JP3759409B2 - Seismic structure and seismic connection tool - Google Patents

Seismic structure and seismic connection tool Download PDF

Info

Publication number
JP3759409B2
JP3759409B2 JP2000404156A JP2000404156A JP3759409B2 JP 3759409 B2 JP3759409 B2 JP 3759409B2 JP 2000404156 A JP2000404156 A JP 2000404156A JP 2000404156 A JP2000404156 A JP 2000404156A JP 3759409 B2 JP3759409 B2 JP 3759409B2
Authority
JP
Japan
Prior art keywords
vertical
viscoelastic
members
diagonal
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000404156A
Other languages
Japanese (ja)
Other versions
JP2002180693A (en
JP2002180693A5 (en
Inventor
雄一 真崎
Original Assignee
有限会社マサ建築構造設計室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社マサ建築構造設計室 filed Critical 有限会社マサ建築構造設計室
Priority to JP2000404156A priority Critical patent/JP3759409B2/en
Publication of JP2002180693A publication Critical patent/JP2002180693A/en
Publication of JP2002180693A5 publication Critical patent/JP2002180693A5/ja
Application granted granted Critical
Publication of JP3759409B2 publication Critical patent/JP3759409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、耐震強度を高めるための部材を設けた構造物、例えば、建築物並びにそれに用いる耐震連結用具に関するものである。なお、この発明において、部材とは、構造物の所定の部分を構成する単一の構成材、または、複数の構成材を組み合わせた構成材をいう。また、以下の図において、同一符号で示す部分は、いずれかの図において説明する同一符号の部分と同一の機能をもつ部分である。
【0002】
【従来の技術】
一般の建築における構造物100、例えば、図12のような平屋建の木造家屋による木造構造物100A、または、例えば、図13のような2階建の木造家屋による木造構造物100Bでは、水平方向に平行に配置した部材(この発明において、水平方向平行部材という)P、例えば、土台用部材2・8、梁用部材1・5、桁用部材6・7などの水平方向平行部材Pと、垂直方向に平行に配置した部材(この発明において、垂直方向平行部材という)Q、例えば、柱用部材3・4、9・10などの垂直方向平行部材Qとにより、四角形の空間Uを形成する枠部材P・Qとして構成した構造部分を有している。
【0003】
こうした四角形の空間Uにおける1つの対角点、例えば、対角点a1・a2どうしを連結する対角点連結部材R1、例えば、筋交い用部材11・13・15を設ける構成(以下、第1従来技術という)、または、この対角点連結部材R1と、他の対角点、例えば、対角点b1・b2どうしを連結する対角点連結部材R2、例えば、筋交い用部材12・14・16とを設けることにより構造物の耐震強度を高めるようにした構成(以下、第2従来技術という)が周知である。
【0004】
なお、図12・図13の構成では、骨組になる部分のみを図示しているが、必要に応じて、こうした骨組に内壁・外壁・天井・床・屋根などを付設していることは言うまでもない。
【0005】
しかし、上記の対角点連結部材R1・R2は、対角点a1・a2または対角点b1・b2を単に固定しているだけなので、結局は、対角点連結部材R1・R2の両端に耐震応力が集中し、これらの固定箇所が破壊されてしまうという不都合を生ずる。
【0006】
このため、鉄骨構造物、例えば、軽量気泡コンクリートパネル張り鉄骨建築物(図示せず)において、図14のような粘弾性をもつ対角点連結部材300、すなわち、粘弾性連結部材300を設ける構成(以下、第3従来技術という)、例えば、昭和電線株式会社の製品名「粘弾性ダンパー」などを設ける構成が周知である。
【0007】
ここで、この発明において、粘弾性とは、静的な応力による変形力に対しては、その応力に追従して可塑的な変形を生ずるような粘性をもって作用し、地震時の震動などによる動的なエネルギーに対しては、速度依存の減衰効果を生ずるような粘性と、弾力により対抗力を生ずるような弾性とをもって抑制作用する性質をいうものであり、例えば、非加硫又は半加硫のゴム材、例えば、ネオプレンゴム、ブチルゴムなどが、こうした粘弾性を有する材料(この発明において、粘弾性材という)であることが周知である。
【0008】
図14において、粘弾性連結部材300は、横断面を「日字形」に形成した長い管状の外側部材301の一端に一方の固定端302を設けたものと、2片の細長い板状体303a・303bの各端部を一体に連結した箇所に他方の固定端304を設けて音叉状に形成した内側部材305とを設けてある。
【0009】
そして、内側部材305の2片の板状体303a・303bの部分を外側部材301の「日字形」の上下の空間部分に入れ込むとともに、2片の板状体303a・303b面と「日字形」の空間の内側面との間に、粘弾性材をもつ介在物(この発明において、粘弾性体という)306を、これらの面に対向する面の部分を接着または焼付により固着して構成したものである。
【0010】
したがって、固定端302・304を所要の対角点、例えば、図12の構造物100における対角点a1・a2又は対角点b1・b2の箇所に固定とすると、圧縮方向(図14中の矢印f)と引張方向(図14中の矢印g)との両方向の応力に対して粘弾性体306の粘弾性が作用するので、耐震性が向上することになる。
【0011】
また、図12・図13のような木造建築による構造物100A・100Bにおいて、図15に示すように、図14の構成と同様の粘弾性をもつ対角点連結部材300B、すなわち、粘弾性連結部材300Bを設ける構成(以下、第4従来技術という)、例えば、株式会社新井組の製品名「アプール」などを設ける構成が周知である。
【0012】
図15において、粘弾性連結部材300B、木製の対角点連結部材R1の中間部分を切断した2つの中断箇所R1x・R1yに固定する各金属板307a・307bの対向部分に、図14の構成と同様にして、粘弾性体308を設けて構成したものである。
【0013】
したがって、中断箇所R1x・R1yに生ずる圧縮方向(矢印f)と引張方向(矢印g)との両方向の応力に対して粘弾性体308の粘弾性が作用するので、耐震性が向上することになる。
【0014】
さらに、図12・図13のような木造建築による構造物100A・100Bにおいて、対角点連結部材R1・R2を設けていない四角形の空間UAの部分におる耐震性を高めるために、図16のように、各対角点a1・a2・b1・b2の箇所における水平方向平行部材Pと垂直方向平行部材Qとを粘弾性を介して固定状態するにための図17のような粘弾性固定部材310、例えば、株式会社鴻池組の製品名「仕口ダンパー」などを設ける構成(以下、第5従来技術という)が周知である。
【0015】
図17において、粘弾性固定部材310は、水平方向平行部材Pに固定する金属板の水平固定具31と、垂直方向平行部材Qに固定する金属板の垂直固定具32との対向面31A・32Aの間に、板状の粘弾性材33の両面を接着または焼付などで固着して設けたものである。
【0016】
そして、水平固定具31の対向面31AからL字形に張り出した水平面をもつ張出部分31Bを取付ねじ30aで水平方向平行部材Pに固定し、また、垂直固定具32の対向面32AからL字形に張り出した垂直面をもつ張出部分32Bを取付ねじ30bで垂直方向平行部材Qに固定することにより、粘弾性固定部材310を四角形の空間UAの各対角点a1・a2・b1・b2に、それぞれ、装着している。
【0017】
したがって、四角形の空間UAが横方向に揺れた際に、粘弾性材33の面内に生ずる回転方向(図17中の矢印j・矢印k)の応力に対して、粘弾性による抑制作用を働かせることにより、耐震性を高めるようにしているものである。なお、取付ねじ30a・30bは、例えば、四角頭または六角頭の大型の木ねじ(以下、スクリューボルトという)と、四角頭または六角頭のボルト・ナットなどを用いている。
【0018】
また、図12・図13のような木造建築による構造物100A・100Bの四角形の空間Uの各対角点a1・a2・b1・b2において、水平方向平行部材Pに対する垂直方向平行部材Qの固定を、図18〜図21のような市販の垂直方向固定金具60を用いて固定する構成(以下、第6従来技術という)が周知である。
【0019】
図19〜図21において、垂直方向固定金具60は、垂直方向平行部材Qを水平方向平行部材Pの反対側に垂直方向に、引き寄せるように、引張状態にして固定するための固定金具であり、一般に、引き寄せ金物またはホールダウン金物と呼ばれている。
【0020】
垂直方向固定金具60は、具体的には、金属材で形成され、図18のように、垂直方向平行部材Qの対向面f1に添わせる垂直方向の板状部分61から水平方向平行部材Pに沿った水平方向に張り出させた下向きコ字形の棚状部分62を設けて構成したものである。そして、各部の具体的な寸法例は、同図の〔各部具体寸法例〕のようになっている。なお、この寸法例のほか、高さH1を380mmまたは470mmにするとともに、取付穴61Aの数を適宜に増加させたものが市販されている。
【0021】
そして、図19のように、水平方向平行部材Pが土台用部材2・8の場合には、板状部分61に設けた複数の取付穴61Aを用いて、スクリューボルト60aにより、垂直方向平行部材Qに固定するとともに、棚状部分62に設けた1つの取付穴62Aに、水平方向平行部材Pの反対側まで及ぶ長さの取付ボルト(図示せず)、または、基礎用ボルト60bによって、垂直方向平行部材Qを水平方向平行部材Pの反対側、すなわち、基礎用コンクリートSの側に、垂直方向に、引き寄せるように、引張状態にして固定するものである。
【0022】
また、水平方向平行部材Pが屋根側の梁用部材1・5または桁用部材6・7の場合には、図20のように、垂直方向固定金具60を逆様にして、板状部分61を図19の場合と同様に固定するとともに、棚状部分62の取付穴62Aに、水平方向平行部材Pの反対側まで及ぶ長さの取付ボルト60cによって、垂直方向平行部材Qを水平方向平行部材Pの反対側に垂直方向に、引き寄せるように、引張状態にして固定するものである。
【0023】
さらに、水平方向平行部材Pが階間の梁用部材1・5または桁用部材6.7の場合には、図21のように、上方の垂直方向平行部材Qの対向面f1と、下方の垂直方向平行部材Qの対向面f1とに、それぞれ、垂直方向固定金具60を対向状に配置して、板状部分61を図19の場合と同様に固定するとともに、それぞれの棚状部分62の取付穴62Aを、水平方向平行部材Pの反対側まで及ぶ長さの取付ボルト60cによって、垂直方向平行部材Qを水平方向平行部材Pの反対側、すなわち、それぞれ、反対側の垂直方向平行部材Qの側に、垂直方向に、引き寄せるように、引張状態にして固定するものである。
【0024】
なお、上記のスクリューボルト60aに代えて、図22のように、四角頭または六角頭のボルト60xを板状部分61側から垂直方向平行部材Qに通し、垂直方向平行部材Qの反対側から、丸座状の頭部分60yをもつ筒状のナット60zをねじ込んで固定する筒状ボルト・ナット60Wを用いる構成(以下、第7従来技術という)を用いることが周知である。
【0025】
【発明が解決しようとする課題】
上記の第3従来技術の構成による粘弾性筋交部材300は、骨組の鉄骨を重重量用鉄骨で構成した構造物100の場合には有効に作用するが、骨組を木造や軽量鉄骨で構成した構造物100、例えば、木造家屋や軽量鉄骨プレハブ家屋の場合には、粘弾性筋交部材300自体の大きさや重量がかさむほか、価格採算面から実用的な構造物が得られないという不都合がある。
【0026】
上記の第4従来技術の構成による粘弾性連結部材300Bでは、圧縮方向の震動により、粘弾性連結部材300Bの部分が面外方向に屈曲してしまうため、十分な耐震性が得られないという不都合がある。
【0027】
上記の第5従来技術の構成による粘弾性固定部材310では、対角点a1・a2・b1・b2の部分のみに、局所的に、粘弾性による耐震構成を設けているだけであるので、実際には、他の箇所において、対角点連結部材R1・R2を設けて構成する必要があり、結局は、その対角点連結部材R1・R2の箇所に、上記の第3従来技術の構成、または、上記の第4の従来技術の構成を用いて構成することになるので、これらの構成箇所では、上記のいずれかの不都合がそのまま生ずることになる。
【0028】
上記の第1従来技術・第2従来技術・第4従来技術では対角点連結部材R1・R2を対角点a1・a2・b1・b2の部分に組み付けるには、対角点連結部材R1・R2の上下の端部を対角点a1・a2・b1・b2の部分を掘り込んだ箇所に隙間なく入れ込むように加工する必要があるため、この加工を1つ1つ現物合わせで加工しなければならないので、工事日程と工費がかさみ、安価に提供できないという不都合がある。
【0029】
このため、こうした不都合がなく、現場で加工し易く、簡便安価な構成で、粘弾性による耐震性をもたせた耐震構造物ならびに耐震連結用具の提供が望まれているという課題がある。
【0030】
【課題を解決するための手段】
この発明は、上記のような耐震構造物において、対角点連結部材R1・R2の端部と、垂直方向平行部材Qの対向面との間に設けられて、垂直方向の粘弾性をもつとともに、所定の移動限度で制止される粘弾性支持部材を配置することにより、耐震性を向上させ得るようにしたものである。
【0031】
そして、四角形の空間Uが左右に横揺する際に生ずる対角点連結部材R1・R2に対する圧縮方向と引張方向との応力を、水平方向の分力と垂直方向の分力とに分解するとともに、上記の移動限度の範囲において垂直方向の分力を上記の粘弾性で対抗さるように作用させる耐震連結用具を設けるように構成したものである。
【0032】
さらに、この耐震連結用具の取付位置を対角点a1・a2・b1・b2から垂直方向に所定量だけずらせた位置にすることにより、対角点連結部材R1・R2の端部を対角点a1・a2・b1・b2に入れ込む加工を無くするように構成したものである。
【0033】
【発明の実施の形態】
以下、この発明の実施の形態として、上記の図12・図13の第1従来技術・第2従来技術の木造家屋における耐震構造物100にこの発明を適用した場合の原理的構成と実施例とを説明する。
【0034】
〔原理的構成(その1)〕
以下、図1〜図3によりこの発明の第1の原理的構成を説明する。図1〜図3は図12・図13の第1従来技術・第2従来技術の木造家屋における耐震構造物100の要部に、この発明を適用した場合の原理的構成を示すものである。
【0035】
図1において、対角点連結部材R1の下端側の端部e2は連結用具80に設けた支点80xで支持してあり、連結用具80は端部e2に対応する対角点a2から所定量L1だけ四角形の垂直方向にずらせた垂直方向平行部材Qの対向面f1に固定してある。
【0036】
また、対角点連結部材R1の上端側の端部e1は連結用具70に設けた支点70xで支持してあり、連結用具70は、端部e1に対応する対角点a1から所定量L1だけ四角形の垂直方向にずらせた他方の垂直方向平行部材Qの対向面f1に配置されるとともに、端部e1と対向面f1の間に、垂直方向に沿った粘弾性をもつとともに上下の所定の移動限度△Lで制止される粘弾性支持部材50を配置してある。
【0037】
したがって、震動によって、上下の水平方向平行部材Pの横揺れによる応力が働くと、粘弾性支持部材50の部分が垂直方向に沿って粘弾性で抗しながら、移動限度△Lで制止される箇所まで移動できるが、上記の揺れが上下の移動限度△Lで制止された量を超える大きい応力のときは、その分の応力による横揺れを対角点連結部材R1自体の圧縮抗力または引張抗力によって抑制するように耐震動作することになる。
【0038】
図2において、対角点連結部材R2の下端側の端部e2と上端側の端部e1との部分には、図1の対角点連結部材R1の下端側の端部e2と上端側の端部e1の部分と同様に、連結用具80と連結用具70とが設けてある。
【0039】
したがって、震動によって、上下の水平方向平行部材Pの横揺れによる応力が働いた場合には、上記の図1の構成の場合と対称的な動作による耐震動作を行うことになる。
【0040】
図3において、対角点連結部材R1の部分は図1の構成と同様に、また、対角点連結部材R2の部分は図2の構成と同様に構成してあるので、震動によって、上下の水平方向平行部材Pの横揺れによる応力が働いた場合には、上記の図1の構成における耐震動作と、上記の図2の構成における耐震動作とを組み合わせた耐震動作を行うことになる。
【0041】
つまり、図1・図2の構成は、概括的には、
水平方向平行部材(P)と垂直方向平行部材(Q)とで四角形の空聞(U)を形成した枠部材(P・Q)と、上記の四角形の1つの対角点(a1・a2またはb1・b2)どうしの近傍を連結した1つの対角点連結部材(R1またはR2)を有する耐震構造物(100)において、
【0042】
上記の対角点連結部材(R1またはR2)の端部(e1)と、この端部(e1)に対応する上記の対角点(a1)から所定量(L1)だけ上記の四角形の垂直方向にずらせた上記の垂直方向部材(Q)の対向面(f1)との間に、垂直方向に沿った粘弾性をもつとともに上下の所定の移動限度(△L)で制止される粘弾性支持部材(50)を配置して上記の対角点連結部材(R1またはR2)と上記の垂直方向平行部材(Q)とを粘弾性的に連結する粘弾性連結手段(70)
を設ける第1の構成を構成しているものである。
【0043】
また、図3の構成は、概括的には、
水平方向平行部材(P)と垂直方向平行部材(Q)とで四角形の空間(U)を形成した枠部材(P・Q)と、上記の四角形の2つの対角点(a1・a2・b1・b2)どうしの近傍を、それぞれ、連結した2つの対角点連結部材(R1・R2)を有する耐震構造物(100)において、
【0044】
各上記の対角点連結部材(R1・R2)の端部(e1)のそれぞれと、該端部(e1)に対応する各上記の対角点(a1・b1)から所定量(L1)だけ上記の四角形の垂直方向にずらせた上記の垂直方向部材(Q)の対向面(f1)のそれぞれとの間に、垂直方向に沿った粘弾性をもつとともに上下の所定の移動限度(△L)で制止される粘弾性支持部材(50)を、それぞれ、配置して各上記の対角点連結部材(R1・R2)と上記の垂直方向平行部材(Q)と連結する粘弾性連結手段(70)
を設ける第2の構成を構成しているものである。
【0045】
さらに、図1〜図3の構成は、概括的には、
上記の第1の構成または第2の構成において、
1つの上記の対角点連結部材(R1)または2つの上記の対角点連結部材(R1・R2)の一端と上記の垂直方向平行部材(Q)とを上記の粘弾性連結手段(70)を介して粘弾性的に連結するとともに、各上記の対角点連結部材(R1・R2)の他端と上記の垂直方向平行部材(Q)とを固定連結手段(80)を介して固定的に連結した第3の構成と、
1つの上記の対角点連結部材(R1)または2つの上記の対角点連結部材(R1・R2)の各一端と各上記の垂直方向連結部材(Q)とを上記の粘弾性連結手段(70)を介して粘弾性的に連結した第4の構成とを構成しているものである。
【0046】
〔原理的構成(その2)〕
以下、図1〜図3によりこの発明の第2の原理的構成を説明する。この第2の原理的構成が、上記の第1の原理的構成と異なる箇所は、図1〜図3の構成における下端側の端部e2の箇所を、上端側の端部e1と同様に、上記の垂直方向平行部材(Q)に対して、粘弾性連結手段(70)を配置するように変更して構成した箇所である。
【0047】
つまり、この第2の原理的構成は、概括的には、上記の第1の構成または第2の構成において、
1つの上記の対角点連結部材(R1)または2つの上記の対角点連結部材(R1・R2)の両端と各上記の垂直方向連結部材(Q)とを上記の粘弾性連結手段(70)を介して連結した第5の構成を構成しているものである。
【0048】
〔第1実施例〕
以下、第1実施例として、上記の第1の構成〜第4の構成の原理的構成における連結用具80の実施例を図4により、また、連結用具70の実施例を図5によって説明する。
【0049】
図4において、連結用具80は、金属板を水平面内での形状がコ字形になるように、折り曲げ加工または溶接加工により形成してあり、開放部分81の箇所に、対角点連結部材R1または対角点連結R2の端部e2を入れ込んで固定するのである。なお、各部の具体的な寸法例は、水平方向平行部材P・垂直方向平行部材Qの断面の各辺の寸法を105mm、また、対角点連結部材R1・R2の短辺の寸法を45mm、長辺の寸法を105mmとした場合に、同図の〔具体的寸法例〕のようになっている。
【0050】
そして、具体的には、対角点連結部材R1またはR1・R2の端部e2に垂直に対面させる垂直方向の第1の金属板部分51aと、第1の金属板部分51aから、張り出させて形成(この発明において、張出形成という)された対角点連結部材R1またはR1・R2の前後の面r1・r2に固定する垂直方向の第2の金属板部分51b・51cとを設けて端面配置金具51を構成したものである。
【0051】
金属板部分51b・51cには、中央箇所に取付ボルト80a用の四角穴82と、その上下に木ねじ80b用の丸穴83とを設けるとともに、金属板部分51aには、垂直方向平行部材Qに直接的に固定、または、図18の第6従来技術による垂直方向固定金具60と合体して垂直方向平行部材Qに固定するための図22の第7従来技術による筒状ボルト・ナット60Wのボルト60x用の丸穴84を設けたものである。
【0052】
なお、金属板部分51b・51cに設けた四角穴82に入れ込む取付ボルト80aは、平丸頭のボルトの根元部分に断面が四角形の部分を設けたボルト、すなわち、根元角形ボルトを用いて、対角点連結部材の端部e2に設けた貫通穴d1を貫通させた後に、適宜のナット80cで固定するようにしている。なお、取付ボルト80aの頭部は壁材の内側に近接した状態になるので、頭部を低い高さにしたものを用いるが、頭部の形状は四角形、六角形などであってもよい。
【0053】
図5において、連結用具70は、端面配置金具51と、2つの粘弾性体52・53と、端面保持金具55とを、粘弾性体52・53の面を接着または焼付けることにより、一体に構成したものである。
【0054】
端面配置金具51は、図4の連結用具80としての端面配置金具51を逆向きに用いて構成してある。なお、この場合の端面配置金具51は、丸穴84は不要であるが、部品を共用し得るように同一のものを用いている。また、粘弾性体52・53は2つの板状の粘弾性材で形成してある。
【0055】
端面保持金具55は、一方の粘弾性体52と対角点連結部材R1またはR1・R2の端部e1との間に配置する第3の金属板部分54aを、第1の金属板部分51aよりも所定の移動限度△Lだけ長い垂直方向の金属板部分に形成してあり、第3の金属板部分54aから張出形成した第4の金属板部分54b・54cを、粘弾性体52・53の上下の端面を囲うとともに垂直方向に沿って上下に張出形成した金属板部分に形成してある。
【0056】
そして、上下に張出形成した第4の金属板部分54b・54cに、垂直方向平行部材Qの対向面f1に直接的に固定、または、図18の第6従来技術による垂直方向固定金具60と合体して垂直方向平行部材Qに固定するための図22の第7従来技術による筒状ボルト・ナット60Wのボルト60x用の長丸穴74を設けたものである。なお、各部の具体的な寸法例は、水平方向平行部材P・垂直方向平行部材Qの断面の各辺の寸法を105mmとした場合に、同図の〔具体的寸法例〕のようになっている。
また、垂直方向平行部材Qの対向面f1に直接的に固定する場合には、金属板部分54b・54cと対向面f1との間に、図5に鎖線で示したように、金属板に長丸穴74と同様の穴を設けた添板70Aを挟み入れるか、または、添板70Aと粘弾性体53との間の面を接着または焼付して一体に形成することが望ましい。
【0057】
また、端面配置金具51と、対角点連結部材R1またはR1・R2の端部e1との間の固定は、端部e1の箇所に、図4中の貫通穴d1と同様の貫通穴d2を設けて、連結用具80と同様の方法で固定している。
【0058】
ここで、図4の連結用具80と、図5の連結用具70とにおいて、四角穴82と根元角形ボルトによる取付ボルト80aとの部分は、原理的には、図1における支点80x・支点70xに相当する構成部分であるので、丸穴と普通のボルトによって固定し、木ねじによる固定を無くした方がよいようにも考えられるが、実際には、取付ボルト80aの外径と丸穴d1・d2の内径との間に隙間があること、また、取付ボルト80aが丸穴d1・d2から更に対角点連結部材R1・R2内にめり込むことなどによって、連結用具70・80と対角点連結部材R1・R2との間が確実に固定されず、遊びが生じてしまい、粘弾性体52・53に直接的に応力が伝わりにくいということになる。
【0059】
このため、図4・図5のように、連結用具70・80と対角点連結部材R1・R2との間を木ねじ80bで固定して、震動の初期における応力を粘弾性体52・53に伝え易く構成することにより、対角点連結部材R1・R2の端部e1・e2に加わる圧縮方向の応力と引張方向の応力とに対して、十分な強度と粘りをもつ耐震性が得られるようにしている。
【0060】
したがって、上下の水平方向平行部材Pの横揺れによって、垂直方向平行部材Qが傾斜する角度と同じ角度だけ金属板部分51aも傾斜するので、粘弾性体52・53は、実際には、粘弾性体52・53の面方向に沿った応力に対する粘弾性と、粘弾性体52・53の厚み方向の応力に対する粘弾性とによって耐震動作を行っていることになるものである。
【0061】
そして、図5の実施例の構成は、概括的には、
水平方向平行部材(P)と垂直方向平行部材(Q)とで四角形の空間を形成した枠部材(P・Q)と、上記の四角形の1つの対角点(a1・a2)どうしの近傍、または、上記の四角形の2つの対角点(a1・a2・b1・b2)どうしの近傍を連結する対角点連結部材(R1またはR1・R2)を有する耐震構造物(100)に用いる耐震連結用具(70)において、
【0062】
上記の対角点連結部材(R1またはR1・R2)の端部(e1)に平行した垂直方向の第1の金属板部分(51a)と、この第1の金属板部分(51a)から張出形成されて上記の対角点連結部材(R1またはR1・R2)の前後の面(r1・r2)に固定する垂直方向の第2の金属板部分(51b・51c)とをもつ端面配置金具(51)と、
【0063】
上記の第1の金属板部分(51a)の両面側に配置された2つの板状の粘弾性材でなる上記の粘弾性体(52・53)と、
一方の上記の粘弾性体(52)と上記の端部(e1)との間に配置されて上記の第1の金属板部分(51a)よりも所定の移動限度(△L)だけ長い垂直方向の第3の金属板部分(54a)から張出形成されて上記の2つの粘弾性体(52・53)の上下の端面を囲うとともに、垂直方向に上下に張出形成した第4の金属板部分(54b・54c)をもつ端面保持金具(55)と
を設ける第6の構成を構成しているものである。そして、この第6の構成による耐震連結用具70が粘弾性支持部材50に相当するものである。
【0064】
〔第2実施例〕
以下、第2実施例として、図6〜図9により、上記の第1実施例による連結用具80・連結用具70と、第6従来技術による垂直方向固定金具60とを用いて構成した上記の第1の構成〜第3の構成による原理的構成の具体的な実施例を説明する。
【0065】
図6において、垂直方向固定金具60は、図19の第6従来技術の構成と同様の固定状態になっており、この垂直方向固定金具60の取付の際に、連結用具80の垂直方向の金属板部分51aを垂直方向固定金具60における垂直方向の板状部分61の上に重ね合わせるように合体して、筒状ボルト・ナット60Wにより固定したものである。
【0066】
図7において、垂直方向固定金具60は、図20の第6従来技術の構成と同様の固定状態になっており、この垂直方向固定金具60の取付の際に、粘弾性支持部材50による連結用具70の端面保持金具55における垂直方向に上下に張り出した金属板部分54b・54cを、金属板部分51aを垂直方向固定金具60における垂直方向の板状部分61の上に重ね合わせるように合体して、筒状ボルト・ナット60Wにより固定したものである。
【0067】
図8において、上下の垂直方向固定金具60・60は、図21の第6従来技術の構成と同様の固定状態になっており、この垂直方向固定金具60の取付の際に、連結用具80・連結用具70を図6・図7の構成と同様に、垂直方向固定金具60における垂直方向の板状部分61の上に重ね合わせるように合体して、筒状ボルト・ナット60Wにより固定したものである。
【0068】
図9において、各垂直方向固定金具60は、対角点連結部材R1・R2の両方に対して、各対角点a1・a2・b1・b2の対応する位置に、図6・図7と同様の固定状態にしてあり、連結用具80・連結用具70を図6・図7の構成と同様に、垂直方向固定金具60における垂直方向の板状部分61の上に重ね合わせるように合体して、筒状ボルト・ナット60Wにより固定したものである。
【0069】
なお、図9の構成では、対角点連結部材R1・R2の下端側に配置した各垂直方向固定金具60の垂直方向の固定が、下側の水平方向平行部材Pの反対側の面に引張状態にして固定しているが、図6の構成と同様に、基礎Sに引張状態にして固定するように構成することもできること言うまでもない。
【0070】
さらに、図9の構成では、対角点連結部材R1・R2の上端側に配置した各垂直方向固定金具60の垂直方向の固定が、上側の水平方向平行部材Pの反対側の面に引張状態にして固定しているが、図8の構成と同様に、上方側の垂直方向平行部材Qに引張状態にして固定するように構成することもできること言うまでもない。
【0071】
〔第3実施例〕
以下、第3実施例として、図6〜図9により、上記の第1実施例による連結用具70と、第6従来技術による垂直方向固定金具60とを用いて構成した上記の第4の構成による原理的構成の具体的な実施例を説明する。
【0072】
この第3実施例の構成が、上記の第2実施例の構成と異なる箇所は、図6〜図9の構成における下端側の端部e2に設けた連結用具80の箇所を、上端側の端部e1と同様に、連結用具70に変更して構成した箇所である。
【0073】
〔第2実施例・第3実施例の概括構成〕
上記の第2実施例・第3実施例は、概括的には、上記の第1の構成〜第5の構成に付加して、
上記の粘弾性支持部材(50)を配置する箇所の上記の対角点(a1・a2・b1・b2)における上記の垂直方向平行部材(Q)の上記の対向面(f1)の箇所に固定した垂直方向固定金具(60)により、上記の垂直方向平行部材(Q)を上記の水平方向平行部材(P)の上記の対向面(f1)と反対側に垂直方向に引張状態にして固定する垂直・水平平行部材固定手段と、。
【0074】
上記の端部(e1)に平行した垂直方向の第1の金属板部分(51a)から張出形成されて上記の対角点連結部材(R1またはR2)の前後の面(r1・r2)に固定する垂直方向の第2の金属板部分(51b・51c)をもつ端面配置金具(51)と、。
【0075】
上記の第1の金属板部分(51a)の両面側に配置された2つの板状の粘弾性材でなる上記の粘弾性体(52・53)と、
一方の上記の粘弾性体(52)と上記の端部(e1)との間に配置されて上記の第1の金属板部分(51a)よりも上記の所定の移動限度(△L)だけ長い垂直方向の第3の金属板部分(54a)から張出形成されて上記の2つの粘弾性体(52・53)の上下の端面を囲うとともに上記の垂直方向固定金具(60)に沿って垂直方向に上下に張出形成した第4の金属板部分(54b・54c)をもつ端面保持金具(55)と
により上記の粘弾性部支持材(50)を構成する粘弾性部材構成手段と、。
【0076】
上記の端面保持金具(55)を上記の垂直方向取付金具(60)に合体させて上記の垂直方向平行部材(Q)に固定する合体固定手段と
を設ける第7の構成を構成していることになるものである。
【0077】
ここで、所定量L1の寸法値は、実用的には、100〜200mm程度とするのが好ましく、この寸法値によって、上記の第6従来技術で述べた市販の垂直方向固定金具60を利用し得るように構成している。
【0078】
そして、上下の移動限度△Lの寸法値は、図5の〔各部具体寸法例〕に示したように、上下とも10mm程度、合計20mm程度とすることが好ましく、この寸法値の場合には、一般の木造建築による構造物100の各階の高さ、すなわち、階高を3000mmにしたときに、移動限度△Lによる最大の歪み量は20mm/3000mm=1/150になるので、法律的に許容された建造物に損傷を与えない範囲内になる。
【0079】
また、図6の構成のように、垂直方向固定金具60の垂直方向の固定を基礎用ボルト60bによって基礎S側に固定する場合と、図8の構成のように、垂直方向固定金具60の垂直方向の固定を貫通固定用ボルト60cによって他の階の垂直方向平行部材Qに固定した垂直方向固定金具60との間で固定する場合には、これらのボルト60b・60cの箇所に図示したように、それぞれ、取付穴62Aの上下の箇所に締付用ナット60f1・60f2を設けて、これらのボルト60b・60cを締付固定するように構成することにより、耐震性をさらに向上させることができる。
【0080】
この構成によれば、図6の構成の場合には、筒状ボルト・ナット60Wによって連結用具80と垂直方向固定金具60とが一体化され、さらに、基礎用ボルト60b・締付用ナット60f1・60f2によって垂直方向固定金具60と基礎Sとが一体化されているので、震動時に対角点連結部材R1・R2の端部e2に加わる応力が基礎用ボルト60bを介して基礎Sに、直接的に、圧縮方向または引張方向の作用力になるように働き、垂直方向平行部材Qの下端を水平方向平行部材Pにめり込ませるような部材間の変形を起こさせないため、耐震性を向上させることになるものである。
【0081】
また、図8の構成の場合には、上方側では筒状ボルト・ナット60Wによって連結用具80と垂直方向固定金具60とが一体化され、下方側では筒状ボルト・ナット60Wによって連結用具70と垂直方向固定金具60とが一体化されるとともに、貫通固定用ボルト60c・締付用ナット60f1・60f2によって上方側の垂直方向固定金具60と下方側の垂直方向固定金具60とが一体化されているので、震動時に対角点連結部材R1・R2の端部e1・e2に加わる応力が他方の垂直方向固定金具60に、直接的に、圧縮方向または引張方向の作用力になるように働き、上方側の垂直方向平行部材Qの下端と、下方側の垂直方向平行部材Qの上端とを水平方向平行部材Pにめり込ませるような部材間の変形を起こさせないため、耐震性を向上させることになるものである。
【0082】
〔変形実施〕
この発明は次のように変形して実施することを含むものである。
(1)筒状ボルト・ナット60Wによる固定箇所を、普通の四角頭または六角頭のボルトナットを貫通させて固定するように変更して構成する。
【0083】
(2)連結用具80の金属板部分51b・51cを、図10のように、垂直方向固定金具60の板状部分61から張出形成することにより、連結用具80・垂直方向固定金具60を一体にして構成にする。この構成によれば、連結用具80・垂直方向固定金具60が一体に形成されいるので、上記の締付用ナット60f1・60f2を設けてボルト60b・60cを締付固定する構成の場合の耐震性をさらに向上させることができる。
【0084】
(3)連結用具80の金属板部分51aを、図11のように、垂直方向固定金具60と垂直方向平行部材Qとの間に入れて固定するように構成する。この構成によれば、筒状ボルト・ナット60Wによる締付によって、垂直方向固定金具60の板状部分61の上端側61Bと下端側61Cとが連結用具80の上下の箇所で曲げられられた形状になるので、連結用具80と垂直方向固定金具60との固定の一体化が向上し、上記の締付用ナット60f1・60f2を設けてボルト60b・60cを締付固定する構成の場合の耐震性をさらに向上させることができる。
【0085】
(4)上下・左右に設けた粘弾性連結部材(50)における各移動限度△Lのうちの任意のものまたは全部を、粘弾性体52・53の粘弾性的な変位が実質的に規制されない程度の十分な大きさにして構成する。
(5)上下・左右に設ける所定量L1を異ならせて構成する。
【0086】
(6)図9に、鎖線で示したように、対角点連結部材R1と対角点連結部材R2の交点Rxを適宜のボルト・ナットまたはスクリューボルトなどの適宜な固定具R0により固定して構成する。
(7)図5の添板70Aを設けて構成する。
(8)締付用ナット60f1・60f2による締付箇所を締付用ナット60f2を除去して締付用ナット60f1のみで締め付けるように構成する。
(9)連結用具80・連結用具70を鉄骨による耐震構造物に対応するように変形して構成する。
【0087】
【発明の効果】
この発明によれば、以上のように、四角形の空間が左右に横揺れする際に生ずる対角点連結部材に対する圧縮方向と引張方向との応力を、対角点連結部材の端部に設けた粘弾性体をもつ連結用具によって、水平方向の分力と垂直方向の分力とに分解するとともに、所定の移動限度の範囲において垂直方向の分力を粘弾性で対抗させているので、強度と粘りのある耐震性能を向上させた耐震構造物ならびに耐震連結用具を提供し得る。
【0088】
また、連結用具の取付位置を対角点から垂直方向に所定量だけずらせた位置にしているので、対角点連結部材と連結用具との取付加工が簡便になり、工事日程と工費とを低減して、耐震構造物を安価に提供し得るなどの効果がある。
【図面の簡単な説明】
図面中、図1〜図11はこの発明の実施例、また、図12〜図22は従来技術を示し、各図の内容は次のとおりである。
【図1】要部構成正面図
【図2】要部構成正面図
【図3】要部構成正面図
【図4】要部構成体斜視図
【図5】要部構成体斜視図
【図6】要部構成斜視図
【図7】要部構成斜視図
【図8】要部構成斜視図
【図9】要部構成斜視図
【図10】要部構成斜視図
【図11】要部構成斜視図
【図12】要部構成斜視図
【図13】要部構成斜視図
【図14】要部構成斜視図
【図15】要部構成正面・側面図
【図16】要部構成正面図
【図17】要部構成体斜視図
【図18】要部構成体斜視図
【図19】要部構成斜視図
【図20】要部構成斜視図
【図21】要部構成斜視図
【図22】要部構成正面図
【符号の説明】
1 梁用部材
2 土台用部材
3 柱用部材
4 柱用部材
5 梁用部材
6 桁用部材
7 桁用部材
8 土台用部材
9 柱用部材
10 柱用部材
11・13・15 筋交い用部材
12・14・16 筋交い用部材
30a・30b 取付ねじ
31 水平固定具
31A 対向面
31B 張出部分
32 垂直固定具
32A 対向面
32B 張出部分
32 垂直固定具
33 粘弾性体
50 粘弾性支持部材
51 端面配置金具
51a・51b・51c 金属板部分
52・53 粘弾性体
54a・54b・54c 金属板部分
55 端面保持金具
60 垂直方向固定金具
60W 筒状ボルト・ナット
60a スクリューボルト
60b 基礎用ボルト
60c 貫通固定用ボルト
60f1・60f2 締付用ナット
60x ボルト
60y 頭部分
60z ナット
61 板状部分
61A 取付穴
62 棚状部分
62A 取付穴
70 連結用具
70x 支点
70A 添板
74 長丸穴
80 連結用具
80a 取付ボルト
80c ナット
80x 支点
81 開放部分
82 四角穴
83 丸穴
84 丸穴
100 耐震構造物
100A 木造構造物
100B 木造構造物
300 粘弾性連結部材
300B 粘弾性連結部材
301 外側部材
302・304 固定端
303a・303b 板状体
305 内側部材
306 粘弾性体
307a・307b 金属板
308 粘弾性体
310 粘弾性固定部材
H1 高さ
L1 所定量
P 水平方向平行部材
Q 垂直方向平行部材
Rx 交点
R0 固定具
R1・R2 対角点連結部材
R1x・R1y 中断箇所
S 基礎
U 空間
UA 空間
a1・a2 対角点
b1・b2 対角点
d1・d2 貫通穴
e1・e2 端部
r1・r2 面
f 圧縮方向
f1 対向面
g 引張方向
△L 移動限度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure provided with a member for increasing seismic strength, for example, a building and a seismic connection tool used therefor. In addition, in this invention, a member means the structural material which combined the single structural material which comprises the predetermined part of a structure, or a some structural material. Further, in the following drawings, portions denoted by the same reference numerals are portions having the same functions as those denoted by the same reference numerals described in any of the drawings.
[0002]
[Prior art]
In a general building structure 100, for example, a wooden structure 100A using a one-story wooden house as shown in FIG. 12, or a wooden structure 100B using a two-story wooden house as shown in FIG. Members parallel to each other (referred to as horizontal parallel members in the present invention) P, for example, horizontal parallel members P such as foundation members 2 and 8, beam members 1 and 5 and beam members 6 and 7, A rectangular space U is formed by a member Q (referred to as a vertical direction parallel member in the present invention) Q arranged in parallel to the vertical direction, for example, a vertical direction parallel member Q such as pillar members 3, 4, 9, 10. It has a structural part configured as a frame member P / Q.
[0003]
A configuration in which one diagonal point in such a rectangular space U, for example, a diagonal point connecting member R1 for connecting the diagonal points a1 and a2, for example, bracing members 11, 13, and 15 is provided (hereinafter referred to as a first conventional art). Or a diagonal point connecting member R2 for connecting the diagonal point connecting member R1 and another diagonal point, for example, the diagonal points b1 and b2, for example, bracing members 12, 14, 16 Is well known to increase the seismic strength of the structure (hereinafter referred to as the second prior art).
[0004]
12 and 13, only the parts that become the framework are shown, but it goes without saying that the inner wall, the outer wall, the ceiling, the floor, the roof, etc. are attached to the framework as necessary. .
[0005]
However, since the diagonal point connecting members R1 and R2 simply fix the diagonal points a1 and a2 or the diagonal points b1 and b2, the end points of the diagonal point connecting members R1 and R2 are eventually fixed. The seismic stress is concentrated, resulting in inconvenience that these fixed portions are destroyed.
[0006]
Therefore, in a steel structure, for example, a lightweight cellular concrete panel-clad steel structure (not shown), a diagonal point connecting member 300 having viscoelasticity as shown in FIG. 14, that is, a viscoelastic connecting member 300 is provided. For example, a configuration provided with a product name “viscoelastic damper” of Showa Electric Wire Co., Ltd. is known.
[0007]
Here, in the present invention, viscoelasticity means that a deformation force caused by a static stress acts with a viscosity that causes plastic deformation following the stress, and a motion caused by a vibration during an earthquake. For general energy, it has the property of suppressing action with viscosity that produces a speed-dependent damping effect and elasticity that produces resistance by elasticity, for example, non-vulcanized or semi-vulcanized It is well known that these rubber materials such as neoprene rubber and butyl rubber are materials having such viscoelasticity (referred to as viscoelastic material in the present invention).
[0008]
In FIG. 14, a viscoelastic connecting member 300 includes a long tubular outer member 301 having a cross section of a “Japanese character” and one fixed end 302 provided at one end, and two elongated plate-like bodies 303 a. An inner member 305 formed in the shape of a tuning fork by providing the other fixed end 304 at a place where the ends of 303b are integrally connected.
[0009]
Then, the two pieces of plate-like bodies 303a and 303b of the inner member 305 are inserted into the upper and lower space portions of the “day-shaped” of the outer member 301, and the two pieces of plate-like bodies 303a and 303b and the “day-shaped” ”Between the inner surface of the space and the inner surface of the space (referred to as viscoelastic body in the present invention) 306 is formed by adhering the surface portions facing these surfaces by bonding or baking. Is.
[0010]
Therefore, if the fixed ends 302 and 304 are fixed to a required diagonal point, for example, the diagonal points a1 and a2 or the diagonal points b1 and b2 in the structure 100 of FIG. 12, the compression direction (in FIG. Since the viscoelasticity of the viscoelastic body 306 acts on the stress in both directions of the arrow f) and the tensile direction (arrow g in FIG. 14), the earthquake resistance is improved.
[0011]
Further, in the structures 100A and 100B by the wooden construction as shown in FIGS. 12 and 13, as shown in FIG. 15, the diagonal point connecting member 300B having the same viscoelasticity as the configuration of FIG. A configuration in which the member 300B is provided (hereinafter referred to as “fourth prior art”), for example, a configuration in which the product name “Apool” of Arai Gumi Co., Ltd. is provided is known.
[0012]
In FIG. 15, viscoelastic connecting member 300B and the opposite part of each metal plate 307a and 307b fixed to the two interrupted points R1x and R1y obtained by cutting the middle part of the wooden diagonal point connecting member R1, Similarly, a viscoelastic body 308 is provided.
[0013]
Accordingly, the viscoelasticity of the viscoelastic body 308 acts on the stress in both the compression direction (arrow f) and the tensile direction (arrow g) generated at the interrupted locations R1x and R1y, and the earthquake resistance is improved. .
[0014]
Further, in the structures 100A and 100B by the wooden construction as shown in FIGS. 12 and 13, in order to improve the earthquake resistance in the rectangular space UA where the diagonal point connecting members R1 and R2 are not provided, Thus, the viscoelastic fixing member as shown in FIG. 17 for fixing the horizontal parallel member P and the vertical parallel member Q at each diagonal point a1, a2, b1, b2 via viscoelasticity. 310, for example, a configuration (hereinafter, referred to as fifth conventional technology) in which a product name “Mouth Damper” of Tsugaike Corporation is well known.
[0015]
In FIG. 17, viscoelastic fixing members 310 are opposed surfaces 31 </ b> A and 32 </ b> A of a metal plate horizontal fixing tool 31 fixed to a horizontal parallel member P and a metal plate vertical fixing tool 32 fixed to a vertical parallel member Q. Between them, both sides of the plate-like viscoelastic material 33 are fixed by adhesion or baking.
[0016]
Then, an overhanging portion 31B having a horizontal surface extending in an L shape from the facing surface 31A of the horizontal fixing tool 31 is fixed to the horizontal parallel member P by the mounting screw 30a, and the L shape is formed from the facing surface 32A of the vertical fixing tool 32. The viscoelastic fixing member 310 is fixed to the diagonal points a1, a2, b1, and b2 of the rectangular space UA by fixing the protruding portion 32B having a vertical surface protruding to the vertical parallel member Q with the mounting screw 30b. , Respectively.
[0017]
Therefore, when the quadrangular space UA is shaken in the lateral direction, the suppressing action by the viscoelasticity is exerted on the stress in the rotational direction (arrow j / arrow k in FIG. 17) generated in the plane of the viscoelastic material 33. In this way, the earthquake resistance is improved. The mounting screws 30a and 30b are, for example, square head or hexagon head large wood screws (hereinafter referred to as screw bolts) and square head or hexagon head bolts and nuts.
[0018]
Further, the vertical parallel member Q is fixed to the horizontal parallel member P at each of the diagonal points a1, a2, b1, and b2 of the rectangular space U of the structures 100A and 100B by the wooden construction as shown in FIGS. Is well known in the art (hereinafter, referred to as the sixth prior art).
[0019]
19 to 21, the vertical fixing bracket 60 is a fixing bracket for fixing the vertical parallel member Q in a tensioned state so as to draw the vertical parallel member Q to the opposite side of the horizontal parallel member P in the vertical direction. Generally, it is called an attracting hardware or a hole-down hardware.
[0020]
Specifically, the vertical fixing bracket 60 is formed of a metal material, and, as shown in FIG. 18, the vertical plate-like portion 61 that is attached to the opposing surface f1 of the vertical parallel member Q is changed to the horizontal parallel member P. A downward U-shaped shelf-like portion 62 is provided so as to project in the horizontal direction along. And the specific example of a dimension of each part is as the [example of each part specific dimension] of the figure. In addition to this dimension example, a product in which the height H1 is 380 mm or 470 mm and the number of mounting holes 61A is appropriately increased is commercially available.
[0021]
As shown in FIG. 19, when the horizontal parallel member P is the base member 2 or 8, the vertical parallel member is formed by screw bolts 60 a using a plurality of mounting holes 61 </ b> A provided in the plate-like portion 61. A vertical mounting bolt (not shown) or a foundation bolt 60b extends to one mounting hole 62A provided in the shelf-like portion 62 and extends to the opposite side of the horizontal parallel member P. The direction parallel member Q is fixed in a tensioned state so as to be drawn in the vertical direction on the opposite side of the horizontal direction parallel member P, that is, the side of the foundation concrete S.
[0022]
Further, when the horizontal parallel member P is the roof-side beam member 1 or 5 or the beam member 6 or 7, as shown in FIG. Is fixed in the same manner as in FIG. 19, and the vertical parallel member Q is attached to the mounting hole 62A of the shelf-like portion 62 by a mounting bolt 60c having a length extending to the opposite side of the horizontal parallel member P. It is fixed in a tensioned state so as to be pulled in a direction perpendicular to the opposite side of P.
[0023]
Furthermore, in the case where the horizontal parallel member P is the beam members 1 and 5 or the beam member 6.7 between the floors, as shown in FIG. 21, the opposing surface f1 of the upper vertical parallel member Q and the lower surface On the opposing surface f1 of the vertical parallel member Q, the vertical fixing metal fittings 60 are arranged so as to oppose each other, and the plate-like portion 61 is fixed as in the case of FIG. The vertical parallel member Q is connected to the opposite side of the horizontal parallel member P, that is, the opposite vertical parallel member Q by a mounting bolt 60c having a length extending through the mounting hole 62A to the opposite side of the horizontal parallel member P. It is fixed in a tension state so as to be pulled in the vertical direction on the side of the plate.
[0024]
Instead of the screw bolt 60a, as shown in FIG. 22, a square or hexagon head bolt 60x is passed from the plate-like portion 61 side to the vertical parallel member Q, and from the opposite side of the vertical parallel member Q, It is well known to use a configuration using a cylindrical bolt / nut 60W for screwing and fixing a cylindrical nut 60z having a round seat-shaped head portion 60y (hereinafter referred to as the seventh prior art).
[0025]
[Problems to be solved by the invention]
The viscoelastic bracing member 300 according to the configuration of the third prior art described above works effectively in the case of the structure 100 in which the steel frame of the frame is configured by heavy-weight steel frames, but the frame is configured by wooden or lightweight steel frames. In the case of the structure 100, for example, a wooden house or a lightweight steel prefab house, the size and weight of the viscoelastic bracing member 300 itself is increased, and there is a disadvantage that a practical structure cannot be obtained from the price profit side. .
[0026]
In the viscoelastic connecting member 300B according to the configuration of the fourth prior art, the portion of the viscoelastic connecting member 300B is bent in the out-of-plane direction due to the vibration in the compression direction, so that sufficient earthquake resistance cannot be obtained. There is.
[0027]
In the viscoelastic fixing member 310 according to the configuration of the fifth prior art described above, since only the diagonal points a1, a2, b1, and b2 are locally provided with an earthquake resistant configuration by viscoelasticity, In other places, it is necessary to provide the diagonal point connecting members R1 and R2, and eventually the diagonal point connecting members R1 and R2 are provided with the configuration of the third prior art, Or since it comprises using the structure of said 4th prior art, either of the above-mentioned inconveniences will arise in these composition places as it is.
[0028]
In the first prior art, the second prior art, and the fourth prior art, the diagonal point connecting members R1 and R2 are assembled to the diagonal points a1, a2, b1, and b2. Since it is necessary to process the upper and lower ends of R2 so that the diagonal points a1, a2, b1, and b2 are dug into the area where there is no gap, this processing is performed one by one in the actual product. Therefore, the construction schedule and cost are high, and there is a disadvantage that it cannot be provided at a low cost.
[0029]
For this reason, there is a problem that it is desired to provide an earthquake-resistant structure and an earthquake-resistant connecting tool that have no such inconvenience, are easily processed on site, have a simple and inexpensive configuration, and have earthquake resistance by viscoelasticity.
[0030]
[Means for Solving the Problems]
In the above earthquake-resistant structure, the present invention is provided between the end portions of the diagonal point connecting members R1 and R2 and the opposing surface of the vertical parallel member Q and has vertical viscoelasticity. By arranging a viscoelastic support member that is restrained at a predetermined movement limit, the earthquake resistance can be improved.
[0031]
Then, the stress in the compression direction and the tensile direction with respect to the diagonal point connecting members R1 and R2 generated when the rectangular space U rolls to the left and right is decomposed into a horizontal component force and a vertical component force, In the range of the above movement limit, an earthquake-resistant connecting tool is provided so as to act so as to counter the vertical component force with the above viscoelasticity.
[0032]
Further, by setting the mounting position of the seismic connection tool to a position shifted by a predetermined amount in the vertical direction from the diagonal points a 1, a 2, b 1, b 2, the ends of the diagonal connection members R 1, R 2 are set to the diagonal points. It is configured to eliminate the process of inserting into a1, a2, b1, and b2.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, as an embodiment of the present invention, the basic configuration and examples in the case where the present invention is applied to the earthquake-resistant structure 100 in the wooden house of the first prior art and the second prior art shown in FIGS. Will be explained.
[0034]
[Principle structure (1)]
The first principle configuration of the present invention will be described below with reference to FIGS. 1 to 3 show the basic configuration when the present invention is applied to the main part of the earthquake-resistant structure 100 in the wooden house of the first prior art and the second prior art of FIGS.
[0035]
In FIG. 1, the end e2 on the lower end side of the diagonal point connecting member R1 is supported by a fulcrum 80x provided on the connecting tool 80, and the connecting tool 80 is a predetermined amount L1 from the diagonal point a2 corresponding to the end e2. It is fixed to the opposing surface f1 of the vertical parallel member Q shifted by a rectangular vertical direction.
[0036]
Further, the end e1 on the upper end side of the diagonal point connection member R1 is supported by a fulcrum 70x provided on the connection tool 70, and the connection tool 70 is a predetermined amount L1 from the diagonal point a1 corresponding to the end e1. It is arranged on the opposing surface f1 of the other vertical parallel member Q shifted in the vertical direction of the quadrangle and has viscoelasticity along the vertical direction between the end e1 and the opposing surface f1 and a predetermined upper and lower movement. A viscoelastic support member 50 that is restrained by the limit ΔL is arranged.
[0037]
Therefore, when stress due to rolling of the upper and lower horizontal parallel members P is exerted by the vibration, the portion of the viscoelastic support member 50 is restrained by the movement limit ΔL while resisting viscoelasticity along the vertical direction. However, when the above-mentioned shaking is a large stress exceeding the amount restrained by the up / down movement limit ΔL, the rolling due to the corresponding stress is caused by the compressive drag or tensile drag of the diagonal point connecting member R1 itself. It will be earthquake resistant to suppress.
[0038]
In FIG. 2, the end e2 on the lower end side and the end e1 on the upper end side of the diagonal point connecting member R2 are located on the lower end side e2 and the upper end side of the diagonal point connecting member R1 in FIG. Similar to the end e1, the connecting tool 80 and the connecting tool 70 are provided.
[0039]
Therefore, when the stress due to the rolling of the upper and lower horizontal parallel members P is exerted by the vibration, the earthquake-proof operation is performed by the symmetrical operation with the configuration of FIG.
[0040]
In FIG. 3, the diagonal point connecting member R1 has the same configuration as that shown in FIG. 1, and the diagonal point connecting member R2 has the same configuration as that shown in FIG. When the stress due to the rolling of the horizontal parallel member P acts, the seismic operation combining the seismic operation in the configuration of FIG. 1 and the seismic operation in the configuration of FIG. 2 is performed.
[0041]
In other words, the configuration of FIG. 1 and FIG.
A frame member (PQ) in which a rectangular parallelism (U) is formed by a horizontal parallel member (P) and a vertical parallel member (Q), and one diagonal point (a1, a2 or b1, b2) In the earthquake-resistant structure (100) having one diagonal point connecting member (R1 or R2) connecting the vicinity of each other,
[0042]
The end portion (e1) of the diagonal point connecting member (R1 or R2) and the vertical direction of the square by a predetermined amount (L1) from the diagonal point (a1) corresponding to the end portion (e1) A viscoelastic support member which has viscoelasticity along the vertical direction and is restrained at a predetermined upper and lower movement limit (ΔL) between the opposed surface (f1) of the vertical member (Q) shifted Viscoelastic coupling means (70) which arranges (50) and viscoelastically couples the diagonal point coupling member (R1 or R2) and the vertical parallel member (Q).
The 1st structure which provides is comprised.
[0043]
In addition, the configuration of FIG.
A frame member (PQ) in which a rectangular space (U) is formed by a horizontal parallel member (P) and a vertical parallel member (Q), and two diagonal points (a1, a2, b1) of the square B2) In the earthquake-resistant structure (100) having two diagonal point connecting members (R1 and R2) connected in the vicinity of each other,
[0044]
Each of the end points (e1) of each of the diagonal point connecting members (R1, R2), and a predetermined amount (L1) from each of the diagonal points (a1, b1) corresponding to the end portions (e1). A predetermined upper and lower movement limit (ΔL) with viscoelasticity along the vertical direction between each of the opposing surfaces (f1) of the vertical member (Q) shifted in the vertical direction of the square. Viscoelastic connecting means (70) arranged to connect the diagonal connecting members (R1, R2) and the vertical parallel members (Q) to the viscoelastic supporting members (50) restrained by )
This constitutes a second configuration.
[0045]
Furthermore, the configuration of FIGS.
In the first configuration or the second configuration,
One of the diagonal point connecting members (R1) or one end of the two diagonal point connecting members (R1, R2) and the vertical parallel member (Q) are connected to the viscoelastic connecting means (70). And the other end of each of the diagonal point connecting members (R1, R2) and the vertical parallel member (Q) are fixedly connected via a fixed connecting means (80). A third configuration connected to
One end of one of the diagonal point connecting members (R1) or two of the diagonal point connecting members (R1, R2) and each of the vertical direction connecting members (Q) are connected to the viscoelastic connecting means ( 70) and the fourth structure connected in a viscoelastic manner.
[0046]
[Principle configuration (part 2)]
The second principle configuration of the present invention will be described below with reference to FIGS. The second principle configuration is different from the first principle configuration described above in the same manner as the end e1 on the upper end side in the location of the end e2 on the lower end side in the configuration of FIGS. It is the place which changed and comprised so that a viscoelastic connection means (70) might be arrange | positioned with respect to said vertical direction parallel member (Q).
[0047]
That is, this second principle configuration is generally the same as the first configuration or the second configuration described above.
The viscoelastic coupling means (70) connects one end of the diagonal point connecting member (R1) or the two diagonal point connecting members (R1 and R2) and the vertical direction connecting member (Q). ) Through the fifth configuration.
[0048]
[First embodiment]
Hereinafter, as a first embodiment, an example of the connecting tool 80 in the principle configuration of the first to fourth configurations will be described with reference to FIG. 4, and an example of the connecting tool 70 will be described with reference to FIG. 5.
[0049]
In FIG. 4, the connecting tool 80 is formed by bending or welding a metal plate so that the shape in a horizontal plane becomes a U-shape, and at the position of the open portion 81, the diagonal point connecting member R <b> 1 or The end e2 of the diagonal point connection R2 is inserted and fixed. Specific examples of dimensions of each part include 105 mm for each side of the cross section of the horizontal parallel member P and vertical parallel member Q, and 45 mm for the short side of the diagonal point connecting members R1 and R2. When the dimension of the long side is 105 mm, it is as shown in [Specific Dimension Example] in the figure.
[0050]
Specifically, the first metal plate portion 51a in the vertical direction that faces the end portion e2 of the diagonal point connecting member R1 or R1 and R2 perpendicularly, and the first metal plate portion 51a project from the first metal plate portion 51a. And second metal plate portions 51b and 51c in the vertical direction that are fixed to the front and rear surfaces r1 and r2 of the diagonal point connecting member R1 or R1 and R2 formed in this invention (referred to as overhang formation). The end face mounting bracket 51 is configured.
[0051]
The metal plate portions 51b and 51c are provided with a square hole 82 for the mounting bolt 80a at the center and round holes 83 for the wood screw 80b above and below the metal plate portions 51b and 51c. Bolts of cylindrical bolts and nuts 60W according to the seventh prior art of FIG. 22 for fixing directly or fixing to the vertical parallel member Q by combining with the vertical fixing fitting 60 according to the sixth prior art of FIG. A round hole 84 for 60x is provided.
[0052]
Note that the mounting bolt 80a to be inserted into the square hole 82 provided in the metal plate portions 51b and 51c is a bolt having a square section at the root portion of the flat round head bolt, that is, a root square bolt. After passing through the through hole d1 provided in the end portion e2 of the corner point connecting member, it is fixed with an appropriate nut 80c. Since the head of the mounting bolt 80a is close to the inside of the wall material, a head with a low height is used, but the shape of the head may be a rectangle, a hexagon, or the like.
[0053]
In FIG. 5, the connecting tool 70 is integrally formed by bonding or baking the end face arranging metal fitting 51, the two viscoelastic bodies 52 and 53, and the end face holding metal fitting 55 to the surfaces of the viscoelastic bodies 52 and 53. It is composed.
[0054]
The end surface arrangement | positioning metal fitting 51 is comprised using the end surface arrangement | positioning metal fitting 51 as the connection tool 80 of FIG. 4 in reverse direction. In addition, although the round hole 84 is unnecessary for the end surface arrangement | positioning metal fitting 51 in this case, the same thing is used so that components can be shared. The viscoelastic bodies 52 and 53 are formed of two plate-like viscoelastic materials.
[0055]
The end surface holding metal 55 includes a third metal plate portion 54a disposed between one viscoelastic body 52 and the end portion e1 of the diagonal point connecting member R1 or R1 and R2 from the first metal plate portion 51a. Is formed in a vertical metal plate portion that is long by a predetermined movement limit ΔL, and the fourth metal plate portions 54b and 54c formed to protrude from the third metal plate portion 54a are viscoelastic bodies 52 and 53. Are formed on a metal plate portion that surrounds the upper and lower end faces and extends vertically along the vertical direction.
[0056]
Then, it is directly fixed to the opposing surface f1 of the vertical parallel member Q on the fourth metal plate portions 54b and 54c formed to project vertically, or the vertical fixing bracket 60 according to the sixth prior art of FIG. An elongated round hole 74 for the bolt 60x of the cylindrical bolt and nut 60W according to the seventh prior art of FIG. 22 for combining and fixing to the vertical parallel member Q is provided. The specific dimension example of each part is as shown in [Specific dimension example] in the figure when the dimension of each side of the cross section of the horizontal parallel member P and the vertical parallel member Q is 105 mm. Yes.
Further, when directly fixing to the facing surface f1 of the vertical parallel member Q, the metal plate is long between the metal plate portions 54b and 54c and the facing surface f1, as indicated by a chain line in FIG. It is desirable that the accessory plate 70A provided with a hole similar to the round hole 74 is inserted, or the surface between the accessory plate 70A and the viscoelastic body 53 is bonded or baked to be integrally formed.
[0057]
Further, the fixing between the end face mounting bracket 51 and the end point e1 of the diagonal point connecting member R1 or R1 and R2 is performed by forming a through hole d2 similar to the through hole d1 in FIG. 4 at the end e1. It is provided and fixed in the same manner as the connecting tool 80.
[0058]
Here, in the connecting tool 80 of FIG. 4 and the connecting tool 70 of FIG. 5, the portions of the square hole 82 and the mounting bolt 80a by the root square bolt are in principle the fulcrum 80x and fulcrum 70x in FIG. Since it is a corresponding component, it may be better to fix it with a round hole and a normal bolt and eliminate the fixing with a wood screw, but actually, the outer diameter of the mounting bolt 80a and the round holes d1 and d2 In addition, there is a gap between the connecting tool 70 and 80 and the diagonal point connecting member, for example, when the mounting bolt 80a is further recessed from the round holes d1 and d2 into the diagonal point connecting members R1 and R2. The space between R1 and R2 is not securely fixed, and play is generated, so that stress is not easily transmitted directly to the viscoelastic bodies 52 and 53.
[0059]
For this reason, as shown in FIGS. 4 and 5, the connecting tools 70 and 80 and the diagonal point connecting members R1 and R2 are fixed with wood screws 80b, and stress at the initial stage of the vibration is applied to the viscoelastic bodies 52 and 53. By making it easy to transmit, it is possible to obtain earthquake resistance having sufficient strength and stickiness against the stress in the compression direction and the stress in the tensile direction applied to the end portions e1 and e2 of the diagonal point connecting members R1 and R2. I have to.
[0060]
Therefore, since the metal plate portion 51a is inclined by the same angle as the inclination of the vertical parallel member Q due to the rolling of the upper and lower horizontal parallel members P, the viscoelastic bodies 52 and 53 are actually viscoelastic. The seismic operation is performed by the viscoelasticity with respect to the stress along the surface direction of the bodies 52 and 53 and the viscoelasticity with respect to the stress in the thickness direction of the viscoelastic bodies 52 and 53.
[0061]
And the configuration of the embodiment of FIG.
In the vicinity of a frame member (PQ) in which a rectangular space is formed by a horizontal parallel member (P) and a vertical parallel member (Q), and one diagonal point (a1a2) of the square, Or the earthquake-resistant connection used for the earthquake-resistant structure (100) which has the diagonal point connection member (R1 or R1 * R2) which connects the vicinity of two diagonal points (a1, a2, b1, and b2) of said square. In the tool (70),
[0062]
The first metal plate portion (51a) in the vertical direction parallel to the end portion (e1) of the diagonal point connecting member (R1 or R1, R2) and the first metal plate portion (51a) An end face mounting bracket having a second metal plate portion (51b / 51c) in the vertical direction which is formed and fixed to the front and rear surfaces (r1 / r2) of the diagonal point connecting member (R1 or R1 / R2). 51) and
[0063]
The viscoelastic body (52/53) made of two plate-like viscoelastic materials arranged on both sides of the first metal plate portion (51a);
A vertical direction which is arranged between one of the viscoelastic bodies (52) and the end (e1) and is longer than the first metal plate portion (51a) by a predetermined movement limit (ΔL). A fourth metal plate which is formed to project from the third metal plate portion (54a) of the first metal plate and surrounds the upper and lower end surfaces of the two viscoelastic bodies (52, 53) and projects vertically in the vertical direction. End face holding metal fittings (55) having portions (54b, 54c);
This constitutes a sixth configuration. The seismic connection tool 70 according to the sixth configuration corresponds to the viscoelastic support member 50.
[0064]
[Second Embodiment]
Hereinafter, as a second embodiment, referring to FIGS. 6 to 9, the above-described first configuration constituted by using the connecting tool 80 and the connecting tool 70 according to the first embodiment and the vertical fixing bracket 60 according to the sixth prior art. Specific examples of the fundamental configuration according to the first to third configurations will be described.
[0065]
In FIG. 6, the vertical fixing bracket 60 is in a fixed state similar to the configuration of the sixth prior art in FIG. 19, and the vertical metal of the connecting tool 80 is attached when the vertical fixing bracket 60 is attached. The plate portion 51a is united so as to be superimposed on the vertical plate-like portion 61 of the vertical fixing bracket 60, and is fixed by a cylindrical bolt / nut 60W.
[0066]
In FIG. 7, the vertical fixing bracket 60 is in a fixed state similar to the configuration of the sixth prior art of FIG. 20, and the connecting tool by the viscoelastic support member 50 is attached when the vertical fixing bracket 60 is attached. The metal plate portions 54 b and 54 c projecting up and down in the vertical direction in the end surface holding metal fitting 55 of 70 are combined so that the metal plate portion 51 a is overlaid on the vertical plate-like portion 61 in the vertical fixing metal fitting 60. These are fixed with cylindrical bolts and nuts 60W.
[0067]
In FIG. 8, the upper and lower vertical fixing brackets 60, 60 are in a fixed state similar to the configuration of the sixth prior art of FIG. 21, and when the vertical fixing bracket 60 is attached, Similar to the configuration of FIGS. 6 and 7, the coupling tool 70 is united so as to be superimposed on the vertical plate-like portion 61 of the vertical fixing bracket 60 and fixed by a cylindrical bolt / nut 60W. is there.
[0068]
In FIG. 9, each vertical fixing bracket 60 is the same as that in FIGS. 6 and 7 at the position corresponding to each diagonal point a <b> 1, a <b> 2, b <b> 1, and b <b> 2 with respect to both diagonal point connecting members R <b> 1 and R <b> 2. The coupling tool 80 and the coupling tool 70 are combined so as to be superimposed on the vertical plate-like portion 61 of the vertical fixing bracket 60 in the same manner as the configuration of FIGS. It is fixed with a cylindrical bolt / nut 60W.
[0069]
In the configuration of FIG. 9, the vertical fixing of the vertical fixing fittings 60 arranged on the lower end side of the diagonal point connecting members R1 and R2 is pulled to the opposite surface of the lower horizontal parallel member P. Although it is fixed in a state, it is needless to say that it can be configured to be fixed in a tensioned state to the foundation S as in the configuration of FIG.
[0070]
Further, in the configuration of FIG. 9, the vertical fixing of the vertical fixing brackets 60 arranged on the upper end side of the diagonal point connecting members R <b> 1 and R <b> 2 is stretched on the opposite surface of the upper horizontal parallel member P. However, it goes without saying that, similarly to the configuration of FIG. 8, it can be configured to be fixed to the upper vertical parallel member Q in a tensioned state.
[0071]
[Third embodiment]
Hereinafter, as a third embodiment, according to the above-described fourth configuration, which is configured by using the connecting tool 70 according to the first embodiment and the vertical fixing bracket 60 according to the sixth prior art, as shown in FIGS. A specific example of the principle configuration will be described.
[0072]
The configuration of the third embodiment differs from the configuration of the second embodiment described above in that the location of the connecting tool 80 provided at the lower end e2 in the configurations of FIGS. Similarly to the part e1, the connection tool 70 is changed to be configured.
[0073]
[Overall structure of the second and third embodiments]
In general, the second and third embodiments described above are added to the first to fifth configurations described above.
The viscoelastic support member (50) is fixed to the opposite surface (f1) of the vertical parallel member (Q) at the diagonal points (a1, a2, b1, b2) where the viscoelastic support member (50) is disposed. The vertical fixing bracket (60) is used to fix the vertical parallel member (Q) in a tension state in the vertical direction on the opposite side of the opposed surface (f1) of the horizontal parallel member (P). Vertical / horizontal parallel member fixing means;
[0074]
Projected from the first metal plate portion (51a) in the vertical direction parallel to the end portion (e1) and formed on the front and rear surfaces (r1 and r2) of the diagonal point connecting member (R1 or R2) An end face mounting bracket (51) having a second metal plate portion (51b, 51c) in the vertical direction to be fixed;
[0075]
The viscoelastic body (52/53) made of two plate-like viscoelastic materials arranged on both sides of the first metal plate portion (51a);
One of the viscoelastic bodies (52) and the end (e1) are disposed and are longer than the first metal plate portion (51a) by the predetermined movement limit (ΔL). It protrudes from the third metal plate portion (54a) in the vertical direction and surrounds the upper and lower end faces of the two viscoelastic bodies (52, 53) and is perpendicular to the vertical fixing bracket (60). An end face holding metal fitting (55) having a fourth metal plate portion (54b, 54c) projecting vertically in the direction;
Viscoelastic member constituting means constituting the viscoelastic part support material (50).
[0076]
A combination fixing means for combining the end surface holding metal fitting (55) with the vertical mounting metal fitting (60) and fixing it to the vertical parallel member (Q);
That is, the seventh configuration is provided.
[0077]
Here, the dimensional value of the predetermined amount L1 is practically preferably about 100 to 200 mm. Based on this dimensional value, the commercially available vertical fixing bracket 60 described in the sixth prior art is used. Configure to get.
[0078]
And the dimension value of the upper and lower movement limit ΔL is preferably about 10 mm in both the upper and lower sides, as shown in [Specific Example of Each Part] in FIG. 5, and in the case of this dimension value, When the height of each floor of the structure 100 of a general wooden building, that is, the floor height is 3000 mm, the maximum distortion amount due to the movement limit ΔL is 20 mm / 3000 mm = 1/150, which is legally allowable. It will be within the range that will not damage the constructed structure.
[0079]
Further, as in the configuration of FIG. 6, the vertical fixing bracket 60 is fixed to the foundation S side by the foundation bolt 60b, and the vertical fixing bracket 60 is vertically fixed as in the configuration of FIG. When fixing the direction between the vertical fixing bracket 60 fixed to the vertical parallel member Q of the other floor by the through fixing bolt 60c, as shown in the locations of these bolts 60b and 60c. The seismic resistance can be further improved by providing the fastening nuts 60f1 and 60f2 at the upper and lower portions of the mounting hole 62A and fastening these bolts 60b and 60c, respectively.
[0080]
According to this configuration, in the case of the configuration of FIG. 6, the connecting tool 80 and the vertical fixing bracket 60 are integrated by the cylindrical bolt / nut 60W, and further, the foundation bolt 60b, the tightening nut 60f1, Since the vertical fixing bracket 60 and the foundation S are integrated by 60f2, the stress applied to the ends e2 of the diagonal point connecting members R1 and R2 during vibration is directly applied to the foundation S via the foundation bolt 60b. In addition, it works so as to have an acting force in the compression direction or the tensile direction, and does not cause deformation between members that causes the lower end of the vertical parallel member Q to be recessed into the horizontal parallel member P, thereby improving earthquake resistance. It will be.
[0081]
In the case of the configuration of FIG. 8, the connecting tool 80 and the vertical fixing bracket 60 are integrated by the cylindrical bolt / nut 60W on the upper side, and the connecting tool 70 is connected by the cylindrical bolt / nut 60W on the lower side. The vertical fixing bracket 60 is integrated, and the upper vertical fixing bracket 60 and the lower vertical fixing bracket 60 are integrated by the through fixing bolts 60c and the tightening nuts 60f1 and 60f2. Therefore, the stress applied to the end portions e1 and e2 of the diagonal point connecting members R1 and R2 at the time of vibration works directly on the other vertical fixing bracket 60 so as to become an acting force in the compression direction or the tension direction, Since it does not cause deformation between members that causes the lower end of the upper vertical parallel member Q and the upper end of the lower vertical parallel member Q to be embedded in the horizontal parallel member P, it is earthquake resistant. Those that will improve.
[0082]
[Modification]
The present invention includes the following modifications.
(1) The fixing point by the cylindrical bolt / nut 60W is changed to be fixed by penetrating an ordinary square or hexagon head bolt and nut.
[0083]
(2) The metal plate portions 51b and 51c of the connecting tool 80 are formed so as to protrude from the plate-like portion 61 of the vertical fixing bracket 60 as shown in FIG. To configure. According to this configuration, since the connecting tool 80 and the vertical fixing bracket 60 are integrally formed, the earthquake resistance in the case where the bolts 60b and 60c are fastened and fixed by providing the tightening nuts 60f1 and 60f2 described above. Can be further improved.
[0084]
(3) The metal plate portion 51a of the connecting tool 80 is configured to be inserted and fixed between the vertical fixing bracket 60 and the vertical parallel member Q as shown in FIG. According to this configuration, the upper end side 61B and the lower end side 61C of the plate-like portion 61 of the vertical fixing bracket 60 are bent at the upper and lower portions of the connecting tool 80 by tightening with the cylindrical bolt / nut 60W. Therefore, the integration of the coupling tool 80 and the vertical fixing bracket 60 is improved, and the earthquake resistance in the case where the bolts 60b and 60c are tightened and fixed by providing the tightening nuts 60f1 and 60f2 described above. Can be further improved.
[0085]
(4) The viscoelastic displacement of the viscoelastic bodies 52 and 53 is not substantially restricted by any or all of the movement limits ΔL in the viscoelastic coupling members (50) provided on the top, bottom, left and right. Make it large enough.
(5) A predetermined amount L1 provided on the top, bottom, left and right is varied.
[0086]
(6) As shown by the chain line in FIG. 9, the intersection Rx of the diagonal point connecting member R1 and the diagonal point connecting member R2 is fixed by an appropriate fixing tool R0 such as an appropriate bolt / nut or screw bolt. Constitute.
(7) The accessory plate 70A shown in FIG. 5 is provided.
(8) The tightening points of the tightening nuts 60f1 and 60f2 are configured to be tightened only by the tightening nut 60f1 by removing the tightening nut 60f2.
(9) The connecting tool 80 and the connecting tool 70 are deformed so as to correspond to a seismic structure made of steel.
[0087]
【The invention's effect】
According to the present invention, as described above, the stress in the compression direction and the tensile direction with respect to the diagonal point connecting member generated when the square space rolls to the left and right is provided at the end of the diagonal point connecting member. The connecting tool having a viscoelastic body breaks down into a horizontal component force and a vertical component force, and the vertical component force is viscoelastically opposed within a predetermined range of movement limits. It is possible to provide a seismic structure and a seismic connection tool with improved seismic performance.
[0088]
In addition, since the mounting position of the connecting tool is shifted by a predetermined amount from the diagonal point in the vertical direction, the mounting process between the diagonal point connecting member and the connecting tool is simplified, and the construction schedule and cost are reduced. Thus, it is possible to provide an earthquake-resistant structure at a low cost.
[Brief description of the drawings]
In the drawings, FIGS. 1 to 11 show an embodiment of the present invention, and FIGS. 12 to 22 show prior art, and the contents of each figure are as follows.
FIG. 1 is a front view of a main part configuration.
FIG. 2 is a front view of the main part configuration.
FIG. 3 is a front view of the main part configuration.
FIG. 4 is a perspective view of main components.
FIG. 5 is a perspective view of the main components.
FIG. 6 is a perspective view of the main part configuration.
FIG. 7 is a perspective view of the main part configuration.
FIG. 8 is a perspective view of the main part configuration.
FIG. 9 is a perspective view of the main part configuration.
FIG. 10 is a perspective view of the main part configuration.
FIG. 11 is a perspective view of the main part configuration.
FIG. 12 is a perspective view of the main part configuration.
FIG. 13 is a perspective view of the main part configuration.
FIG. 14 is a perspective view of the main part configuration.
FIG. 15: Front / side view of main part configuration
FIG. 16 is a front view of the main part configuration.
FIG. 17 is a perspective view of main components.
FIG. 18 is a perspective view of the main components.
FIG. 19 is a perspective view of the main part configuration.
FIG. 20 is a perspective view of the main part configuration.
FIG. 21 is a perspective view of the main part configuration.
FIG. 22 is a front view of the main part configuration.
[Explanation of symbols]
1 Beam members
2 Foundation materials
3 Pillar members
4 Pillar members
5 Beam members
6 Girder material
7 Girder materials
8 Foundation materials
9 Pillar members
10 Pillar members
11.13.15 Bracing members
12.14.16 Bracing members
30a / 30b Mounting screw
31 Horizontal fixture
31A Opposite surface
31B overhang
32 Vertical fixture
32A facing surface
32B overhang
32 Vertical fixture
33 Viscoelastic body
50 Viscoelastic support member
51 End face mounting bracket
51a ・ 51b ・ 51c Metal plate part
52.53 Viscoelastic body
54a ・ 54b ・ 54c Metal plate part
55 End face holding bracket
60 Vertical fixing bracket
60W cylindrical bolt and nut
60a Screw bolt
60b Bolt for foundation
60c Bolt for fixing through
60f1, 60f2 Tightening nut
60x bolt
60y head
60z nut
61 Plate-shaped part
61A Mounting hole
62 Shelves
62A Mounting hole
70 Connecting tools
70x fulcrum
70A accessory plate
74 oblong hole
80 Connecting tools
80a Mounting bolt
80c nut
80x fulcrum
81 Open part
82 square hole
83 round holes
84 Round hole
100 Seismic structure
100A wooden structure
100B wooden structure
300 Viscoelastic connecting member
300B Viscoelastic connecting member
301 Outer member
302/304 fixed end
303a / 303b Plate
305 Inner member
306 Viscoelastic body
307a / 307b Metal plate
308 Viscoelastic body
310 Viscoelastic fixing member
H1 height
L1 predetermined amount
P Horizontal parallel member
Q Vertical parallel member
Rx intersection
R0 fixture
R1 ・ R2 Diagonal point connecting member
R1x / R1y interruption point
S basic
U space
UA space
a1 ・ a2 Diagonal point
b1 and b2 diagonal points
d1 ・ d2 Through hole
e1 ・ e2 end
r1 ・ r2 surface
f Compression direction
f1 Opposite surface
g Tensile direction
△ L Movement limit

Claims (7)

1対の水平方向平行部材(P)と1対の垂直方向平行部材(Q)とで四角形の空間(U)を形成した枠部材(P,Q)と、前記1対の垂直方向平行部材のうちの一方の部材の上方点(a1またはb1)と他方の部材の下方点であって該上方点に対して下方に位置するもの(a2またはb2)との間を連結した1つの対角点連結部材(R1またはR2)において
前記対角点連結部材(R1またはR2)の端部(e1)と、該端部(e1)に対応する前記対角点(a1)から所定量(L1)だけ前記四角形の垂直方向にずらせた前記垂直方向部材(Q)の対向面(f1)との間に、垂直方向に沿った粘弾性をもつとともに上下の所定の移動限度(△L)で制止される粘弾性支持部材(50)を配置して前記対角点連結部材(R1またはR2)と前記垂直方向平行部材(Q)とを粘弾性的に連結する粘弾性連結手段(70)
を具備することを特徴とする耐震構造物。
A frame member (P, Q) in which a pair of horizontal parallel members (P) and a pair of vertical parallel members (Q) form a rectangular space (U), and the pair of vertical parallel members One diagonal point connecting the upper point (a1 or b1) of one member and the lower point (a2 or b2) of the other member located below the upper point (a2 or b2) In the connecting member (R1 or R2) ,
The diagonal point connecting member (R1 or R2) is shifted in the vertical direction of the square by a predetermined amount (L1) from the end (e1) and the diagonal (a1) corresponding to the end (e1). A viscoelastic support member (50) having viscoelasticity along the vertical direction and restrained by a predetermined upper and lower movement limit (ΔL) between the opposing surface (f1) of the vertical member (Q). Viscoelastic coupling means (70) disposed and viscoelastically coupled to the diagonal point coupling member (R1 or R2) and the vertical parallel member (Q)
An earthquake-resistant structure characterized by comprising:
1対の水平方向平行部材(P)と1対の垂直方向平行部材(Q)とで四角形の空間(U)を形成した枠部材(P,Q)と、前記1対の垂直方向平行部材のうちの一方の部材の上方点(a1またはb1)と他方の部材の下方点であって該上方点に対して下方に位置するもの(a2またはb2)との間を連結した1つの対角点連結部材(R1またはR2)において
各前記対角点連結部材(R1・R2)の端部(e1)のそれぞれと、該端部(e1)に対応する各前記対角点(a1・b1)から所定量(L1)だけ前記四角形の垂直方向にずらせた前記垂直方向部材(Q)の対向面(f1)のそれぞれとの間に、垂直方向に沿った粘弾性をもつとともに上下の所定の移動限度(△L)で制止される粘弾性支持部材(50)を、それぞれ、配置して各前記対角点連結部材(R1・R2)と各前記垂直方向平行部材(Q)とを連結する粘弾性連結手段(70)を具備することを特徴とする耐震構造物。
A frame member (P, Q) in which a pair of horizontal parallel members (P) and a pair of vertical parallel members (Q) form a rectangular space (U), and the pair of vertical parallel members One diagonal point connecting the upper point (a1 or b1) of one member and the lower point (a2 or b2) of the other member located below the upper point (a2 or b2) In the connecting member (R1 or R2) ,
Each of the end points (e1) of each of the diagonal point connecting members (R1 and R2) and the squares by a predetermined amount (L1) from each of the diagonal points (a1 and b1) corresponding to the end portions (e1). And viscoelasticity along the vertical direction between each of the opposing surfaces (f1) of the vertical member (Q) shifted in the vertical direction and restrained by a predetermined upper and lower movement limit (ΔL). Viscoelastic support members (50) are provided, respectively, and viscoelastic connection means (70) for connecting the diagonal point connection members (R1, R2) and the vertical direction parallel members (Q) is provided. Seismic structure characterized by that.
1つの前記対角点連結部材(R1)または2つの前記対角点連結部材(R1・R2)の一端と前記垂直方向平行部材(Q)とを前記粘弾性連結手段(70)を介して粘弾性的に連結するとともに、各前記対角点連結部材(R1・R2)の他端と前記垂直方向平行部材(Q)とを固定連結手段(80)を介して固定的に連結したことを特徴とする請求項1または請求項2記載の耐震構造物。  One diagonal point connecting member (R1) or one end of the two diagonal point connecting members (R1 and R2) and the vertical parallel member (Q) are bonded via the viscoelastic connecting means (70). In addition to being elastically connected, the other end of each of the diagonal point connecting members (R1, R2) and the vertical parallel member (Q) are fixedly connected via a fixed connecting means (80). The earthquake-resistant structure according to claim 1 or 2. 1つの前記対角点連結部材(R1)または2つの前記対角点連結部材(R1・R2)の両端と各前記垂直方向連結部材(Q)とを前記粘弾性連結手段(70)を介して連結したことを特徴とする請求項1または請求項2記載の耐震構造物。  The one diagonal point connecting member (R1) or the two diagonal point connecting members (R1, R2) and the vertical direction connecting members (Q) are connected via the viscoelastic connecting means (70). The earthquake-resistant structure according to claim 1 or 2, wherein the earthquake-proof structure is connected. 前記粘弾性支持部材(50)を配置する箇所の前記対角点(a1・a2・b1・b2)における前記垂直方向平行部材(Q)の前記対向面(f1)の箇所に固定した垂直方向固定金具(60)により、前記垂直方向平行部材(Q)を前記水平方向平行部材(P)の前記対向面(f1)と反対側に垂直方向に引張状態にして固定する垂直・水平平行部材固定手段と、
前記端部(e1)に平行した垂直方向の第1の金属板部分(51a)から張出形成されて前記対角点連結部材(R1またはR2)の前後の面(r1・r2)に固定する垂直方向の第2の金属板部分(51b・51c)をもつ端面配置金具(51)と、
前記第1の金属板部分(51a)の両面側に配置された2つの板状の粘弾性材でなる前記粘弾性体(52・53)と、
一方の前記粘弾性体(52)と前記端部(e1)との間に配置されて前記第1の金属板部分(51a)よりも前記所定の移動限度(△L)だけ長い垂直方向の第3の金属板部分(54a)から張出形成されて前記2つの粘弾性体(52・53)の上下の端面を囲うとともに前記垂直方向固定金具(60)に沿って垂直方向に上下に張出形成した第4の金属板部分(54b・54c)をもつ端面保持金具(55)と
により前記粘弾性支持部材(50)を構成する粘弾性部材構成手段と、
前記端面保持金具(55)を前記垂直方向取付金具(60)に合体させて前記垂直方向平行部材(Q)に固定する合体固定手段と
を付加したことを特徴とする請求項1から請求項4のいずれかに記載の耐震構造物。
Vertical fixing fixed to the location of the opposing surface (f1) of the vertical parallel member (Q) at the diagonal points (a1, a2, b1, b2) where the viscoelastic support member (50) is disposed. Vertical / horizontal parallel member fixing means for fixing the vertical parallel member (Q) in a tension state in the vertical direction on the opposite side of the opposed surface (f1) of the horizontal parallel member (P) by the metal fitting (60). When,
The first metal plate portion (51a) extending in the vertical direction parallel to the end portion (e1) is extended and fixed to the front and rear surfaces (r1, r2) of the diagonal point connecting member (R1 or R2). An end face mounting bracket (51) having a second metal plate portion (51b, 51c) in the vertical direction;
The viscoelastic body (52, 53) made of two plate-like viscoelastic materials arranged on both sides of the first metal plate portion (51a);
A vertical second one disposed between the one viscoelastic body (52) and the end (e1) and longer than the first metal plate portion (51a) by the predetermined movement limit (ΔL). 3 projecting from the metal plate portion (54a) and surrounding the upper and lower end surfaces of the two viscoelastic bodies (52, 53) and projecting vertically in the vertical direction along the vertical fixing bracket (60) Viscoelastic member constituting means constituting the viscoelastic support member (50) by an end face holding metal fitting (55) having the formed fourth metal plate portion (54b, 54c);
Claims 1 to 4, characterized in that the addition and coalescence fixing means for fixing said end face supporting bracket (55) in the vertical direction mounting bracket (60) in coalescing the vertical parallel members (Q) A seismic structure as described in any of the above.
前記水平方向平行部材(P)を土台用部材(2・8)又は梁用部材(1・5)若しくは桁用部材(6・7)とし、前記垂直方向平行部材(Q)を柱用部材(3・4、9・10)としたことを特徴とする請求項1から請求項5のいずれかに記載の耐震構造物。The horizontal parallel member (P) is a base member (2, 8), a beam member (1, 5), or a beam member (6, 7), and the vertical parallel member (Q) is a column member ( The earthquake resistant structure according to any one of claims 1 to 5 , wherein the earthquake resistant structure is 3 · 4, 9 · 10). 1対の水平方向平行部材(P)と1対の垂直方向平行部材(Q)とで四角形の空間(U)を形成した枠部材(P,Q)と、前記1対の垂直方向平行部材のうちの一方の部材の上方点(a1またはb1)と他方の部材の下方点であって該上方点に対して下方に位置するもの(a2またはb2)との間を連結した1つの対角点連結部材(R1またはR2)を有する耐震構造物(100)に用いる耐震連結用具(70)であって、
前記対角点連結部材(R1またはR1・R2)の端部(e1)に平行した垂直方向の第1の金属板部分(51a)と、該第1の金属板部分(51a)から張出形成されて前記対角点連結部材(R1またはR1・R2)の前後の面(r1・r2)に固定する垂直方向の第2の金属板部分(51b・51c)とをもつ端面配置金具(51)と、
前記第1の金属板部分(51a)の両面側に配置された2つの板状の粘弾性材でなる前記粘弾性体(52・53)と、
一方の前記粘弾性体(52)と前記端部(e1)との間に配置されて前記第1の金属板部分(51a)よりも所定の移動限度(△L)だけ長い垂直方向の第3の金属板部分(54a)から張出形成されて前記2つの粘弾性体(52・53)の上下の端面を囲うとともに、垂直方向に上下に張出形成した第4の金属板部分(54b・54c)をもつ端面保持金具(55)と
を具備することを特徴とする耐震連結用具。
A frame member (P, Q) in which a pair of horizontal parallel members (P) and a pair of vertical parallel members (Q) form a rectangular space (U), and the pair of vertical parallel members One diagonal point connecting the upper point (a1 or b1) of one member and the lower point (a2 or b2) of the other member located below the upper point (a2 or b2) An earthquake-resistant connection tool (70) used for an earthquake-resistant structure (100) having a connection member (R1 or R2) ,
A first metal plate portion (51a) in a vertical direction parallel to the end portion (e1) of the diagonal point connecting member (R1 or R1, R2), and an overhang formed from the first metal plate portion (51a) And end metal fittings (51) having second metal plate portions (51b, 51c) in the vertical direction to be fixed to the front and rear surfaces (r1, r2) of the diagonal point connecting member (R1 or R1, R2). When,
The viscoelastic body (52, 53) made of two plate-like viscoelastic materials arranged on both sides of the first metal plate portion (51a);
A third vertical member disposed between the one viscoelastic body (52) and the end (e1) and longer than the first metal plate portion (51a) by a predetermined movement limit (ΔL). A fourth metal plate portion (54b) that extends from the metal plate portion (54a) and surrounds the upper and lower end faces of the two viscoelastic bodies (52, 53) and that extends vertically in the vertical direction. 54c) and an end face holding metal fitting (55).
JP2000404156A 2000-12-12 2000-12-12 Seismic structure and seismic connection tool Expired - Fee Related JP3759409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404156A JP3759409B2 (en) 2000-12-12 2000-12-12 Seismic structure and seismic connection tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404156A JP3759409B2 (en) 2000-12-12 2000-12-12 Seismic structure and seismic connection tool

Publications (3)

Publication Number Publication Date
JP2002180693A JP2002180693A (en) 2002-06-26
JP2002180693A5 JP2002180693A5 (en) 2005-05-12
JP3759409B2 true JP3759409B2 (en) 2006-03-22

Family

ID=18868161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404156A Expired - Fee Related JP3759409B2 (en) 2000-12-12 2000-12-12 Seismic structure and seismic connection tool

Country Status (1)

Country Link
JP (1) JP3759409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024434A (en) * 2007-07-23 2009-02-05 Jutaku Kozo Kenkyusho:Kk Hardware for reinforcement

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082776A (en) * 2001-09-11 2003-03-19 Wood One:Kk Joint fitting
JP4878144B2 (en) * 2005-03-23 2012-02-15 ミサワホーム株式会社 Damping wall connection structure
JP4755853B2 (en) * 2005-06-01 2011-08-24 バンドー化学株式会社 Structure of joints of damping metal and wooden house
JP4861683B2 (en) * 2005-11-11 2012-01-25 株式会社日本衛生センター Damping brace structure
JP3974151B2 (en) * 2006-01-24 2007-09-12 有限会社マサ建築構造設計室 Vibration control structure with inter-column connection
JP5403872B2 (en) * 2007-01-09 2014-01-29 株式会社ブリヂストン Vibration control structure
JP2009024435A (en) * 2007-07-23 2009-02-05 Jutaku Kozo Kenkyusho:Kk Wall frame structure reinforced in terms of vibration control performance
JP5694657B2 (en) * 2009-11-19 2015-04-01 株式会社ポラス暮し科学研究所 Reinforcement structure of building
SG11202003117VA (en) * 2017-10-03 2020-05-28 Patco Llc Seismic yielding connection
JP7456180B2 (en) * 2020-02-13 2024-03-27 住友ゴム工業株式会社 Vibration control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024434A (en) * 2007-07-23 2009-02-05 Jutaku Kozo Kenkyusho:Kk Hardware for reinforcement

Also Published As

Publication number Publication date
JP2002180693A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP3759409B2 (en) Seismic structure and seismic connection tool
JP2007046410A (en) Vibration proof device
JP2006307527A (en) Base isolation device
JP4092340B2 (en) Building vibration control structure
JP4070117B2 (en) Vibration control device
JP4585470B2 (en) Reinforcing members and reinforcing structures for buildings and structures
JP3898829B2 (en) Seismic retrofitting method for existing building shell
JP2000017849A (en) Vibration control reinforcing structure of existing building
JP3039301B2 (en) Construction method of boundary beam incorporating seismic damper for RC core wall frame
JP2006046051A (en) Vibration control wall and reinforced structure of frame structure provided therewith
JPH11210079A (en) Earthquake-resistant reinforcing structure for leg portion of steel column of building and earthquake-resistant reinforcing method for leg portion of steel column of building
JP5318425B2 (en) Building vibration control structure
JP2002030828A (en) Brace damper
JPH10292845A (en) Elasto-plastic damper
JP2013060803A (en) Earthquake-resistant hardware and earthquake-resistant structure using the same
JP2006063733A (en) Bearing wall of high magnification
JP7033019B2 (en) Building reinforcement method
JP2000248685A (en) Beam member for steel framing structure
JP2001200591A (en) Earthquake-proof reinforcing fitting
JP3990497B2 (en) Building structure
JPH08302817A (en) Framework fixing structure
JP3515537B2 (en) Reinforcement bracket
JP2012122276A (en) Damping structure and building
JPH04237743A (en) Unit house
JP2992496B2 (en) Seismic device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees