JP3757637B2 - 試料冷却装置 - Google Patents

試料冷却装置 Download PDF

Info

Publication number
JP3757637B2
JP3757637B2 JP24391798A JP24391798A JP3757637B2 JP 3757637 B2 JP3757637 B2 JP 3757637B2 JP 24391798 A JP24391798 A JP 24391798A JP 24391798 A JP24391798 A JP 24391798A JP 3757637 B2 JP3757637 B2 JP 3757637B2
Authority
JP
Japan
Prior art keywords
temperature
sample
air
rack
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24391798A
Other languages
English (en)
Other versions
JP2000074801A (ja
Inventor
信之 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24391798A priority Critical patent/JP3757637B2/ja
Publication of JP2000074801A publication Critical patent/JP2000074801A/ja
Application granted granted Critical
Publication of JP3757637B2 publication Critical patent/JP3757637B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の属する技術分野】
本発明は、例えば液体試料を自動的に分析する分析装置、特に液体クロマトグラフにおいて、分析前の試料を冷却する試料冷却装置に関する。
【0001】
【従来の技術】
液体クロマトグラフにおける自動分析は、予め少量の試料を封入した試料容器をラックに装架し、このラックを自動試料注入装置にセットし、自動試料注入装置がこのラック上の試料容器から所定プログラムに従って逐次に試料を吸い上げ、液体クロマトグラフに注入することにより実行される。分析待ち状態にあるラック上の試料は多くの場合は室温下に置かれるが、試料によっては、変質を防ぐために低温に保つことが必要な場合がある。このような場合に、試料を冷却する目的に使われる装置が試料冷却装置である。
【0002】
従来の試料冷却装置には直冷式と空冷式の2方式がある。
直冷式は、ラックを熱伝導性の良好な金属で作り、ラックの底部に冷却器(ペルチエ素子など)を取り付けて、主として固体を通しての熱伝導により試料の温度を調節するものである。空冷式は、ラックを含む自動試料注入装置の要部を断熱性のケースで囲い込み、その内部の空気を冷却して、空気を介して試料の温度を調節するものである。
次に、上記従来の2方式を図を用いてさらに詳しく説明する。
【0003】
図2は従来の直冷式試料冷却装置の一例を示したものである。
分析者は、まず液体試料4を試料容器(通常はガラス製の小瓶)2に入れ、その口をセプタム3で封じ、これを、自動試料注入装置7から外して取り出したラック1に装架する。ラック1はアルミ製で、試料容器2を挿入する100個程の穴5が穿設されている。この穴5の底、および周囲の壁を通して試料容器2に熱(以下、単に熱と記す場合は冷熱を含むものとする)が伝えられる。
【0004】
試料を装填し終わったラック1は装置内の金属ブロック23の上にセットされる。金属ブロック23は、下面に取り付けた冷却器(ペルチエ素子21)によって冷却され、その表面はラック1の底に密着して良好な熱伝導を保つように構成された伝熱部材である。この場合、ラック1もまた金属ブロック23から受けた熱を試料容器2に伝える伝熱部材として機能する。
温調回路25は、温度設定部26で設定された温度の目標値(以下、所定温度と称する)と、金属ブロック23に埋設された温度センサー24からの温度信号を比較して、その差をゼロに近づけるように、冷却エネルギー(電流)をペルチエ素子21に供給する。
ペルチエ素子21の裏面(放熱面)には、通風ダクト27の内側に面して放熱フィン22が取り付けられ、金属ブロック23から吸収した熱をこのフィン22を通してファン28による送風で放熱する構造となっている。
【0005】
このような構成で、ラック1とこれに装架された試料容器2、さらにはその中の試料液体4が所定の低温に保たれる。ラック1は保冷のため断熱性のカバー6で覆われるが、試料容器2の頭部(セプタム3とその周辺)は、サンプリングニードル13による試料の取り出しを可能にするため、このカバー6から露出している。
【0006】
サンプリングニードル13は図示しないメカニズムにより、前後左右、及び上下に移動可能で、プログラムに従って、セプタム3を刺通して試料容器2から液体試料4を吸い上げ、液体クロマトグラフの試料注入口12まで移動してこれに試料を注入することによって自動分析が行われる。液体クロマトグラフの分析は1回数十分を要するので、ラック1上の試料は長いもので数十時間も分析待ち状態となるが、この間、低温に保たれることで試料の変質が避けられる。
【0007】
図3は、従来の空冷式試料冷却装置の一例を示したものである。
試料容器2を装架したラック1を含む自動試料注入装置7の要部を断熱壁11で囲い込み、恒温槽10を形成する。特に図示しないが、断熱壁11の一部は扉として、ラック1の出し入れを可能にする。この場合のラック1は、直冷式の場合と異なり、空気が熱媒体であることを考慮して、通気性を高め、熱容量を小さくするために、金属の薄板等で空隙の多い形状に作られるので、ラック1に装架された試料容器2の周りの空間と恒温槽10内の空間とは熱的に等価である。
【0008】
冷却器としてはペルチエ素子31を用い、冷却の対象が空気であることを考慮してペルチエ素子31の吸熱面が接する金属ブロック33の、槽内に面する表面にはフィンを設けて空気との熱交換の効率を高めている。温調回路35は、金属ブロック33に埋設された温度センサー34からの温度信号と、温度設定部36における設定値との差をゼロに近づけるようにペルチエ素子31に電流を供給することは図2の場合と同様である。また、ペルチエ素子31の放熱面には通風ダクト37内に面して放熱フィン32が取り付けられ、ファン38の送風で放熱することも図2の場合と同様である。冷却された空気は自然対流で恒温槽10の内部に行き渡るが、必要に応じてファンを設けて強制循環させる場合もある。
【0009】
冷却された金属ブロック33の表面には空気中の水分が凝縮して結露を生じるので、結露水を排出するために、ドレン受け14、及びこれに連なり槽外に通じるドレンチューブ15が設けられている。このような手段により、槽内空気は除湿され、温度の低下と共に絶対湿度が低下する。
このような構成で、ラック上の試料容器2は冷却・除湿された空気に包まれ、全周から冷やされて低温に保たれる。
【0010】
【発明が解決しようとする課題】
上記の従来の2方式の試料冷却装置のうち、直冷式は熱伝達の効率が高く、短時間で所定温度まで冷却できるのであるが、前述のように、試料容器2の頭部はラック1の上に露出していること、及び、構造上ラックは主に下から冷却されることから、試料容器は底が冷たく上部は温かいという状態、つまり温度ムラが生じ勝ちである。しかも、下方が低温であるために対流が起こらないので、温度ムラは時間が経過しても解消せず、持続する傾向にある。
【0011】
一方、空冷式は、試料容器2が熱媒体である空気に包まれて全方向から冷却されるので、温度ムラを生じることはない。その上、除湿された空気で冷却されるため、試料容器2やラック1の表面に結露が生じる心配もないが、熱容量の小さい空気を熱媒体とするために熱の伝達効率が低く、冷却速度が遅い。空冷式でも、強力な冷却器を用い、槽内にファンを設けて槽内空気を強制循環させれば、かなりのスピードアップが可能ではあるが、その効果以上にエネルギー消費が増すので経済的でない。
【0012】
このように、従来の冷却装置には一長一短があり、温度ムラを生じることなく急速冷却が可能で、しかもエネルギー効率の高い冷却装置は得難いものであった。
本発明は、このような事情に鑑みてなされたものであり、従来の2方式の試料冷却装置のそれぞれの長所を合わせ持ち、短所を改善した新しい方式による試料冷却装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明では、上記課題を解決するために、試料を収めた試料容器を恒温槽に収容して室温以下に冷却する試料冷却装置において、前記恒温槽の内部空間を所定温度に調節するための冷却器と温度調節器とを備えて成る第一の温度調節機構と、伝熱部材を介して前記試料容器の温度を調節するための冷却器と温度調節器とを備えて成る第二の温度調節機構と、前記恒温槽内の気温を検出する温度センサーとを備え、前記第二の温度調節機構の制御の目標値が前記温度センサーの出力信号に基づいて設定されるようにした。
【0014】
換言すれば、本発明は、空冷式試料冷却装置の恒温槽に、直冷式の温調機構を備えたラックを収容し、このラックの温度を槽内の空気の温度に追従するようにコントロールすることによって、試料容器に温度ムラが生じることを抑制しながら急速に冷却することを可能にしたものである。
【0015】
【発明の実施の形態】
本発明の一実施の形態を図1に示す。
同図において図2、または図3と同じものには同符号を付すことによって重複説明を避ける。
【0016】
図1において、ペルチエ素子31、放熱フィン32、金属ブロック33、温度センサー34、温調回路35、および温度設定部36等から成る第一の温度調節機構30は、図3と同様の空冷用であって、断熱壁11で囲われた恒温槽10内の空気を冷却する。また、ペルチエ素子21、放熱フィン22、金属ブロック23、温度センサー24、温調回路25、及び温度センサー29等から成る第二の温度調節機構20は直冷用であって、ラック1、及びこれに装架される試料容器2を冷却するものであるが、温度制御の目標値が槽内空気の温度を検出する温度センサー29によって与えられる点に特徴がある。
【0017】
この実施例装置は以下のように動作する。
第一の温度調節機構30が作動することによって、金属ブロック33(冷却フィン)の表面温度が下がり、付近の空気が冷却されて露点に達するとフィンの表面に結露する。恒温槽10内の空気が拡散または自然対流により次々にフィンに接触することにより、次第に水分が除かれ、絶対湿度が低下すると共に槽内温度が下がる。空気は熱容量が小さいので、短時間で所定温度にまで冷却される。
【0018】
第二の温度調節機構20は、温度センサー29で検出された槽内の気温の値を目標値としてラック1の温度をコントロールする。換言すれば、第二の温度調節機構20は2つの温度センサー24、29からの信号の差をゼロに近づけるように働く。
始動直後は、槽内空気を含め槽内の全ての物体の温度は室温であって、両温度センサー24、29からの信号に差はないのでラック1は冷却されないが、第一の温度調節機構30の働きによって槽内の気温が下がり始めると、その情報が温度センサー29から温調回路25に入力され、ペルチエ素子21に電流が供給され、金属ブロック23を槽内の気温と同じ温度になるまで冷却し、金属ブロック23に密接するラック1の温度もこれに追従する。ラックの温度は空気からの伝熱だけでは容易に下がらないので、こうして槽内気温と同じになるように強制的に冷却するのである。この場合の冷却方式は直冷式であるから、試料容器2は主として底部からの伝熱によって速やかに冷却されるが、従来の直冷式と違って、試料容器全体がラックとほとんど同じ温度の空気に包まれているので、温度ムラは生じ難い。冷却の過程で過渡的に温度ムラが生じることはあるが、それも短時間のうちに解消される。
【0019】
以上のようにラック1の温度は槽内空気の温度に追従する、つまり槽内気温とほとんど同じ温度であるから、従来の直冷式のようにラック1の周囲を断熱性のカバーで覆う必要はなく、また、ラック1及び試料容器2の表面に空気中の水分が結露することもない。即ち、本発明は従来の空冷式と同様に結露防止にも極めて効果的である。
【0020】
上述の場合は、第二の温度調節機構20における制御の目標値は原則的には槽内の気温の値そのものであるが、ラック1から試料容器2への伝熱ロスを考慮して、ラック1の温度を槽内気温よりも若干低い温度に調節した方が冷却は速くなると考えられる。そのためには温調回路25にバイアスを与えておくだけでよい。但し、槽内気温と目標値との差が余りにも大きい場合は、ラック1や試料容器2の表面に結露が生じたり、ラック1の温度が槽内気温を下げ、それによって制御の目標値がさらに下がるという正フィードバックループができて槽内気温の制御ができなくなる等の弊害が発生する可能性もあるので注意が必要である。逆に、第二の温度調節機構20における制御の目標値を槽内気温よりも僅かに高い温度に設定すると槽全体の温度制御は安定化する。いずれにしても本発明は、第二の温度調節機構20の設定値を槽内気温と同一温度に設定する場合に限らず、槽内気温に基づいて設定される場合を含むものである。
【0021】
上記の、第二の温度調節機構20における制御の目標値を槽内気温よりも僅かに高い温度に設定した場合、槽内温度が所定温度に達して安定した後(定常運転時)は、目標温度に達したラック1はさらに槽内空気で冷やされて槽内気温と同じ温度になる。第二の温度調節機構20にとっては制御の目標値よりも制御対象の温度の方が低いので、第二の温度調節機構20からの冷却エネルギーの供給は停止する。言い換えると、定常運転時には第二の温度調節機構20は、特にスイッチ等を操作せずとも自然にその機能を停止する。従って、以後このシステムは従来の空冷式とほぼ同様に働くことになり、エネルギー消費も従来とほとんど変わらない。
【0022】
このように第二の温度調節機構20は、始動時の急速冷却のために機能するものであるが、そのために特にスイッチその他の制御装置によってその作動をオン/オフする必要はない。また、操作者は温度を設定するに際して第一の温度調節機構30の温度設定部36に所定温度を設定するだけでよいので、第二の温度調節機構20の存在を意識する必要はなく、従来の空冷式試料冷却装置に比べて操作や設定が煩雑化することはない。
【0023】
図1の例では、検出端である温度センサー24、34はそれぞれ金属ブロック23、33に埋設されているが、より精度の高い制御を行うには、検出端を制御対象により近い地点に設けた方がよいことはよく知られている。例えば、第一の温度調節機構30においては、温度センサー34は槽内空間に露出させて制御対象である槽内の気温を検出するようにしてもよい。同様に、第二の温度調節機構20においては、試料容器2の中の液体試料4が最終的な制御対象であるから、もし可能ならば、試料容器2の内部に温度センサー24を設けることも考えられる。その場合、検出端までの熱伝達の遅れが大きくなるから、温調回路25としてはより高度な制御方式を用いなくてはならないが、これは従来公知の技術で解決可能な問題である。或いはまた、金属ブロック23内と試料容器2内の2ヶ所に温度センサーを設け、両者の信号を適当な割合で加算して制御入力とするように構成してもよい。このようにセンサーを数カ所に分散して設置し、それらの信号を加算して制御入力とすることは従来から広く行われているところであるが、このような従来の知見を応用することによりさらに制御特性を改善できる可能性がある。
【0024】
図1の実施例は、槽内の空気が自然対流によって循環するものであるが、槽内にファンを設けて槽内の空気を強制循環させることは、本発明の目的である温度ムラの解消にさらに有力な手段となる。特に、循環風がラック1の内部を通過するように適切なガイド板等を設けて、試料容器2と空気との接触機会を増加させればその効果をさらに高めることができる。
【0025】
上記は、液体クロマトグラフを例として説明したものであるが、本発明は液体試料を分析するその他の分析装置にも適用可能であり、さらには試料前処理装置、反応装置、或いは試料保管装置など分析装置以外にも広く応用できる。
また、冷却器としてペルチエ素子を例示したが、この他、断熱膨張に伴う気化吸熱を利用する冷却器、或いは系外で冷却した冷媒液をパイプで循環させる冷却方式等も利用可能である。これらの冷却器を含む温度調節機構についても、例示のものに限定されることなく、様々な変形例を考えることができるが、その要件を挙げれば次の通りである。
第一の温度調節機構は、冷却器により槽内の空間を冷却し、所定温度に保つように温度調節する機構であり、第二の温度調節機構は、冷却器から伝熱部材を介して試料容器ないしはその中の試料を冷却し温度調節する機構である。
【0026】
【発明の効果】
以上詳述したように、本発明は、空冷式試料冷却装置の恒温槽に、直冷式の温度調節機構を備えたラックを収容してそのラックの温度が槽内の空気の温度に追従するように制御するものであるから、試料容器に温度ムラを生じることなく急速冷却が可能となり、しかも、操作者にとっては従来装置に比べて温度設定等の操作が特に煩雑になることもなく、定常運転時には従来方式に比較して特にエネルギー消費が増加することもない。
【図面の簡単な説明】
【図1】本発明の1実施形態を示す図である。
【図2】従来の試料冷却装置の一例を示す図である。
【図3】従来の試料冷却装置の他の例を示す図である
【符号の説明】
1…ラック
2…試料容器
3…セプタム
4…液体試料
10…恒温槽
11…断熱壁
12…試料注入口
13…サンプリングニードル
20、30…温度調節機構
21、31…ペルチエ素子
22、32…放熱フィン
23、33…金属ブロック
24、34…温度センサー
25、35…温調回路
26、36…温度設定部
27、37…通風ダクト
28、38…ファン
29…温度センサー

Claims (1)

  1. 試料を収めた試料容器を恒温槽に収容して室温以下に冷却する試料冷却装置において前記恒温槽の内部空間を所定温度に調節するための冷却器と温度調節器とを備えて成る第一の温度調節機構と、伝熱部材を介して前記試料容器の温度を調節するための冷却器と温度調節器とを備えて成る第二の温度調節機構と、前記恒温槽内の気温を検出する温度センサーとを備え、前記第二の温度調節機構の制御の目標値が前記温度センサーの出力信号に基づいて設定されることを特徴とする試料冷却装置。
JP24391798A 1998-08-28 1998-08-28 試料冷却装置 Expired - Lifetime JP3757637B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24391798A JP3757637B2 (ja) 1998-08-28 1998-08-28 試料冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24391798A JP3757637B2 (ja) 1998-08-28 1998-08-28 試料冷却装置

Publications (2)

Publication Number Publication Date
JP2000074801A JP2000074801A (ja) 2000-03-14
JP3757637B2 true JP3757637B2 (ja) 2006-03-22

Family

ID=17110945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24391798A Expired - Lifetime JP3757637B2 (ja) 1998-08-28 1998-08-28 試料冷却装置

Country Status (1)

Country Link
JP (1) JP3757637B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324655A (zh) * 2013-03-18 2016-02-10 株式会社岛津制作所 试样冷却装置及具备其的自动取样器、以及试样冷却方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037341C5 (de) * 2004-08-02 2008-06-19 Dionex Softron Gmbh Vorrichtung zum gekühlten Aufbewahren und Abgeben von Proben für eine integrierte Flüssigkeits-Kühleinheit
US8820095B2 (en) * 2007-12-21 2014-09-02 Finisar Corporation Vortex-based temperature control system and method
WO2014034336A1 (ja) * 2012-08-28 2014-03-06 株式会社日立ハイテクノロジーズ 液体クロマトグラフ装置
US9851282B2 (en) 2013-03-29 2017-12-26 Shimadzu Corporation Sample cooling device, and autosampler provided with the same
JP2017090471A (ja) * 2017-02-22 2017-05-25 株式会社島津製作所 試料冷却装置及びこれを備えたオートサンプラ、並びに、試料冷却方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324655A (zh) * 2013-03-18 2016-02-10 株式会社岛津制作所 试样冷却装置及具备其的自动取样器、以及试样冷却方法

Also Published As

Publication number Publication date
JP2000074801A (ja) 2000-03-14

Similar Documents

Publication Publication Date Title
JP3422262B2 (ja) 試料冷却装置
JP3921845B2 (ja) 試料冷却装置
JP5737215B2 (ja) 試料冷却装置及びサンプリング装置
JP3757637B2 (ja) 試料冷却装置
JP6853090B2 (ja) 自動分析装置
US11372013B2 (en) Apparatus equipped with sample temperature control function
WO2023249691A1 (en) Vapor-air transition detection for two-phase liquid immersion cooling
JP3267220B2 (ja) 熱分析装置
JP2004212165A (ja) 試料冷却装置
CN111492237B (zh) 分析装置用样本调温装置
CN113324825A (zh) 多样品组织匀浆器
JP4254848B2 (ja) 試料冷却装置
JP2004273967A (ja) チャンバ温度制御方式
CN210071841U (zh) 用于干式荧光/胶体金试剂卡检测的温控仓
JP2001017868A (ja) 試験用恒温装置
CN213957908U (zh) 防结霜、防倒吸的内循环控温的吸收瓶存储仓
JP2009162479A (ja) ショーケースの空調方法および装置
JPH1054813A (ja) 示差走査熱量測定装置
JPH1114539A (ja) 冷却装置付分析計
JPH10104182A (ja) 分析装置
JP2005265807A (ja) 試料冷却装置
JPH0528946A (ja) ビームテスタ用温度調節装置
JP3331038B2 (ja) 温度制御装置
CN114610089A (zh) 防结霜、防倒吸的内循环控温的吸收瓶存储仓
JP3113531B2 (ja) 結晶成長セル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

EXPY Cancellation because of completion of term