JP3759371B2 - Charge pump circuit - Google Patents

Charge pump circuit Download PDF

Info

Publication number
JP3759371B2
JP3759371B2 JP2000150308A JP2000150308A JP3759371B2 JP 3759371 B2 JP3759371 B2 JP 3759371B2 JP 2000150308 A JP2000150308 A JP 2000150308A JP 2000150308 A JP2000150308 A JP 2000150308A JP 3759371 B2 JP3759371 B2 JP 3759371B2
Authority
JP
Japan
Prior art keywords
terminal
output
power supply
capacitive element
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000150308A
Other languages
Japanese (ja)
Other versions
JP2001331227A (en
Inventor
忠男 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000150308A priority Critical patent/JP3759371B2/en
Publication of JP2001331227A publication Critical patent/JP2001331227A/en
Application granted granted Critical
Publication of JP3759371B2 publication Critical patent/JP3759371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源電圧を昇圧もしくは降圧するためのチャージポンプ回路に関する。
【0002】
【従来の技術】
図4は、従来のチャージポンプ回路の構成図である。第1の容量素子C1の片方の端子は出力端子であるVout 3に接続さており、第2の容量素子C2は、SW1とSW3が接続されると同時にSW2とSW4が遮断されると、第1の容量素子C1と直列に接続されて電源端子であるVcc2により充電され、SW1とSW3が遮断されると同時にSW2とSW4が接続されると、第1の容量素子C1と並列に接続されて出力端子であるVout 3から電源電圧の1/2に相当する電圧を出力する。なお、以上のSW1からSW4は、消費電力を低減する意味からMOSトランジスタを使用することが多い。
【0003】
図4に示した従来のチャージポンプ回路の動作を図5を用いて説明する。図5(a)では第1の容量素子C1と第2の容量素子C2が直列に接続されて、電源端子であるVcc2により充電されている。図5(b)では、第1の容量素子C1と第2の容量素子C2が並列に接続されている。これらの図5(a)と図5(b)の状態を繰り返すことにより、電源電圧の1/2に相当する電圧を出力端子であるVout 3から出力する。
【0004】
なお、図4及び図5において、電源端子Vout 3と出力端子Vcc2とを入れかえた上で、容量素子であるC1及びC2の直列と並列の接続を繰り返すと、電源電圧の2倍の出力電圧を出力することもできる。
【0005】
【発明が解決しようとする課題】
従来のチャージポンプ回路は、2つの容量素子を直列接続した状態と、並列接続した状態との、2つの異なる状態を繰り返すことにより電源電圧を降圧または昇圧して出力する。
【0006】
図4のC2がC1と並列の場合にはスイッチSW2とSW4が導通しており、一方、C2がC1と直列の場合にはスイッチはSW1とSW3導通しているである。ここで、電源電圧を降圧して出力する場合、以下のような課題がある。スイッチにMOSトランジスタを使用した場合、SW2とSW3が同じ極性のトランジスタであればオン抵抗を等しくすることは容易である。しかし、SW1は電源端子Vcc2に直接接続されているからPchMOSトランジスタとなり、SW4はグラウンドGND1に直接接続されているからNchMOSトランジスタとならざるを得ず、SW1とSW4は極性の異なるトランジスタとなる。SW1とSW4のオン抵抗を等しくすることは簡単ではなく、どちらか一方のトランジスタの閾値電圧または移動度が変動するだけでSW1とSW4のオン抵抗は大きく異なってしまう。従って、SW2とSW4のオン抵抗の合計と、SW1とSW3のオン抵抗の合計が異なることが多く、Vout 3からの出力電圧が並列時と直列時とで差が生じることとなり、出力電圧のリップル電圧が大きくなる場合が多い。以上のように2個の容量を並列と直列に切り替えて降圧するチャージポンプ回路においては、各スイッチの両端の電圧やオンオフを制御する電圧とスイッチ両端との電圧の差や、更にはトランジスタの極性が各スイッチごとに異なっており、異なるスイッチ2個ずつの和を等しくするのは困難である。
【0007】
次に、電源電圧を昇圧して出力する場合、以下のような課題がある。昇圧する場合には、C1とC2が直列の状態でのみ電圧が出力され、C1とC2が並列の状態では出力されない。したがって、C1とC2の他にもう1個の容量素子が出力端子側に必須となる上に、尚且つ、リップル電圧は大きくなり易い。
このように、従来のチャージポンプ回路において電源電圧を降圧して出力する場合に、容量素子が直列と並列とに切り替わるために、出力電圧の容量素子とリップル電圧が大きくなり易いという課題があった。
【0008】
また、従来のチャージポンプ回路において電源電圧を昇圧して出力する場合には、容量素子が直列と並列とに切り替わるために、2個の容量が直列の状態でのみ電圧が出力され、並列の状態では出力されず、電圧出力側にもう1個の容量素子が出力端子側に必須となる上に、リップル電圧が大きくなり易いという課題もあった。
【0009】
【課題を解決するための手段】
上述した課題を解決するために、本発明のチャージポンプ回路においては、電源端子と、出力端子と、グラウンド端子と、第1の容量素子と、第2の容量素子とを備え、電源端子が第1の容量素子の第1の端子に接続され、第1の容量素子の第2の端子が出力端子と第2の容量素子の第1の端子とに接続され、第2の容量素子の第2の端子がグラウンドに接続された第1の状態と、電源端子が第2の容量素子の第1の端子に接続され、第2の容量素子の第2の端子が出力端子と第1の容量素子の第1の端子とに接続され、第1の容量素子の第2の端子がグラウンドに接続された第2の状態と、を繰り返すことで、電源端子の電圧を降圧して出力端子から出力することとした。
【0010】
また、本発明のチャージポンプ回路においては、電源端子と、出力端子と、グラウンド端子と、第1の容量素子と、第2の容量素子とを備え、出力端子が第1の容量素子の第1の端子に接続され、第1の容量素子の第2の端子が電源端子と第2の容量素子の第1の端子とに接続され、第2の容量素子の第2の端子がグラウンドに接続された第1の状態と、出力端子が第2の容量素子の第1の端子に接続され、第2の容量素子の第2の端子が電源端子と第1の容量素子の第1の端子とに接続され、第1の容量素子の第2の端子がグラウンドに接続された第2の状態と、を繰り返すことで、電源端子の電圧を昇圧して出力端子から出力することとした。
【0011】
【発明の実施の形態】
以下に、本発明の実施例を図面に基づいて説明する。
図1に本発明のチャージポンプ回路の構成を示す。
【0012】
第1の容量素子C1の第1の端子には、出力端子(Vout )3との接続と遮断を行う第1のスイッチSW11、電源端子(Vcc)2との接続と遮断を行う第2のスイッチSW12、第2の容量素子C2の第2の端子との接続と遮断を行う第3のスイッチSW13、がそれぞれ接続されている。また、第1の容量素子C1の第2の端子にはグラウンド端子(GND)1との接続と遮断を行う第4のスイッチSW14が接続されている。一方、第2の容量素子C2の第1の端子には、出力端子(Vout )3との接続と遮断を行う第5のスイッチSW21、電源端子(Vcc)2との接続と遮断を行う第6のスイッチSW22、第1の容量素子C1の第2の端子との接続と遮断を行う第7のスイッチSW23、がそれぞれ接続されている。第2の容量素子C2の第2の端子には、グラウンド端子(GND)1との接続と遮断を行う第8のスイッチSW24が接続されている。以上のようなチャージポンプ回路の構成となっていると、例えばグラウンド端子(GND)1と接続及び遮断をおこなう2個のスイッチSW14とSW24を同じ極性で等しいサイズのトランジスタとすることが容易である。同様に、電源端子(Vcc)2や出力端子(Vout )3についても、端子ごとに接続及び遮断を行うトランジスタは等しい極性で等しいサイズのトランジスタとすることが容易である。各端子ごとに各トランジスタの極性とサイズを等しくできることで以降に説明する第1及び第2の実施例に示す動作を非常に容易に行うことが可能となる。
【0013】
図2は、本発明の第1の実施例を示す動作説明図である。図1で説明した回路構成のチャージポンプの各スイッチを適切に導通および遮断して図2に示すように動作させることで電源電圧の1/2の電圧を出力端子(Vout )3から出力することができる。図2(a)に示す第1の状態は、電源端子(Vcc)2が第1の容量素子C1の第1の端子に接続され、第1の容量素子C1の第2の端子が出力端子(Vout )3と第2の容量素子C2の第1の端子とに接続され、第2の容量素子C2の第2の端子がグラウンド(GND)1に接続された状態であり、図2(b)に示す第2の状態は、電源端子Vcc2が第2の容量素子C2の第1の端子に接続され、第2の容量素子C2の第2の端子が出力端子(Vout )3と第1の容量素子C1の第1の端子に接続され、第1の容量素子C1の第2の端子がグラウンド(GND)1に接続された状態である。この第1の状態と第2の状態を繰り返すことにより、電源端子(Vcc)2の電圧を1/2倍に降圧して出力端子(Vout )3から出力することができる。
【0014】
上述した第1の実施例は、図1で示したチャージポンプ回路の構成で容易に実現できる。その場合には、図2(a)の状態と図2(b)の状態を繰り返すことにより降圧した電圧を出力するが、容量素子は並列に接続することはなく直列のままである。従って、図1の説明で述べたように、グラウンド端子1、電源端子2、出力端子3の各々の端子と導通している各々のスイッチは切り替わるが、その極性及びサイズを等しく設定することが容易であるから、図2(a)の状態と図2(b)の状態とでスイッチのオン抵抗に差がでることが少ない。当然、出力端子(Vout )3からの出力電圧が図2(a)と図2(b)の接続により差がでることも少なく、リップル電圧は図4及び図5のような従来のチャージポンプ回路より小さくなる。
【0015】
図3は、本発明の第2の実施例を示す動作説明図である。図3は、前述した図2とは電源端子(Vcc)2と出力端子(Vout )3の位置が逆になっており、また、出力電圧は電源電圧の2倍となる。しかしながら、そのチャージポンプ回路の構成図は図1からの変更は不要である。回路構成は図1のままで、電源端子2と出力端子3にスイッチが導通するタイミングまたは位置を、適切に変更すれば図3のように動作させることは容易である。以下、図3に従い動作を説明する。出力端子(Vout )3が第1の容量素子C1の第1の端子に接続され、第1の容量素子C1の第2の端子が電源端子(Vcc)2と第2の容量素子C2の第1の端子とに接続され、第2の容量素子C2の第2の端子がグラウンド(GND)1に接続された図3(a)に示す第1の状態と、出力端子(Vout )3が第2の容量素子C2の第1の端子に接続され、第2の容量素子C2の第2の端子が電源端子(Vcc)2と第1の容量素子C1の第1の端子とに接続され、第1の容量素子C1の第2の端子がグラウンド(GND)1に接続された図3(b)に示す第2の状態と、を繰り返すことで、電源端子(Vcc)2の電圧を2倍に昇圧して出力端子(Vout )3から出力することができる。
【0016】
上述した第2の実施例は図1に示すチャージポンプ回路の構成で容易に実現できる。その場合には、図3(a)の状態と図3(b)の状態を繰り返すことで、昇圧した電圧を出力するが、容量素子は並列に接続することはなく直列のままであるから、出力端子3には常に昇圧された電圧が出力されている。従って、第2の実施例によれば、出力端子側に新たな容量を設けなくても出力電圧のリップル電圧を抑制することが可能となる。従来のチャージポンプにより昇圧する場合には、2個の容量が直列の状態では出力端子に昇圧電圧が出力されるが、並列の状態では出力端子に昇圧電圧は出力されないため、出力電圧に非常に大きなリップル電圧があり、出力端子側に更に1個の容量が必要であった。
【0017】
以上述べたように、第1及び第2の実施例では2個の容量を直列接続して1/2倍降圧または2倍昇圧をおこなったが、3個以上のN個の容量を直接接続して(M/N)倍降圧(MはNより小さい自然数。Nは3以上の整数)、または(N/M)倍昇圧(MはNより小さい自然数。Nは3以上の整数)をおこなうことも可能である。
【0018】
【発明の効果】
以上説明したように、本発明によれば、出力電圧のリップルが抑制できる。
【図面の簡単な説明】
【図1】本発明の実施例となるチャージポンプ回路の構成を示す。
【図2】本発明の第1の実施例を示す動作説明図
【図3】本発明の第2の実施例を示す動作説明図
【図4】従来のチャージポンプ回路の構成図
【図5】従来のチャージポンプ回路の動作説明図
【符号の説明】
1 GND(グラウンド端子)
2 Vcc(電源端子)
3 Vout (出力端子)
C1 第1の容量素子
C2 第2の容量素子
SW1〜24 スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charge pump circuit for stepping up or down a power supply voltage.
[0002]
[Prior art]
FIG. 4 is a configuration diagram of a conventional charge pump circuit. One terminal of the first capacitor element C1 is connected to the output terminal Vout 3, and the second capacitor element C2 is configured such that when SW1 and SW3 are connected and at the same time, SW2 and SW4 are cut off, The capacitor C1 is connected in series and charged by the power source Vcc2, and when SW1 and SW3 are cut off and SW2 and SW4 are connected at the same time, the first capacitor C1 is connected in parallel and output. A voltage corresponding to ½ of the power supply voltage is output from the terminal Vout 3. The above SW1 to SW4 often use MOS transistors in order to reduce power consumption.
[0003]
The operation of the conventional charge pump circuit shown in FIG. 4 will be described with reference to FIG. In FIG. 5A, the first capacitive element C1 and the second capacitive element C2 are connected in series and are charged by Vcc2, which is a power supply terminal. In FIG. 5B, the first capacitor element C1 and the second capacitor element C2 are connected in parallel. By repeating these states of FIG. 5A and FIG. 5B, a voltage corresponding to ½ of the power supply voltage is output from Vout 3, which is an output terminal.
[0004]
4 and 5, when the power supply terminal Vout 3 and the output terminal Vcc2 are interchanged and the series and parallel connection of the capacitive elements C1 and C2 are repeated, an output voltage twice the power supply voltage is obtained. It can also be output.
[0005]
[Problems to be solved by the invention]
A conventional charge pump circuit steps down or boosts a power supply voltage by repeating two different states, a state in which two capacitive elements are connected in series and a state in which they are connected in parallel, and outputs the voltage.
[0006]
When C2 in FIG. 4 is in parallel with C1, the switches SW2 and SW4 are conductive, while when C2 is in series with C1, the switch is conductive with SW1 and SW3. Here, when the power supply voltage is stepped down and output, there are the following problems. When MOS transistors are used as switches, it is easy to make the on-resistances equal if SW2 and SW3 are transistors having the same polarity. However, since SW1 is directly connected to the power supply terminal Vcc2, it becomes a PchMOS transistor, and since SW4 is directly connected to the ground GND1, it must be an NchMOS transistor, and SW1 and SW4 are transistors having different polarities. It is not easy to make the on-resistances of SW1 and SW4 equal, and the on-resistances of SW1 and SW4 differ greatly only by changing the threshold voltage or mobility of one of the transistors. Therefore, the sum of the on-resistances of SW2 and SW4 and the sum of the on-resistances of SW1 and SW3 are often different, and the output voltage from Vout 3 differs between parallel and in series, resulting in ripple in the output voltage. The voltage often increases. As described above, in the charge pump circuit that switches the two capacitors in parallel and in series to step down, the voltage at both ends of each switch, the difference between the voltage for controlling on / off and the voltage at both ends of the switch, and the polarity of the transistor However, it is difficult to equalize the sum of two different switches.
[0007]
Next, when boosting and outputting the power supply voltage, there are the following problems. When boosting, voltage is output only when C1 and C2 are in series, and not when C1 and C2 are in parallel. Therefore, in addition to C1 and C2, another capacitive element is essential on the output terminal side, and the ripple voltage tends to increase.
As described above, when the power supply voltage is stepped down and output in the conventional charge pump circuit, since the capacitive element is switched between the series and the parallel, there is a problem that the output voltage capacitive element and the ripple voltage are likely to increase. .
[0008]
Further, when the power supply voltage is boosted and output in the conventional charge pump circuit, the capacitance element is switched between series and parallel, so that the voltage is output only when the two capacitors are in series, and the parallel state However, there is another problem that another capacitive element is indispensable on the output terminal side and the ripple voltage tends to increase.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, a charge pump circuit according to the present invention includes a power supply terminal, an output terminal, a ground terminal, a first capacitive element, and a second capacitive element, and the power supply terminal is a first one. Connected to the first terminal of the first capacitor element, the second terminal of the first capacitor element is connected to the output terminal and the first terminal of the second capacitor element, and the second terminal of the second capacitor element. The first terminal is connected to the ground, the power supply terminal is connected to the first terminal of the second capacitor element, the second terminal of the second capacitor element is the output terminal and the first capacitor element And the second state in which the second terminal of the first capacitor is connected to the ground, the voltage of the power supply terminal is stepped down and output from the output terminal. It was decided.
[0010]
The charge pump circuit of the present invention further includes a power supply terminal, an output terminal, a ground terminal, a first capacitor element, and a second capacitor element, and the output terminal is a first capacitor element. The second terminal of the first capacitor is connected to the power supply terminal and the first terminal of the second capacitor, and the second terminal of the second capacitor is connected to the ground. The first state, the output terminal is connected to the first terminal of the second capacitor element, and the second terminal of the second capacitor element is connected to the power supply terminal and the first terminal of the first capacitor element. By repeating the second state in which the second terminal of the first capacitor element is connected to the ground, the voltage of the power supply terminal is boosted and output from the output terminal.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the configuration of the charge pump circuit of the present invention.
[0012]
The first terminal of the first capacitive element C1 includes a first switch SW11 for connecting and disconnecting with the output terminal (Vout) 3, and a second switch for connecting and disconnecting with the power supply terminal (Vcc) 2. SW12 and a third switch SW13 for connecting and disconnecting with the second terminal of the second capacitor C2 are connected. In addition, a fourth switch SW14 that connects and disconnects with the ground terminal (GND) 1 is connected to the second terminal of the first capacitive element C1. On the other hand, the first terminal of the second capacitive element C2 has a fifth switch SW21 for connecting and disconnecting with the output terminal (Vout) 3 and a sixth switch for connecting and disconnecting with the power supply terminal (Vcc) 2. The switch SW22 and the seventh switch SW23 for connecting and disconnecting from the second terminal of the first capacitive element C1 are respectively connected. The second switch of the second capacitive element C2 is connected to an eighth switch SW24 that connects and disconnects from the ground terminal (GND) 1. With the configuration of the charge pump circuit as described above, for example, it is easy to make the two switches SW14 and SW24 that connect and disconnect with the ground terminal (GND) 1 have the same polarity and the same size. . Similarly, with regard to the power supply terminal (Vcc) 2 and the output terminal (Vout) 3, transistors that are connected and disconnected for each terminal can easily be transistors of the same polarity and the same size. Since the polarity and size of each transistor can be made equal for each terminal, the operations shown in the first and second embodiments described below can be performed very easily.
[0013]
FIG. 2 is an operation explanatory view showing the first embodiment of the present invention. A voltage half the power supply voltage is output from the output terminal (Vout) 3 by appropriately turning on and off each switch of the charge pump having the circuit configuration described in FIG. 1 and operating as shown in FIG. Can do. In the first state shown in FIG. 2A, the power supply terminal (Vcc) 2 is connected to the first terminal of the first capacitive element C1, and the second terminal of the first capacitive element C1 is the output terminal ( Vout) 3 and the first terminal of the second capacitive element C2, and the second terminal of the second capacitive element C2 is connected to the ground (GND) 1, FIG. 2 (b) In the second state, the power supply terminal Vcc2 is connected to the first terminal of the second capacitor element C2, and the second terminal of the second capacitor element C2 is connected to the output terminal (Vout) 3 and the first capacitor. This is connected to the first terminal of the element C1, and the second terminal of the first capacitor C1 is connected to the ground (GND) 1. By repeating the first state and the second state, the voltage of the power supply terminal (Vcc) 2 can be stepped down by half and output from the output terminal (Vout) 3.
[0014]
The first embodiment described above can be easily realized by the configuration of the charge pump circuit shown in FIG. In that case, the stepped-down voltage is output by repeating the state of FIG. 2A and the state of FIG. 2B, but the capacitive elements are not connected in parallel but remain in series. Therefore, as described in the description of FIG. 1, the switches that are electrically connected to the ground terminal 1, the power supply terminal 2, and the output terminal 3 are switched, but it is easy to set the polarity and size to be equal. Therefore, there is little difference in the on-resistance of the switch between the state of FIG. 2 (a) and the state of FIG. 2 (b). Naturally, the output voltage from the output terminal (Vout) 3 is hardly different due to the connection of FIG. 2 (a) and FIG. 2 (b), and the ripple voltage is the conventional charge pump circuit as shown in FIG. 4 and FIG. Smaller.
[0015]
FIG. 3 is an operation explanatory view showing the second embodiment of the present invention. 3, the positions of the power supply terminal (Vcc) 2 and the output terminal (Vout) 3 are opposite to those of FIG. 2 described above, and the output voltage is twice the power supply voltage. However, the configuration of the charge pump circuit need not be changed from FIG. The circuit configuration remains the same as in FIG. 1, and it is easy to operate as shown in FIG. 3 by appropriately changing the timing or position at which the switch conducts to the power supply terminal 2 and the output terminal 3. The operation will be described below with reference to FIG. The output terminal (Vout) 3 is connected to the first terminal of the first capacitive element C1, and the second terminal of the first capacitive element C1 is the first terminal of the power supply terminal (Vcc) 2 and the second capacitive element C2. The first state shown in FIG. 3A in which the second terminal of the second capacitor C2 is connected to the ground (GND) 1 and the output terminal (Vout) 3 is the second. The second terminal of the second capacitor element C2 is connected to the power supply terminal (Vcc) 2 and the first terminal of the first capacitor element C1, and the first terminal of the first capacitor element C2 is connected to the first terminal. By repeating the second state shown in FIG. 3B in which the second terminal of the capacitive element C1 is connected to the ground (GND) 1, the voltage of the power supply terminal (Vcc) 2 is doubled. And output from the output terminal (Vout) 3.
[0016]
The second embodiment described above can be easily realized by the configuration of the charge pump circuit shown in FIG. In that case, the boosted voltage is output by repeating the state of FIG. 3A and the state of FIG. 3B, but the capacitive elements remain in series without being connected in parallel. The output terminal 3 always outputs a boosted voltage. Therefore, according to the second embodiment, it is possible to suppress the ripple voltage of the output voltage without providing a new capacitor on the output terminal side. When boosting with a conventional charge pump, the boosted voltage is output to the output terminal when the two capacitors are in series, but the boosted voltage is not output to the output terminal in the parallel state. There was a large ripple voltage, and one more capacitor was required on the output terminal side.
[0017]
As described above, in the first and second embodiments, two capacitors are connected in series to perform a 1/2 step-down or a double step-up, but three or more N capacitors are directly connected. (M / N) double step-down (M is a natural number smaller than N. N is an integer greater than or equal to 3) or (N / M) double step-up (M is a natural number smaller than N. N is an integer greater than or equal to 3). Is also possible.
[0018]
【The invention's effect】
As described above, according to the present invention, output voltage ripple can be suppressed.
[Brief description of the drawings]
FIG. 1 shows a configuration of a charge pump circuit according to an embodiment of the present invention.
FIG. 2 is an operation explanatory diagram showing a first embodiment of the present invention. FIG. 3 is an operation explanatory diagram showing a second embodiment of the present invention. FIG. 4 is a configuration diagram of a conventional charge pump circuit. Explanation of operation of conventional charge pump circuit 【Explanation of symbols】
1 GND (ground terminal)
2 Vcc (Power supply terminal)
3 Vout (Output terminal)
C1 1st capacitive element C2 2nd capacitive element SW1-24 SW

Claims (3)

第1の容量素子の第1端子には、出力端子との接続と遮断を行う第1のスイッチと、電源端子との接続と遮断を行う第2のスイッチと、第2の容量素子の第2端子との接続と遮断を行う第3のスイッチと、が接続され、
前記第1の容量素子の第2端子には、グラウンド端子との接続と遮断を行う第4のスイッチが接続され、
前記第2の容量素子の第1端子には、前記出力端子との接続と遮断を行う第5のスイッチと、前記電源端子との接続と遮断を行う第6のスイッチと、前記第1の容量素子の第2端子との接続と遮断を行う第7のスイッチと、が接続され、
前記第2の容量素子の第2端子には、グラウンド端子との接続と遮断を行う第8のスイッチが接続されたことを特徴とするチャージポンプ回路。
The first terminal of the first capacitive element includes a first switch for connecting and disconnecting with the output terminal, a second switch for connecting and disconnecting with the power supply terminal, and a second switch of the second capacitive element. A third switch that connects and disconnects the terminal, and
A fourth switch that connects and disconnects with a ground terminal is connected to the second terminal of the first capacitive element,
The first terminal of the second capacitor element includes a fifth switch for connecting and disconnecting with the output terminal, a sixth switch for connecting and disconnecting with the power supply terminal, and the first capacitor. A seventh switch that connects and disconnects the second terminal of the element, and
8. A charge pump circuit, wherein an eighth switch for connecting and disconnecting with a ground terminal is connected to the second terminal of the second capacitor element.
電源端子と、出力端子と、グラウンド端子と、第1の容量素子と、第2の容量素子とを備え、
前記電源端子が前記第1の容量素子の第1端子に接続され、前記第1の容量素子の第2端子が前記出力端子と前記第2の容量素子の第1端子とに接続され、前記第2の容量素子の第2端子がグラウンドに接続された第1の状態と、
前記電源端子が前記第2の容量素子の第1端子に接続され、前記第2の容量素子の第2端子が前記出力端子と前記第1の容量素子の第1端子とに接続され、前記第1の容量素子の第2端子がグラウンドに接続された第2の状態と、
を繰り返すことで、前記電源端子の電圧を降圧して前記出力端子から出力することを特徴とするチャージポンプ回路
A power terminal, an output terminal, a ground terminal, a first capacitor element, and a second capacitor element;
The power supply terminal is connected to a first terminal of the first capacitive element, a second terminal of the first capacitive element is connected to the output terminal and a first terminal of the second capacitive element, and A first state in which the second terminals of the two capacitive elements are connected to the ground;
The power supply terminal is connected to a first terminal of the second capacitive element, a second terminal of the second capacitive element is connected to the output terminal and a first terminal of the first capacitive element, and A second state in which the second terminal of one capacitive element is connected to the ground;
To reduce the voltage of the power supply terminal and output the voltage from the output terminal.
電源端子と、出力端子と、グラウンド端子と、第1の容量素子と、第2の容量素子とを備え、
前記出力端子が前記第1の容量素子の第1端子に接続され、前記第1の容量素子の第2端子が電源端子と前記第2の容量素子の第1端子とに接続され、前記第2の容量素子の第2端子がグラウンドに接続された第1の状態と、
前記出力端子が前記第2の容量素子の第1端子に接続され、前記第2の容量素子の第2端子が電源端子と前記第1の容量素子の第1端子とに接続され、前記第1の容量素子の第2端子がグラウンドに接続された第2の状態と、
を繰り返すことで、電源端子の電圧を昇圧して出力端子から出力することを特徴とするチャージポンプ回路。
A power terminal, an output terminal, a ground terminal, a first capacitor element, and a second capacitor element;
The output terminal is connected to a first terminal of the first capacitive element, a second terminal of the first capacitive element is connected to a power supply terminal and a first terminal of the second capacitive element, and the second A first state in which the second terminal of the capacitive element is connected to the ground;
The output terminal is connected to a first terminal of the second capacitive element, a second terminal of the second capacitive element is connected to a power supply terminal and a first terminal of the first capacitive element, and the first terminal A second state in which the second terminal of the capacitor element is connected to the ground;
The charge pump circuit is characterized in that the voltage at the power supply terminal is boosted and output from the output terminal by repeating the above.
JP2000150308A 2000-05-22 2000-05-22 Charge pump circuit Expired - Fee Related JP3759371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000150308A JP3759371B2 (en) 2000-05-22 2000-05-22 Charge pump circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000150308A JP3759371B2 (en) 2000-05-22 2000-05-22 Charge pump circuit

Publications (2)

Publication Number Publication Date
JP2001331227A JP2001331227A (en) 2001-11-30
JP3759371B2 true JP3759371B2 (en) 2006-03-22

Family

ID=18656039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000150308A Expired - Fee Related JP3759371B2 (en) 2000-05-22 2000-05-22 Charge pump circuit

Country Status (1)

Country Link
JP (1) JP3759371B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444984B (en) * 2006-12-22 2011-07-13 Wolfson Microelectronics Plc Charge pump circuit and methods of operation thereof
CN107223303B (en) * 2017-05-05 2018-12-14 深圳市汇顶科技股份有限公司 Voltage conversion device and fingerprint detection system

Also Published As

Publication number Publication date
JP2001331227A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
US11368086B2 (en) Selectable conversion ratio DC-DC converter
JP4825584B2 (en) Charge pump circuit
TW494631B (en) Charge pump circuit
JP3741100B2 (en) Power supply circuit and semiconductor integrated circuit
WO2005022737A1 (en) Power delivery system having cascaded buck stages
US8493132B2 (en) Supply voltage generating circuit
JP4193462B2 (en) Booster circuit
US20090160532A1 (en) Charge pump circuit
US6838863B2 (en) Voltage converter utilizing independently switched inductors
US20070236972A1 (en) Semiconductor integrated circuit device, charge pump circuit, and electric appliance
JP3759371B2 (en) Charge pump circuit
EP3437181B1 (en) Negative charge pump and audio asic with such negative charge pump
US6144565A (en) Variation on a single-ended primary inductor converter
EP1691472B1 (en) Self regulating charge pump
CN115336157A (en) Circuit for a switched-capacitor voltage converter
CN112583254A (en) Switched capacitor converter
US6469571B2 (en) Charge pump with charge equalization for improved efficiency
US7266002B2 (en) Voltage-voltage converter for integrated circuits
JP5232892B2 (en) Charge pump circuit
JP2001286125A (en) Charge-pump circuit
JPH0923639A (en) Voltage converter
JP2005278295A (en) Step-up circuit
JP4427898B2 (en) Booster and control method thereof
KR102520454B1 (en) Apparatus for boosting pulse based on differential bipolar structure
JP6498870B2 (en) Charge pump circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees