melting treatment apparatus
CN116518409B (en) * 2023-04-12 2024-05-14 浙江新都绿色能源有限公司 Feeding combustion-supporting cooperative system for coal combustion

Also Published As

Publication number Publication date
JP2001108212A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP4377824B2 (en) Waste melting treatment method using biomass
GB2423079A (en) Combined gasification and plasma treatment of waste
JPH01270990A (en) Continuous fluocculationof heavy metal contained in ash of incinerator
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP3760069B2 (en) Waste melting furnace operation method
JP5319980B2 (en) Method for producing coke for waste melting furnace
JP4276559B2 (en) Waste melting treatment method using biomass
JP4377825B2 (en) Waste melting furnace operation method
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP3771887B2 (en) How to use activated sludge
KR100470730B1 (en) Smelting Incineration Apparatus and Method of Solid Waste Treatment
KR20010045615A (en) Device for the treatment of the sludge by burning and melting
JP4486377B2 (en) Waste melting treatment method using powdery biomass
JP4520673B2 (en) Method of injecting combustible dust into a waste melting furnace
JP2000192129A (en) Operation of converter
JP4377826B2 (en) Waste melting treatment method
JP5255509B2 (en) Waste melting treatment method and waste melting treatment apparatus
Shibaike et al. Shredder dust recycling with direct melting process
JP4873727B2 (en) Apparatus and method for treating plastic-containing waste
JP2629117B2 (en) Waste melting furnace
JPH06129618A (en) Method of melting and processing waste material
JP2005172386A (en) Incinerating melting cooling method
Kristyawan et al. Update on waste reduction performance by waste-to-energy incineration pilot plant PLTSa Bantargebang operations
JPS6011766B2 (en) Combustion support gas injection method in waste melting type pyrolysis furnace
JP2001029725A (en) Control method of temperature of exhaust gas inlet of dust collector of waste melting equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees