JP3759355B2 - Steel wire rod and manufacturing method thereof - Google Patents

Steel wire rod and manufacturing method thereof Download PDF

Info

Publication number
JP3759355B2
JP3759355B2 JP32844699A JP32844699A JP3759355B2 JP 3759355 B2 JP3759355 B2 JP 3759355B2 JP 32844699 A JP32844699 A JP 32844699A JP 32844699 A JP32844699 A JP 32844699A JP 3759355 B2 JP3759355 B2 JP 3759355B2
Authority
JP
Japan
Prior art keywords
wire
inclusions
less
rolling direction
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32844699A
Other languages
Japanese (ja)
Other versions
JP2001152289A (en
Inventor
聡 杉丸
淳彦 吉江
世紀 西田
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32844699A priority Critical patent/JP3759355B2/en
Publication of JP2001152289A publication Critical patent/JP2001152289A/en
Application granted granted Critical
Publication of JP3759355B2 publication Critical patent/JP3759355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、伸線加工に供する鋼線用線材に関する。
【0002】
【従来の技術】
従来の鋼線用線材として製造される鋼は、転炉等で精錬を完了した後、精錬完了時に溶鋼中に含まれる酸素を除去するために、鋳造に先立って脱酸剤が投入され、酸化物として酸素が除去される。生成した酸化物は鋳造時に、タンディッシュ内あるいはモールド内において衝突による合体や成長により大型化し、浮上除去される。鋼線用線材として製造される鋼中には、非金属介在物は少ない方がよいとされ、その代表的なものである酸化物を極力少なくするために、精錬完了後鋳造開始までに除去する様々な工夫がなされてきた。そのため、鋳片を圧延加工して得られる線材には有害となる介在物は存在せず、伸線加工しても介在物による断線はほとんど見られなかった。このような材料を伸線加工した後、パテンティングにより組織を調整する場合、熱処理時の結晶粒を一定の大きさにコントロールし、均一な熱処理組織とすることが重要となる。これまでは、パテンティングにより均一な組織を得るためには、オーステナイト化の温度と時間を調整することにより行ってきた。
【0003】
【発明が解決しようとする課題】
上に記述したように、伸線後の線材は熱処理(パテンティング処理)により一定の強度を得ることができる。この熱処理では、組織をオーステナイト一相にした後、適当な鉛浴または流動層中でパーライトに変態させて強度を調整する。パーライト変態は、オーステナイト過冷されて一定温度において起こることが望ましい。一般に粒径が大きい方が過冷されやすく、その後の変態も一定温度で実現する。しかし、粒径が大きすぎると変態開始から終了までの時間がかかるため、適正な粒径にコントロールすることが必要であった。そのため、従来は温度と時間を調整してオーステナイト粒径を制御してきた。しかし、熱処理条件がわずかに変動してもオーステナイト粒径がばらついてしまい、材質にばらつきが生ずることが問題となった。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであり、その趣旨とするところは以下の通りである。
【0005】
その第一は、質量%で、C:0.35〜1.0%、Si:0.10〜0.35%、Mn:0.40〜1.0%、Ti:0.005〜0.03%、Ca:0.0005〜0.0030%、O:0.004〜0.010%を含み、Al:0.005%以下であり、残部Fe及び不可避不純物からなる熱処理安定性に優れた鋼線用線材である。
その第二は上記第一に加え質量%で、Cr:0.005〜2.0%、Mo:0.05〜0.35%、Cu:0.05〜1.0%、Ni:0.05〜1.0%、V:0.005〜0.06%、B:0.0005〜0.005%のいずれか1つまたは2つ以上を含有する鋼線用線材である。
その第三は、線材の圧延方向に垂直な断面を走査型電子顕微鏡(SEM)により観察される直径0.1μm以上0.3μm以下の介在物が、1500個/mm2以上3000個/mm2以下である上記第一又は第二の鋼線用線材である。
その第四は、線材の圧延方向に平行な断面において光学顕微鏡により観察される介在物の圧延方向に垂直な厚みが100μm以下であり、同断面内に観察される厚みが20μm超100μm以下の介在物個数に対する、同介在物の圧延方向に平行な長さが前記厚みの5倍以上である介在物個数の比率が90%以上である上記第一乃至第三のいずれかに記載の鋼線用線材である。
【0006】
その第五はビレット連続鋳造により得られた鋳片を減面率90%以上の熱間圧延により上記第一乃至第4のいずれかの鋼線用線材を製造する鋼線用線材製造方法である。
【0007】
その第六は、質量%で、C:0.35〜1.0%、Si:0.10〜0.35%、Mn:0.40〜1.0%、Ti:0.005〜0.03%、Ca:0.0005〜0.0030%、O:0.004〜0.010%を含み、Al:0.005%以下であり、残部Fe及び不可避不純物からなる線材用連続鋳造ビレットである。
その第七は、更に質量%で、Cr:0.05〜2.0%、Mo:0.05〜0.35%、Cu:0.05〜1.0%、Ni:0.05〜1.0%、V:0.005〜0.06%、B:0.0005〜0.005%のいずれか1種または2種以上を含有する上記第六の線材用連続鋳造ビレットである。
その第八は、上記第六又は第七の線材用連続鋳造ビレットであって、当該ビレットを減面率90%以上の熱間圧延して得られた線材の圧延方向に垂直な断面を走査型電子顕微鏡(SEM)により観察される直径0.1μm以上0.3μm以下の介在物が、1500個/mm2以上3000個/mm2以下であることを特徴とする線材用連続鋳造ビレットである。
その第九は、上記第六乃至第八のいずれかの線材用連続鋳造ビレットであって、当該ビレットを減面率90%以上の熱間圧延して得られた線材の圧延方向に平行な断面において光学顕微鏡により観察される介在物の圧延方向に垂直な厚みが100μm以下であり、同断面内に観察される厚みが20μm超100μm以下の介在物個数に対する、同介在物の圧延方向に平行な長さが前記厚みの5倍以上である介在物個数の比率が90%以上であることを特徴とする線材用連続鋳造ビレットである。
【0008】
【発明の実施の形態】
鋼線用線材として製造される鋼中には、非金属介在物は少ない方がよいとされている。その代表的なものである酸化物を極力少なくするために、鋼中に脱酸剤を投入し酸素を酸化物として固定し、生成した酸化物を精錬完了から鋳造時までに除去する様々な工夫がなされてきた。本発明は意図的に鋼中の酸素を高くすることにより介在物を分散させ、オーステナイト化温度における結晶粒成長を抑制するものである。しかし、単に鋼中酸素を高くしてしまうと大型の酸化物が生成し、伸線中の断線原因となる。
【0009】
本発明は溶鋼中の酸素濃度を高く保ち、凝固中に酸化物を微細に生成させ結晶粒径制御に有効活用し、大型の酸化物が存在しても線材圧延時に伸延して長さと厚みの比が5以上であれば介在物が伸線加工時に破壊されることを利用して上記課題を解決することを特徴とする。
【0010】
以下、本発明の説明を行う。
Cの下限を0.35%としたのは、パーライト変態を利用して材質を制御する鋼線を得るためである。Cの上限を1.0%としたのは、それ以上の含有量では組織中に初析セメンタイトが生成し、材質のコントロールが困難となるからである。
【0011】
Siの下限を0.10%としたのは、鋳造中のOと結びついて生成する酸化物を低融点である複合系とするためである。Siの上限を0.35%としたのは、酸化物中のSiO2の濃度を必要以上に高くしないためである。
【0012】
Mnの下限を0.40%としたのは、鋼材の熱処理性を確保するためである。Mnの上限を1.0%としたのは、1.0%を超えると鋼の冷間加工性が低下して必要な品質が得られないからである。
【0013】
Alを0.005%以下としたのはAlが0.005%を超えると生成する非金属介在物の組成がAl23主体となり、介在物融点が高くなって伸線断線の原因となり易いからである。なお、Al含有量には酸化物として存在するAlをも含んでいる。
【0014】
Ti下限を0.005%としたのは、0.005%未満では脱酸力が不足し、鋳造中の鋳片表面に気泡性の欠陥が発生するためである。Ti上限を0.03%としたのは、Tiの添加量を増加し鋼中の全酸素と結合してしまうと結晶粒成長を抑制する微細な介在物が減少するためである。
【0015】
Oの下限を0.004%としたのは、再結晶の制御粒子としての酸化物を必要量確保するために必要となる酸素量であるからである。Oの上限については、Oの一部は脱酸されずに一旦は鋼中に固溶し、鋼材の冷却中に鋼材中の空孔(ポロシティー)にガスが生成し、鋼中の酸素濃度に依存し高い圧力が発生する。全酸素が0.01%を超えると、ガス圧が高くなり圧延や冷間加工では密着しなくなり欠陥の原因となるため、製品中の全酸素の上限を0.01%とした。
【0016】
Caの下限を0.0005%としたのは、酸化物中にCaOを成分として含有させ加工時の変形抵抗を小さくするためである。Caの上限を0.0030%としたのはそれを超える含有量でCaO単体が晶出してしまい、変形抵抗が高くなるからである。
【0017】
Cr、Mo、Cu、Ni、Vは強度を調整する元素として用いられる。その範囲(%)はCr:0.05〜2.0、Mo:0.05〜0.35、Cu:0.05〜1.0、Ni:0.05〜1.0、V:0.005〜0.06とした。
【0018】
Bは鋼中のNを固定する元素であり、0.0005%以上を添加することにより、Nを固定する。0.005%を越える添加は、鋼を脆化させるため上限を0.005%とした。
【0019】
本発明では、鋼中に酸化物を分散させて加熱時のオーステナイトの成長を制御することを目的としている。分散させる介在物の適正量は、鋼片または鋳片を、熱間圧延により得られた線材の圧延方向に垂直な断面を走査型電子顕微鏡(SEM)により観察される直径0.1μm以上0.3μm以下の介在物が、1500個/mm2以上3000個/mm2以下である。介在物の観察方法を透過電子顕微鏡としたのは、他の方法では0.3μm以下の介在物を測定することが困難だからである。結晶粒成長抑制に有効な大きさは、直径0.3μm以下であることが明らかになった。0.1μm以上としたのは、SEMにより安定して観察可能だからである。また、その量が1500個/mm2 未満であると、酸化物が少ないために、介在物の間隔が大きくなり、局所的に加熱時のオーステナイト粒が粗大になってしまう。一方、介在物量が3000個/mm2 超であると、介在物が多すぎるためにオーステナイト粒径が微細になりすぎてしまう。
【0020】
鋼中のOが高くなると鋼中の酸化物が多くなり、大型のものが認められることがある。本発明において、減面率90%以上の熱間圧延して得られた線材の圧延方向に平行な断面において光学顕微鏡により観察される介在物の圧延方向に垂直な厚みが20μm以下の介在物であれば、通常の伸線加工では破断に至ることがないことが明らかとなった。減面率90%以上としたのは、凝固組織を完全に均一な加工組織にし、粒径を均一にするためである。また、厚みが20μmを越えるものでも、厚みが100μm以下の軟質な介在物であれば、伸線加工中に破砕され、伸線方向に変形するため、鋼の変形を損なうことがないことが明らかとなった。この変形が起きるかどうかの基準が圧延方向に平行な長さが厚みの5倍以上である。本発明の線材は、Alレスとし、Ti、Si、Caによる共同脱酸を採用しているため、生成する介在物はTiO2−SiO2−CaO系の軟質介在物となり、上記条件を満足することができる。即ち、上記第四の発明に記載の鋼成分及び介在物分布とすることにより、良好な伸線加工性を確保することができる。
【0021】
以上述べてきた線材を得るには、微細な介在物を鋳片段階から得ることが重要である。大断面の鋳造では、微細な酸化物が合体して大型化したり、溶鋼との比重差により浮上分離して必要量が確保できない。本発明に規定される線材は、鋳型寸法が150mm×150mm以下の矩形あるいは直径170mm以下の円形であるビレット鋳造に代表される小断面高速連鋳機により、溶鋼が鋳型において冷却され始めてから凝固完了までの時間が短いビレット連続鋳造法が最適である。これにより、上記第三の発明にあるように微細でかつ多数の介在物を生成することができる。
【0022】
本発明において、転炉による脱炭後、精錬工程での脱酸材の投入量を最小限にとどめ、取鍋での脱ガス等の二次精錬処理を行わない溶鋼を大気に解放された(酸化防止策を施さない)タンディッシュを経て鋳造することにより、線材中のO濃度を0.004〜0.010%に調整することができる。
【0023】
【実施例】
転炉精錬法にて溶鋼量240トンの溶鋼を溶製し、連続鋳造法において、鋳型サイズは125mm×125mm、鋳造速度は2.6〜3.2m/minの条件で鋳造を行った。連続鋳造で製造したビレットの鋼片検査実施後、加熱炉で約1100℃に加熱し、線材圧延機で直径5.5mmに圧延し、空冷による冷却工程を経てコイルに捲きとった。得られた線材を伸線加工により直径2mmのワイヤに加工した。伸線後のワイヤを950℃にて10分、30分の加熱を行い水中に焼き入れオーステナイト粒径測定用のサンプルを作成した。
【0024】
表1、表2に示す成分の鋼を溶製した。上記方法で得られた線材について圧延方向に垂直な断面を走査型電子顕微鏡(SEM)により観察し直径0.1μm以上0.3μm以下の介在物調査を行い、得られた線材の圧延方向に平行な断面において光学顕微鏡により大型の介在物観察を行った。熱処理のワイヤの組織観察によりオーステナイトの大きさをJISに基づき測定した。
【0025】
【表1】

Figure 0003759355
【0026】
【表2】
Figure 0003759355
【0027】
表1のNo.1〜17は、本発明例の製造結果である。分析結果はすべて本発明範囲内にある。表2は比較例の製造結果である。
【0028】
No.18〜20はTi本発明の下限以下の場合の例である。酸化物量は多くなるものの、鋳造時に鋳片表層に気泡性の欠陥が発生してしまい、製品としては使用できない。
【0029】
No.21〜23は、Ti含有量が本発明上限以上である。微細な酸化物が減少し、大型のものに変化してしまい、断線が発生した。
【0030】
No.25はAl添加量が本発明の上限以上である。微細な介在物が存在せず、混粒が発生してしまう。
【0031】
No.26,27は、微細な介在物量が本発明範囲の上限以上の場合である。オーステナイトが小さくなりすぎ必要な強度が得られなかった。
【0032】
No.28,29は成分は請求範囲内であるが鋳造時の冷却速度が遅く、介在物が凝固過程で大型化し、微細な介在物が本発明範囲の下限以下の場合である。オーステナイトの異常成長が観察された。
【0033】
【発明の効果】
本発明により、伸線後の線材を熱処理した時のオーステナイト結晶粒径が均一になり、製品の材質のばらつきが低下した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wire rod for steel wire used for wire drawing.
[0002]
[Prior art]
Steel that is manufactured as a conventional wire rod for steel wire, after completing refining in a converter or the like, is deoxidized prior to casting in order to remove oxygen contained in the molten steel when refining is completed, and oxidized As a result, oxygen is removed. The produced oxide is increased in size by casting and coalescence and growth in the tundish or mold during casting, and is lifted and removed. In steel manufactured as steel wire rods, it is better to have less non-metallic inclusions, and in order to minimize oxides, which are typical of them, they are removed by the start of casting after completion of refining. Various ideas have been made. For this reason, there are no harmful inclusions in the wire obtained by rolling the slab, and even if the wire drawing is performed, almost no disconnection due to the inclusions was observed. When the structure is adjusted by patenting after drawing such a material, it is important to control the crystal grains during the heat treatment to have a uniform size to obtain a uniform heat-treated structure. Until now, in order to obtain a uniform structure by patenting, the austenitizing temperature and time have been adjusted.
[0003]
[Problems to be solved by the invention]
As described above, the wire after drawing can have a certain strength by heat treatment (patenting treatment). In this heat treatment, the structure is changed to austenite and then transformed into pearlite in an appropriate lead bath or fluidized bed to adjust the strength. It is desirable that the pearlite transformation occurs at a constant temperature after being overcooled with austenite. In general, the larger the particle size, the easier it is to cool, and the subsequent transformation is also realized at a constant temperature. However, if the particle size is too large, it takes time from the start to the end of transformation, so it was necessary to control the particle size to an appropriate value. Therefore, conventionally, the austenite grain size has been controlled by adjusting the temperature and time. However, even if the heat treatment conditions fluctuate slightly, the austenite grain size varies, which causes a problem of variation in materials.
[0004]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist of the present invention is as follows.
[0005]
The first is mass%, C: 0.35-1.0%, Si: 0.10-0.35%, Mn: 0.40-1.0%, Ti: 0.005-0. 03%, Ca: 0.0005 to 0.0030%, O: 0.004 to 0.010%, Al: 0.005% or less, and excellent heat treatment stability consisting of the balance Fe and inevitable impurities It is a wire rod for steel wire.
The second is mass% in addition to the first, Cr: 0.005 to 2.0%, Mo: 0.05 to 0.35%, Cu: 0.05 to 1.0%, Ni: 0.00. It is a wire rod for steel wire containing any one or more of 05-1.0%, V: 0.005-0.06%, B: 0.0005-0.005%.
Its Third, inclusions below 0.3μm diameter 0.1μm or more, which is observed by a scanning electron microscope cross-section perpendicular to the rolling direction of the wire (SEM) is 1500 / mm 2 or more 3,000 / mm 2 It is the said 1st or 2nd wire rod for steel wires which is the following.
Its Fourth, vertical thickness to the rolling direction of the inclusions observed by an optical microscope in a cross section parallel to the rolling direction of the wire is not less 100μm or less, intervening thickness observed in the cross section below 20μm ultra 100μm The steel wire according to any one of the first to third aspects, wherein the ratio of the number of inclusions whose length parallel to the rolling direction of the inclusions is 5 times or more of the thickness to the number of objects is 90% or more. It is a wire.
[0006]
The fifth is a wire manufacturing method for steel wire, in which the slab obtained by continuous billet casting is manufactured by hot rolling with a surface area reduction ratio of 90% or more to manufacture any one of the first to fourth steel wire rods. .
[0007]
The sixth is mass%, C: 0.35-1.0%, Si: 0.10-0.35%, Mn: 0.40-1.0%, Ti: 0.005-0. It is a continuous casting billet for wire comprising 03%, Ca: 0.0005 to 0.0030%, O: 0.004 to 0.010%, Al: 0.005% or less, and the balance Fe and inevitable impurities. is there.
The 7th is further mass%, Cr: 0.05-2.0%, Mo: 0.05-0.35%, Cu: 0.05-1.0%, Ni: 0.05-1 0.0%, V: 0.005 to 0.06%, and B: 0.0005 to 0.005%. The sixth continuous casting billet for wire rods according to any one or more of the above.
The eighth is the above-described sixth or seventh continuous casting billet for wire rods, which is a scanning type of a cross section perpendicular to the rolling direction of the wire rod obtained by hot rolling the billet with a reduction in area of 90% or more. It is a continuous casting billet for a wire, wherein inclusions having a diameter of 0.1 μm or more and 0.3 μm or less observed by an electron microscope (SEM) are 1500 pieces / mm 2 or more and 3000 pieces / mm 2 or less.
The ninth is the continuous cast billet for wire rods according to any one of the sixth to eighth portions, and a cross section parallel to the rolling direction of the wire rod obtained by hot-rolling the billet with a reduction in area of 90% or more. The thickness perpendicular to the rolling direction of the inclusions observed with an optical microscope is 100 μm or less, and the thickness observed in the same section is parallel to the rolling direction of the inclusions with respect to the number of inclusions exceeding 20 μm and 100 μm or less. A continuous casting billet for a wire rod, wherein the ratio of the number of inclusions having a length of 5 times or more of the thickness is 90% or more.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In steel manufactured as a wire rod for steel wires, it is said that it is better to have less non-metallic inclusions. In order to minimize oxides, which are typical of these, various devising agents are used to fix the oxygen as an oxide by introducing a deoxidizer into the steel, and to remove the generated oxide from the completion of refining to the time of casting. Has been made. In the present invention, inclusions are dispersed by intentionally increasing the oxygen in the steel, and crystal grain growth at the austenitizing temperature is suppressed. However, if the oxygen in the steel is simply increased, a large oxide is generated, causing disconnection during wire drawing.
[0009]
The present invention keeps the oxygen concentration in the molten steel high, finely produces oxide during solidification, and effectively uses it for controlling the crystal grain size. If the ratio is 5 or more, the above-mentioned problem is solved by utilizing the fact that inclusions are broken during wire drawing.
[0010]
The present invention will be described below.
The lower limit of C is set to 0.35% in order to obtain a steel wire whose material is controlled using pearlite transformation. The reason why the upper limit of C is set to 1.0% is that when the content is higher than that, pro-eutectoid cementite is generated in the structure, making it difficult to control the material.
[0011]
The reason why the lower limit of Si is set to 0.10% is to make the oxide generated in combination with O during casting into a composite system having a low melting point. The upper limit of Si is set to 0.35% because the SiO 2 concentration in the oxide is not increased more than necessary.
[0012]
The lower limit of Mn is set to 0.40% in order to ensure the heat treatment property of the steel material. The reason why the upper limit of Mn is set to 1.0% is that if it exceeds 1.0%, the cold workability of the steel is lowered and the required quality cannot be obtained.
[0013]
The reason why Al is made 0.005% or less is that when Al exceeds 0.005%, the composition of non-metallic inclusions produced is mainly Al 2 O 3 , and the inclusion melting point becomes high, which tends to cause wire breakage. Because. The Al content includes Al present as an oxide.
[0014]
The reason why the lower limit of Ti is set to 0.005% is that if it is less than 0.005%, the deoxidizing power is insufficient, and bubble defects occur on the surface of the slab during casting. The reason why the upper limit of Ti is set to 0.03% is that when the amount of Ti added is increased and combined with all the oxygen in the steel, the fine inclusions that suppress the grain growth decrease.
[0015]
The lower limit of O is set to 0.004% because it is the amount of oxygen necessary to secure the required amount of oxide as control particles for recrystallization. As for the upper limit of O, a part of O is not deoxidized but is once dissolved in the steel, and gas is generated in the porosity in the steel during cooling of the steel, and the oxygen concentration in the steel High pressure is generated depending on If the total oxygen exceeds 0.01%, the gas pressure becomes high, and it does not adhere in rolling or cold working, causing defects, so the upper limit of the total oxygen in the product is set to 0.01%.
[0016]
The reason why the lower limit of Ca is set to 0.0005% is that CaO is contained as a component in the oxide to reduce deformation resistance during processing. The reason why the upper limit of Ca is set to 0.0030% is that CaO is crystallized at a content exceeding the upper limit and deformation resistance becomes high.
[0017]
Cr, Mo, Cu, Ni, and V are used as elements for adjusting the strength. The ranges (%) are Cr: 0.05 to 2.0, Mo: 0.05 to 0.35, Cu: 0.05 to 1.0, Ni: 0.05 to 1.0, V: 0.00. 005 to 0.06.
[0018]
B is an element for fixing N in steel, and N is fixed by adding 0.0005% or more. Addition over 0.005% causes the steel to become brittle, so the upper limit was made 0.005%.
[0019]
The object of the present invention is to control the growth of austenite during heating by dispersing an oxide in steel. The appropriate amount of inclusions to be dispersed is a steel slab or cast slab whose diameter perpendicular to the rolling direction of the wire obtained by hot rolling is 0.1 μm or more and observed by a scanning electron microscope (SEM). Inclusions of 3 μm or less are 1500 / mm 2 or more and 3000 / mm 2 or less. The reason for using the transmission electron microscope as the observation method of the inclusions is that it is difficult to measure inclusions of 0.3 μm or less by other methods. It has been found that the effective size for suppressing crystal grain growth is a diameter of 0.3 μm or less. The reason why the thickness is 0.1 μm or more is that it can be observed stably by SEM. On the other hand, when the amount is less than 1500 / mm 2 , since the amount of oxide is small, the interval between inclusions becomes large, and the austenite grains during heating locally become coarse. On the other hand, if the amount of inclusions is more than 3000 / mm 2 , the austenite grain size becomes too fine because there are too many inclusions.
[0020]
When O in steel becomes high, the oxide in steel increases and a large thing may be recognized. In the present invention, inclusions whose thickness is perpendicular to the rolling direction of the inclusions observed by an optical microscope in a section parallel to the rolling direction of the wire rod obtained by hot rolling with a reduction in area of 90% or more are 20 μm or less. If it exists, it became clear that it does not reach a fracture | rupture in normal wire drawing. The reason why the area reduction ratio is 90% or more is to make the solidified structure completely uniform and have a uniform particle size. In addition, even if the thickness exceeds 20 μm, if it is a soft inclusion with a thickness of 100 μm or less, it will be crushed during the wire drawing process and deformed in the direction of wire drawing, so that it does not impair the deformation of the steel. It became. The standard for determining whether or not this deformation occurs is that the length parallel to the rolling direction is at least 5 times the thickness. Since the wire rod of the present invention is Al-less and employs joint deoxidation with Ti, Si, and Ca, the generated inclusion becomes a TiO 2 —SiO 2 —CaO-based soft inclusion and satisfies the above conditions. be able to. That is, by using the steel component and inclusion distribution described in the fourth invention, good wire drawing workability can be ensured.
[0021]
In order to obtain the wire described above, it is important to obtain fine inclusions from the slab stage. In casting with a large cross section, the fine oxides coalesce and become large, or float and separate due to the difference in specific gravity from the molten steel, and the required amount cannot be secured. The wire rod defined in the present invention is solidified after the molten steel begins to be cooled in the mold by a small-section high-speed continuous casting machine represented by billet casting with a mold size of a rectangle of 150 mm x 150 mm or less or a circle of 170 mm or less in diameter. The billet continuous casting method with the shortest time to completion is optimal. Thereby, as in the third aspect of the invention, fine and numerous inclusions can be generated.
[0022]
In the present invention, after decarburization by the converter, the amount of deoxidizing material input in the refining process is minimized, and the molten steel that is not subjected to secondary refining treatment such as degassing in the ladle is released to the atmosphere ( The O concentration in the wire can be adjusted to 0.004 to 0.010% by casting through a tundish (which does not take an antioxidant measure).
[0023]
【Example】
Molten steel having a molten steel amount of 240 tons was melted by the converter refining method, and in the continuous casting method, casting was performed under the conditions of a mold size of 125 mm × 125 mm and a casting speed of 2.6 to 3.2 m / min. After the billet manufactured by continuous casting was inspected for the billet, it was heated to about 1100 ° C. in a heating furnace, rolled to a diameter of 5.5 mm by a wire rod rolling mill, and wound into a coil through a cooling process by air cooling. The obtained wire was processed into a wire having a diameter of 2 mm by wire drawing. The wire after drawing was heated at 950 ° C. for 10 minutes and 30 minutes, and quenched in water to prepare a sample for austenite particle size measurement.
[0024]
Steels having the components shown in Tables 1 and 2 were melted. The cross section perpendicular to the rolling direction of the wire obtained by the above method is observed with a scanning electron microscope (SEM), the inclusions having a diameter of 0.1 μm or more and 0.3 μm or less are examined, and the obtained wire is parallel to the rolling direction. Large inclusions were observed with an optical microscope in a simple cross section. The size of austenite was measured based on JIS by observing the structure of the heat treated wire.
[0025]
[Table 1]
Figure 0003759355
[0026]
[Table 2]
Figure 0003759355
[0027]
No. in Table 1 1 to 17 are the production results of the examples of the present invention. All analysis results are within the scope of the present invention. Table 2 shows the production results of the comparative examples.
[0028]
No. 18 to 20 are examples when Ti is not more than the lower limit of the present invention. Although the amount of oxide increases, a bubble defect occurs on the surface of the slab during casting, and it cannot be used as a product.
[0029]
No. As for 21-23, Ti content is more than this invention upper limit. The fine oxide decreased, and it changed into a large thing, and the disconnection generate | occur | produced.
[0030]
No. No. 25 has an Al addition amount equal to or higher than the upper limit of the present invention. Fine inclusions do not exist and mixed grains are generated.
[0031]
No. 26 and 27 are cases in which the amount of fine inclusions is not less than the upper limit of the range of the present invention. Austenite was too small to obtain the required strength.
[0032]
No. 28 and 29 are cases where the components are within the scope of the claims, but the cooling rate during casting is slow, the inclusions increase in size during the solidification process, and the fine inclusions are below the lower limit of the scope of the present invention. Abnormal growth of austenite was observed.
[0033]
【The invention's effect】
According to the present invention, the austenite crystal grain size is uniform when heat-treating the wire after drawing, and the variation in the material of the product is reduced.

Claims (9)

質量%で、C:0.35〜1.0%、Si:0.10〜0.35%、Mn:0.40〜1.0%、Ti:0.005〜0.03%、Ca:0.0005〜0.0030%、O:0.004〜0.010%を含み、Al:0.005%以下であり、残部Fe及び不可避不純物からなる熱処理安定性に優れた鋼線用線材。In mass%, C: 0.35 to 1.0%, Si: 0.10 to 0.35%, Mn: 0.40 to 1.0%, Ti: 0.005 to 0.03%, Ca: A wire rod for steel wire comprising 0.0005 to 0.0030%, O: 0.004 to 0.010%, Al: 0.005% or less, and having excellent heat treatment stability comprising the remaining Fe and inevitable impurities. 更に質量%で、Cr:0.05〜2.0%、Mo:0.05〜0.35%、Cu:0.05〜1.0%、Ni:0.05〜1.0%、V:0.005〜0.06%、B:0.0005〜0.005%のいずれか1種または2種以上を含有する請求項1記載の熱処理安定性に優れた鋼線用線材。Further, by mass, Cr: 0.05 to 2.0%, Mo: 0.05 to 0.35%, Cu: 0.05 to 1.0%, Ni: 0.05 to 1.0%, V The wire rod for steel wire excellent in heat treatment stability according to claim 1, containing any one or more of: 0.005 to 0.06% and B: 0.0005 to 0.005%. 線材の圧延方向に垂直な断面を走査型電子顕微鏡(SEM)により観察される直径0.1μm以上0.3μm以下の介在物が、1500個/mm2以上3000個/mm2以下である請求項1又は2記載の熱処理安定性に優れた鋼線用線材。The number of inclusions having a diameter of 0.1 μm or more and 0.3 μm or less observed by a scanning electron microscope (SEM) in a cross section perpendicular to the rolling direction of the wire is 1500 / mm 2 or more and 3000 / mm 2 or less. A wire rod for steel wire having excellent heat treatment stability according to 1 or 2. 線材の圧延方向に平行な断面において光学顕微鏡により観察される介在物の圧延方向に垂直な厚みが100μm以下であり、同断面内に観察される厚みが20μm超100μm以下の介在物個数に対する、同介在物の圧延方向に平行な長さが前記厚みの5倍以上である介在物個数の比率が90%以上である請求項1乃至3のいずれかに記載の熱処理安定性に優れた鋼線用線材。The thickness perpendicular to the rolling direction of inclusions observed with an optical microscope in a cross section parallel to the rolling direction of the wire is 100 μm or less, and the thickness observed in the same cross section is the same for the number of inclusions exceeding 20 μm and 100 μm or less. The steel wire excellent in heat treatment stability according to any one of claims 1 to 3, wherein the ratio of the number of inclusions whose length parallel to the rolling direction of the inclusion is 5 times or more of the thickness is 90% or more. wire. ビレット連続鋳造により得られた鋳片を減面率90%以上の熱間圧延により請求項1乃至4のいずれかに記載の鋼線用線材を製造する鋼線用線材製造方法。The wire manufacturing method for steel wires which manufactures the wire material for steel wires in any one of Claims 1 thru | or 4 by hot-rolling the slab obtained by billet continuous casting by the area reduction rate of 90% or more. 質量%で、C:0.35〜1.0%、Si:0.10〜0.35%、Mn:0.40〜1.0%、Ti:0.005〜0.03%、Ca:0.0005〜0.0030%、O:0.004〜0.010%を含み、Al:0.005%以下であり、残部Fe及び不可避不純物からなる線材用連続鋳造ビレット。In mass%, C: 0.35 to 1.0%, Si: 0.10 to 0.35%, Mn: 0.40 to 1.0%, Ti: 0.005 to 0.03%, Ca: A continuous casting billet for wire comprising 0.0005 to 0.0030%, O: 0.004 to 0.010%, Al: 0.005% or less, and the balance being Fe and inevitable impurities. 更に質量%で、Cr:0.05〜2.0%、Mo:0.05〜0.35%、Cu:0.05〜1.0%、Ni:0.05〜1.0%、V:0.005〜0.06%、B:0.0005〜0.005%のいずれか1種または2種以上を含有する請求項6記載の線材用連続鋳造ビレット。Further, by mass, Cr: 0.05 to 2.0%, Mo: 0.05 to 0.35%, Cu: 0.05 to 1.0%, Ni: 0.05 to 1.0%, V The continuous casting billet for wire rod according to claim 6, containing any one or more of: 0.005 to 0.06% and B: 0.0005 to 0.005%. 請求項6又は7記載の線材用連続鋳造ビレットであって、当該ビレットを減面率90%以上の熱間圧延して得られた線材の圧延方向に垂直な断面を走査型電子顕微鏡(SEM)により観察される直径0.1μm以上0.3μm以下の介在物が、1500個/mm2以上3000個/mm2以下であることを特徴とする線材用連続鋳造ビレット。The continuous casting billet for wire according to claim 6 or 7, wherein a cross section perpendicular to the rolling direction of the wire obtained by hot rolling the billet with a surface reduction of 90% or more is a scanning electron microscope (SEM). The continuous cast billet for wire rods, wherein the inclusions having a diameter of 0.1 μm or more and 0.3 μm or less observed by 1 is 1500 / mm 2 or more and 3000 / mm 2 or less. 請求項6乃至のいずれかに記載の線材用連続鋳造ビレットであって、当該ビレットを減面率90%以上の熱間圧延して得られた線材の圧延方向に平行な断面において光学顕微鏡により観察される介在物の圧延方向に垂直な厚みが100μm以下であり、同断面内に観察される厚みが20μm超100μm以下の介在物個数に対する、同介在物の圧延方向に平行な長さが前記厚みの5倍以上である介在物個数の比率が90%以上であることを特徴とする線材用連続鋳造ビレット。It is a continuous casting billet for wire rods in any one of Claims 6 thru | or 8 , Comprising: By the optical microscope in the cross section parallel to the rolling direction of the wire rod obtained by hot-rolling the said billet 90% or more of area reduction rate The thickness perpendicular to the rolling direction of the inclusions observed is 100 μm or less, and the length parallel to the rolling direction of the inclusions with respect to the number of inclusions observed in the same cross section is more than 20 μm and 100 μm or less A continuous casting billet for a wire rod, wherein the ratio of the number of inclusions that is 5 times or more the thickness is 90% or more.
JP32844699A 1999-11-18 1999-11-18 Steel wire rod and manufacturing method thereof Expired - Fee Related JP3759355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32844699A JP3759355B2 (en) 1999-11-18 1999-11-18 Steel wire rod and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32844699A JP3759355B2 (en) 1999-11-18 1999-11-18 Steel wire rod and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001152289A JP2001152289A (en) 2001-06-05
JP3759355B2 true JP3759355B2 (en) 2006-03-22

Family

ID=18210374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32844699A Expired - Fee Related JP3759355B2 (en) 1999-11-18 1999-11-18 Steel wire rod and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3759355B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646850B2 (en) * 2006-04-28 2011-03-09 株式会社神戸製鋼所 High carbon steel wire rod with excellent resistance to breakage of copper
KR101665886B1 (en) 2015-09-04 2016-10-13 주식회사 포스코 Non-quenched and tempered steel having excellent cold workability and impact toughness and method for manufacturing same
KR102120699B1 (en) * 2018-08-21 2020-06-09 주식회사 포스코 Wire rod and steel wire for spring with improved toughness and corrosion fatigue resistance and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001152289A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP3440937B2 (en) Method of manufacturing steel wire and steel for steel wire
RU2467826C2 (en) Electric random-orientation steel cast slab and method of its casting
JP5277315B2 (en) Environmentally friendly lead-free free-cutting steel and method for producing the same
JP6481770B2 (en) Steel wire rod for wire drawing
CN115074604B (en) Spring steel wire rod and production method thereof
JP2010235995A (en) Niobium-added ferritic stainless cool-rolled steel sheet excellent in workability and manufacturability and method for manufacturing the same
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
US20230077573A1 (en) Stainless steel for metal foils, stainless steel foil, and methods for producing them
WO2018117157A1 (en) Wire rod
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
TWI752837B (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
CN110592319A (en) Rare earth microalloyed steel and control method
JP3852396B2 (en) Method for deoxidizing thin steel sheet and molten steel for thin steel sheet
JP3759355B2 (en) Steel wire rod and manufacturing method thereof
JP4586648B2 (en) Steel plate excellent in workability and method for producing the same
JP2000178685A (en) Steel wire rod excellent in fatigue characteristic and wire drawability and its production
JP2001220651A (en) Pail excellent in heavy shelling damage resistance
JP6684081B2 (en) Fe-Ni alloy sheet and method for producing the same
JP4259097B2 (en) Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same
JP2005307234A (en) Ferritic stainless steel sheet having excellent ridging resistance and surface characteristic and method for manufacturing the same
JP3954741B2 (en) Steel wire rod and manufacturing method thereof
KR101676144B1 (en) Medium carbon free cutting steel having hot workability and method for manufacturing the same
JP7124631B2 (en) Method for preventing cast slab placement cracks
JP7477052B2 (en) Continuously cast slab and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R151 Written notification of patent or utility model registration

Ref document number: 3759355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees